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Abstract: In recent years, demand response programs (DRPs) have become an effective method of
encouraging users to participate in energy system operations. The problem of optimal energy flow
(OEF) is a complex challenge in multiple power systems. Accordingly, this study aims to propose
a novel evolving framework for optimal OEF operation of an electricity, heat, and gas integrating
system, taking into account flexible heat and electricity demands. To this end, a switching idea
between input energy carriers has been introduced to combine the traditional DRP with demand-side
energy supply management. Switching between the feeding energy carriers could change how power
is supplied to the end users and thus would affect the total cost of the grid. Operators of integrated
systems minimize the operational costs associated with supplying flexible power to users in this
study. Considering the high nonlinearity of the problem, a novel optimization algorithm is presented
for solving the complex OEF based on the improved teaching–learning-based optimization algorithm
(ITLBOA). According to the outcomes, flexible DRP reduces operational prices and smooths power
demand curves for power and heating networks.

Keywords: demand response; optimum power flow; improved teaching–learning optimization; heat
and electrical demands; combined heat and electricity systems

1. Introduction

Societies and economies develop as a result of energy. As fossil fuels are depleted and
pollution increases, technologies such as combined heat and power (CHP), gas turbines
(GT), electric boilers (EB), photovoltaics (PV), power-to-gas (P2G), wind turbines (WT),
and gas storage (GS) are beneficial in terms of reducing emissions and costs [1]. The multi-
energy system (MES) was developed as a solution to the issues of efficient power usage,
environmental friendliness, and optimal use of energy from renewable sources [2]. In the
MES, a variety of energy carriers are integrated in order to interact with energy on diverse
levels, offering great potential for advancement [3].

An MES is able to enhance power performance and provide more advantages to soci-
ety by combining CHP, WT, PV GS, EB, GT, and P2G [4]. The coordination of electrical and
heating systems significantly facilitates renewable energy (RE) utilization. P2G technology
enhances the connection between gas and electrical systems, allowing RE to be accom-
modated. According to [1], wind energy can be a cost-effective way to generate heat in
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excess conditions; thus, the deployment of EBs may offer a viable option under continuous
wind excess conditions. With EBs, wind power could be better exploited; in addition to
producing useful heat, EBs could also decrease the operating limitations of CHPs and
minimize CO2 emissions. As well as breaking the CHP thermoelectric coupling, storage
facilities and EBs provide indirect interaction with RE, thus improving MES flexibility
and economics [2]. The conversion of surplus electricity to different kinds of energy can
maximize the use of RE, thereby minimizing the need to curtail wind and solar energy
production. CHP units maximize power performance and environmental protection by
utilizing energy cascades. P2G has been extensively researched by many experts in the field
of MES. Ref. [3] examined the economic impact of P2G technology. A surplus of electricity
could be converted into gas with P2G technology, providing a range of advantages to the
power system, including decreasing wind power curtailments, utilizing new energy more
efficiently, and offering auxiliary services. Ref. [4] indicated that P2G could reduce RE
curtailment while easing gas and electrical transmission network limitations.

In order to ensure the MES’s security, uncertainties of renewable sources must also be
taken into account. As the world moves toward green energy, RE exploitation is becoming
increasingly important [5]. RE’s unpredictable nature presents serious reliability and protec-
tion concerns [6], limiting its expansion and application. As a result, RE production is subject
to stochastic fluctuations, reducing the flexibility of supply for the power grid. A scheme is
proposed in Ref. [7] that maximizes the social benefit for unpredictable cases by meeting
safety requirements through hourly power demand response (DR). Ref. [8] examined a
two-step, robust, centralized-optimum dispatch scheme that is resilient to PV production
uncertainties. It is difficult to compute two-step, robust optimization schemes since the
problem is NP-hard. A study has been conducted on two solution methods for overcoming
the difficulty of computing. Approximation algorithms are used in the first method, where
two-stage decisions assume easy functions, for example, affine functions, of uncertainty [9].
In the second kind of algorithm, the Benders decomposition technique [10] and column-and-
constraint generation (CCG) technique [11] are used for obtaining accurate results. Based on
ref. [11], CCG converges in fewer iterations due to its superior computing efficiency.

The concept of DR covers any intentional modification of power usage from users as
well as incentive payments aimed at affecting usage time, overall demand, and instanta-
neous demand. DR can be realized through load regulation and control, as demonstrated
in ref. [12]. As discussed in ref. [13], DR has proven crucial for enhancing performance and
security. According to [14], DR may enhance the reliability of electrical systems and con-
tribute to the scheduling of PV systems. Temperature variations do not affect the thermal
inertia of thermodynamic systems and consumers, and a suitable temperature range can be
maintained, thus allowing heat loads to be controlled. According to [15], electricity DR can
decrease operational prices by providing reserves for managing predicted wind and solar
generation uncertainties. A residential energy management controller that incorporates
various types of home devices, such as deferrable, curtailable, and thermal devices, was
presented in ref. [16], thereby reducing energy prices and ensuring user satisfaction. In
ref. [17], a more feasible and effective household energy management planning scheme
was proposed in order to reduce power prices without compromising a predetermined
level of satisfaction.

There are a number of issues that should be properly considered according to the
available studies: (1) Heat and power are strongly coupled in conventional CHP units.
Generally, thermoelectric decoupling is obtained by considering storage. It takes extensive
research to fully realize the possibilities of using energy conversion devices and energy
storage for accommodating and storing additional renewable production for ensuring
energy balance, especially when CHP power exceeds electrical demand due to high thermal
loads. (2) In response to uncertainties about RE, the majority of research applies stochastic
optimization, which may negatively affect the safety of the system [6,7]. In contrast,
robust optimization is being investigated in power systems for ensuring safety, despite
uncertainties [10,11]. There have been relatively few studies on the robust planning of MES.
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(3) A number of investigations were considered on electricity DR [13–15], but not enough
has been done on integrated heat–electric DR.

The DR program (DRP) optimal energy flow (OEF) model influences outcomes in a
complicated, non-convex optimization problem involving intricate computations for the
integrated gas, electric, and heat system (IGEHS). In the present study, a new optimization
algorithm called improved teaching–learning-based optimization algorithm (ITLBOA) is
presented to lessen the OEF issue’s complexity of multi-carrier energy (MCE).

This study mainly focuses on the following contributions: (i) Developing a novel
participating management system for flexible heat and electricity users’ demand-side
energy (DSE). (ii) Proposing a new modification for the OEF model based on IGEHS,
considering flexible electricity and heat requirements. (iii) Providing a new modified
method called ITLBOA for solving the proposed non-linear and non-convex OEF problem
in the MCE system.

Following are the remaining sections of this study. Part 2 outlines the suggested
architecture for the OEF for a composed heating, power, and gas system in relation to the
integrated disaster response (IDR) strategy. Part 3 models IGEHS. In addition, sub-network
modeling is discussed in detail. Part 4 introduces the suggested ITLBOA. Part 5 examines
the performance of the suggested OEF architecture using DR power users. Part 6 provides
the conclusion.

2. The MCE System Operator’s Decision-Making Issue with Flexible DSE Activity

When reducing the overall system operating price of an MCE system, the OEF problem
is typically considered. An MCE system’s overall price can be calculated by calculating the
fuel costs of each production unit. The energy carriers are natural gas, coal, or biomass. The
integrated MES is operated by a specific independent system operator (ISO). According to
the ISO, Equation (1) is used to formulate the MCE’s OEF problem:

Min (cost) = Min(
24

∑
t=1

N f uel

∑
q=1

(Uq· f uel(τq, f uel(t))
2 + Vq, f uelτq, f uel(t) + Wq, f uel+

24

∑
t=1

Nhub

∑
r=1

(Lt
e,out,r·∃e + Lt

h,out,r·∃h) (1)

Integrated system operating costs are minimized through the adjustment of the ISO
parameters in the following manner:

X(t) =
[

Pgen
E,j , φ

chp
H,j , φboil

H,j , Tchp
s,j , Tboil

s,j , Hcomp
j , Lt

e,out,r, Lt
h,out,r

]
(2)

OEF solves its price-minimizing problem using limitations Equation (21) to Equation (43)
as follows:

Pgen
min,j ≤ Pgen

E,j ≤ Pgen
max,j j = 1, 2, . . . , Ngen (3)

Qgen
min,j ≤ Qgen

E,j ≤ Qgen
max,j j = 1, 2, . . . , Ngen (4)

Vmin
j ≤ Vj ≤ Vmax

j j = 1, 2, . . . , Nbus
E (5)

πmin
j ≤ πj ≤ πmax

j j = 1, 2, . . . , Nbus
G (6)

Tmin
s,j ≤ Ts,j ≤ Tmax

s,j j = 1, 2, . . . , Nbus
H (7)

Tmin
r,j ≤ Tr,j ≤ Tmax

r,j j = 1, 2, . . . , Nbus
H (8)

Hcomp
j,min ≤ Hcomp

j ≤ Hcomp
j,max j = 1, 2, . . . , Ncomp (9)
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φ
chp,min
H,j ≤ φ

chp
H,j ≤ φ

chp,max
H,j j = 1, 2, . . . , NCHP (10)

φboil
min,j ≤ φboil

H,j ≤ φboil
max,j j = 1, 2, . . . , Nboil (11)

Tchp
min,s,j ≤ Tchp

s,j ≤ Tchp
max,s,j j = 1, 2, . . . , Ncomp (12)

Tboil
min,s,j ≤ Tboil

s,j ≤ Tboil
max,s,j j = 1, 2, . . . , Nboil (13)

∣∣∣Pline
E,ij

∣∣∣ ≤ Pline,max
E,ij j = 1, 2, . . . , Nline

E (14)

∣∣∣Fline
G,ij

∣∣∣ ≤ Fline,max
G,ij j = 1, 2, . . . , Nline

G (15)

∣∣∣φline
H,ij

∣∣∣ ≤ φline,max
H,ij j = 1, 2, . . . , Nline

H (16)

in which Pgen
min,j represents minimal active power and Pgen

max,j shows maximal active power of

generators and Qgen
min,j shows minimal reactive power and Qgen

max,j shows maximal reactive

power of generators.
∣∣∣Pline

E, ij

∣∣∣ shows the transmission flow of the electrical line,
∣∣∣Fline

G, ij

∣∣∣
represents the transmission flow of the gas line, and

∣∣∣∅line
H, ij

∣∣∣ shows the transmission flow
of the heat line.

The generators’ active and reactive powers are defined by the limitations Equations (3) and (4).
In addition, the boundaries of magnitudes of voltage for the power networks, nodal pressures for
the gas networks, and temperatures for the heat networks are represented by limitations Equations
(5)–(8). Equation (9) defines the compressor ratio restrictions. Heat power produced by CHPs
and boilers is limited by limitations Equations (10) and (11). A CHP and boiler’s temperature
boundaries are determined by Equations (12) and (13). Equations (3)–(16) present the transmission
line flow restrictions of electricity, gas, and heating systems.

In addition, in order to minimize OEF on any flexible DR hub, it is necessary to satisfy
the below formulas for the incentive-driven DRP.

There is no change in the overall demand for heat and electricity over the course of
the day, and these demands are shifting from one-period intervals to other periods. Eday

r

and Hday
r represent the overall amounts for the flexible power and heating requirements

per day for the rth hub in the following way:

Eday
r = ∑

t∈T
Lt

e, out r = 1, 2, . . . , Nhub (17)

Hday
r = ∑

t∈T
Lt

h, out r = 1, 2, . . . , Nhub (18)

The demand for electricity and heat of the rth hub fall between the minimal and
maximal limitations Lt, max

e, out , Lt, max
h, out , Lt, min

e, out , and Lt, min
h, out for t. Thus:

Lt, min
e, out ≤ Lt

e, out ≤ Lt, max
e, out (19)

Lt, min
h, out ≤ Lt

h, out ≤ Lt, max
h, out (20)

According to the simultaneous power flow scheme for the IGEHS, the electric voltages,
gas pressures, starting and ending temperatures, and any line power flow can be com-
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puted to minimize Equation (1). The following part describes the gas, heat, and electrical
subsystems in detail.

3. IGEHS Model
3.1. Electrical System

The AC power flow equations were employed in this study for modeling the power
network. Every node’s reactive and active powers needed to satisfy the formulas below to
be power balanced:

Pgen
i + Pchp

i = Pdem
i + Ppump

i + Pcomp
i + Re(Vi

NE

∑
j=1

Y∗ijV
∗
j ) (21)

Qgen
i + Qchp

i + Qch
i = Qdem

i + im(Vi

NE

∑
k=1

Y∗ijV
∗
j ) (22)

It is important to note that the previous equations accounted for the equal generation
of electricity and the equal load demand plus the grid losses.

3.2. Gas System

There are several types of devices that make up an inherent gas grid, such as gas
sources, pipelines, compressor stations, storage facilities, and users. Natural gas frame-
works for steady-state evaluation can be illustrated with the below formulas. This formula
is used to calculate gas flow in pipelines based on the pressures at either end [18]:

Fgk = sign(Fgk)Fgk

(∣∣∣Π2
g −Π2

k − Hgk
p

∣∣∣)0.5
(23)

in which sign(Fgk) represents a sign function of pressures, in which its amount equals +1
when Πg ≥ Πk and power flow would transpose from node g to node k and−1; the reverse

is also true. Hgk
p considers the altitude variation impacts over the gas pipeline and can be

determined as follows:

Hgk
p =

0.0375g(Hg − Hk)(Pgk
a )

2

ZaTgk
a

(24)

in which Hg and Hk represent the altitudes for the gas pipelines for the gth and kth gas nodes.

The average pressure Πgk
a considers the nonlinear pressure decrease using distance [18]

and can be determined as follows:

Πgk
a =

2
3
[(Πg + Πk)− (

ΠgΠk

Πg + Πk
)] (25)

0gk shows one constant for the physical features for all pipelines obtained according
to the information about the network and engineers’ experiences operating the gas assets
and is determined as follows:

0gk =
1.14× 10−3T0(DGL

gk )
2.5Ep

(LgkγGZTaΘGL
gk )

0.5 (26)

The gas pipeline friction factor (ΘGL
gk ) is determined according to the Colebrook

formula [19]:
1√
ΘGL

gk

= −2 log (
εG

3.71DGL
gk

+
2.51
RGL

gk

1√
ΘGL

gk

) (27)
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The gas pressure is maintained by the compressors in the gas network by consuming
horsepower. In kW/h, the compressor consumes the below power:

Ecomp
gk =

112.989
η

comp
gk

ΠO
TO

λG
λG − 1

× ZTaFgk((Hcomp
gk )

λG
λG−1 − 1) (28)

Hcomp
gk =

Πcomp
k·out

Πcomp
g·in

(29)

Electric motors and gas-fired turbines can provide the compressor with energy. A
power network’s electricity is calculated as follows:

Pcomp
E,g = (

745.7× 10−6

3600
)Ecomp

gk (30)

Natural gas consumption by gas-fired generators is typically determined in the fol-
lowing way:

f GG =
1

GHV
(agen(Pgen

E )
2
+ bgenPgen

E + cgen+
∣∣∣dgen sin (egen(Pgen,min

E − Pgen
E ))

∣∣∣) (31)

For a gas system, the nodal gas flow balance can be represented by Equation (32):

Fg·S = Fg·L + FGG + Fcomp
gk + Fchp

g + Fboiler
g +

NG

∑
k=1

Fgk (32)

3.3. Heating System

Water transports heat from heat sources to users in the heating system. Hot water
or steam is circulated from production heat sources to heat load demands via the electric
pumps in the system. A leading heat network infrastructure consists of heat sources,
circulation pumps, heat users, and pipelines. Node h transfers heat power to node b in the
following manner:

φhb =
.

mhbcp(Tstart,h − Tend,b) (33)

Tend = (Tstart − Tg) exp (− lΓ
.

mhbcp
) + Tg (34)

Based on the Darcy–Weisbach formula [20], friction within pipelines causes pressure
changes in mass flows as a result of a loss of pressure. Losses due to pressure can be
calculated as follows:

vH, L
hb = KH, L

hb

.
signm(

.
mhb)−

.
signm(

.
−mhb)·(

.
−mhb)

2
(35)

KH, L
hb =

8LH, L
hb ΘH,L

hb

ρ2
Wπ2g(DH, L

hb )
5 (36)

in which KH, L
hb shows the coefficient of resistance for the heating pipelines, g represents

the gravitational acceleration, ρW shows the density of water, and ΘH,L
hb shows the friction

factor for the heating pipelines and can be calculated via the Colebrook formula in the
following manner:

1√
ΘH,L

hb

= −2 log (
εH

3.71DH,L
hb

+
2.51

RH,L
hb

1√
ΘH,L

hb

) (37)
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RH,L
hb =

UH, L
hb DH,L

hb
µW

(38)

UH,L
hb =

4m·hb

ρWπ
(

DH,L
hb

)2 (39)

in which εH shows the pipe roughness and RHL
hb represents the Reynolds number. UHL

hb
shows the flow velocity and µW represents the kinematic viscosity of water.

Water pumps consume the following amount of electric power:

PHP
E =

4
.

mHP
H gHp

ηHP (40)

It is necessary to satisfy four formulas to balance the heat flow in the heating network.
The hydraulic heating flow evaluation is based on two formulas, while the thermal heating
flow evaluation is based on the other two formulas. As a result of the hydraulic formu-
las, each node and loop in the heating system is in balance with heat and pressure loss.
Following is the formula for heat balance:

φh,load =
Nh

∑
h=1

cp(
.

mhb +
.

mCHP
H +

.
mboiler

H )× (Tstart − Tend,load) (41)

In contrast, pressure loss balance is defined as follows:

Nh

∑
h=1

Nh

∑
b=1

signm(
.

mhb)·vH·L
hb = 0 (42)

Each node must satisfy supply and return temperature balance restrictions, excluding
slack nodes. The return and supply temperature balances of all heating nodes can be
expressed in Equations (43) and (44).

.
mCHP

H (Tstart,CHP − Tg) +
.

mboiler
H (Tstart,boiler − Tg)+

Nh
∑

b=1
signm(

.
mhb)·

(
.

mhb(Tstart − Tg) exp (− lU.
mhbcp

)

)
= (Tstart − Tg)(

.
mCHP

H +
.

mboiler
H +

Nh
∑

b=1
signm(

.
mhb)·

.
mhb

(43)

in which indexes h and b are associated with the hth and bth nodes of the heat system. It
should be noted that mass flows in the same node may be combined. A node’s leaving
water temperature is calculated by taking the average of all entering pipeline temperatures
and weighting them by mass flows. Therefore, the mixed mass node’s temperature depends
on the associated node’s power conservation. Equation (44) defines the temperature of a
mixed node as follows:

Tout = ∑ (
.

minTin)/(

.
m

∑
out

) (44)

It is noteworthy that for all energy flows in the OEF issue, the return and supply
temperatures in every heat node are determined according to Equations (33) and (44).

4. Solution Methodology
4.1. State Variables Scheme and Decomposing Solution

In order to optimize the OEF problem, control variables must be identified. Using
the ITLBOA approach, the overall cost function objective is optimized. Using ITLBOA,
control variables are generated for OEF problems based on a predetermined objective cost.



Sustainability 2023, 15, 10481 8 of 23

Afterward, upon determining the pressures in every gas node, angle, and magnitude of
voltages in all electric nodes, and supply and return temperatures in all heating nodes, the
decomposed power flow problem for the multi-energy carrier system can be analyzed. It is
important to verify that the sub-networks restrictions Equations (5)–(8) and (14)–(16) are
met following obtaining the energy flow solution.

A combined system power flow problem decomposes into an evaluation for the whole
sub-system power flow, taking into account each device’s energy flow. As a result of
avoiding creating a large Jacobian matrix to address the simultaneous power flow for a
composed system, this suggested approach for determining the power flow for a composed
system is quicker and more flexible. In the decomposed method, the power flow for
electric and heating systems is solved using a graph method and a holomorphic embedding
method, respectively.

4.2. Suggested Algorithm

An ITLBOA would be an effective meta-heuristic method that is greatly affected by
the student–teacher learning procedure [21]. In the same way as various meta-heuristic
methods, ITLBOA would be a population-driven approach that uses a variety of solutions
to obtain the desired outcome. A set of learners constitute the population of the algorithm.
There are two phases in the ITLBOA method: (1) the teacher phase and (2) the learner phase.
In the teacher phase, a teacher is used to generate a set of potential solutions to the problem.
This set is then evaluated using a fitness function to determine the best solution. This best
solution is then used as the starting point for the learner phase. In the learner phase, the
algorithm uses a set of learners to improve the solution generated in the teacher phase.
Each learner is given a set of parameters to modify in order to improve the solution. These
parameters are then evaluated using the fitness function to determine if the solution has
been improved. If it has, the new solution is used as the starting point for the next iteration.
This process is repeated until the best possible solution is found. The TLBO algorithm is
an effective optimization technique for solving complex problems. It combines the power
of evolutionary optimization with the advantages of teaching and learning to find the
best possible solution. It is also relatively easy to implement and has been successfully
used in a variety of applications. In this formulation, Xold shows the previous position of
the students and Xteacher shows the position of the best student (called teacher). In fact,
in each iteration, the most fitting solution (most knowledgeable student) is assigned as
Xteacher to guide the class to a higher level of knowledge. Therefore, it must update in
each iteration.

The algorithm can be enhanced in many ways. As a result, the notion of the “self-
learning capability of the learners” is explored.

Having a self-propelled ability according to one’s own abilities is essential for achiev-
ing desirable outcomes. In this way, the self-based ability can be added to learners for
optimizing the reproduction of populations, leading to a variety of variants. Table 1
summarizes the ITLBOA algorithm in detail.

Table 1. ITLBOA algorithm.

1. Setting up parameters:
The step defines the primary learners Xold,i,

count of the population (NP), teaching factor (TF), self-learning factor (SF),
and maximal count of iterations (Gmax).

2. Primary
population:

The primary randomly selected population of each learner is created within its bounds, as
shown below:
Xold,i = Xmin

old,i + rand(0, 1)(Xmax
old,i − Xmin

old,i)

Xold, i =
[

Pgen
E,j , φ

chp
H,j , φboil

H,j , Tchp
s,j , Tboil

s,j , Hcomp
j , Lt

e,out,r, Lt
h,out,r

]
in which i = 1, . . . , D; Xmin

old,i is the minimal bound of the ith learner and Xmax
old,i is the maximal

bound of the ith learner.
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Table 1. Cont.

3. Teacher
step:

The updated learner vectors are created via achieving the knowledge from the trained teachers
within the step. The created updated vector can be defined as follows:
Xnew1,i = Xold,i + Di f f −Mean
in which Di f f −Mean i = randi(Mnew_ TF Mi)
in which Mi shows the mean knowledge level of the learners at time i, and Mnew shows the
predicted knowledge level of learners; TF shows the teacher factor deciding the amount of Mi
to be 1 or 0 and randi shows a randomly selected number between 0 and 1.
In addition, TF can be defined as follows:
TF = rnd[1 + rand(0, 1)]

4. Learner
phase using

self-learning capability:

During this step, the newly acquired knowledge level of the learners is improved (i) through
interacting with their peers or (ii) their self-learning capability:

Xnew2,i =


Xnew1,i + r1(Xold,i − Xold,j) + r2(Xteacher − SFXold,i)

i f f (Xold,i) > f (Xold,j)
Xnew1,i + r1(Xold,j − Xold,i) + r2(Xteacher − SFXold,i)

i f f (Xold,j) > f (Xold,i)

in which r1 andr2 are the randomly selected numbers between [0, 1] and SF, the self-driven
learning factor, which can be determined as follows:
SF = rnd[1 + rand]

5. Analyze/
choosing:

The newly created learner vector Xnew2,i at stage 4 competes with its previous individuals Xold,i
on the basis of the below evaluation criteria:

X1
i =

{
Xnew2,i i f f (Xold,i) ≤ f (Xnew2,i)
Xold,i otherwise

6. The end: The procedure is repeated until the preset Gmax is reached.

5. Numerical Evaluation

A numerical analysis of the suggested OEF taking into account DRP is presented in the
following section. The outcomes examine the involvement of flexible energy users in the
MCE’s OEF. The following part analyzes the advantages and features of the suggested OEF.
The software and hardware needed are as follows: MATLAB (R2015a or later): Simulink
and Simscape Power Systems; computer hardware requirements: processor: Intel Core
i5 processor or equivalent; RAM: 8 GB or higher; hard disk: 500 GB or higher; graphics
card: NVIDIA Quadro K4000 or equivalent; operating System: Windows 10. The proposed
algorithm data are as below: primary learners: 10-20; count of population (NP): 50–100;
teaching factor (α): 0.1–2; self-learning factor (β): 0.5–2; maximal count of iterations: 50–100.

For evaluating the suggested ITLBOA’s optimization capability, this paper compares
the suggested algorithm with the outcomes of various non-linear optimization approaches.
This paper then presents the outcomes of comparing the optimization algorithms for
the MCE’s OEF. For traditional benchmark functions with different dimensions, Table 2
compares the suggested ITLBOA to a variety of different optimization algorithms. In this
table, famous math benchmarks are deployed to measure the quality of the algorithms:

Schwefel: Schwefel’s function is a non-convex optimization benchmark used to test
optimization algorithms. It is often used to evaluate the performance of global optimization
algorithms as it is multimodal and has many local minima.

Ackley: The Ackley function is another non-convex optimization benchmark used to
test the performance of optimization algorithms. It is often used to evaluate the performance
of global optimization algorithms as it is multimodal and has many local minima.

Rosenbrock: The Rosenbrock function is a classic optimization benchmark used to test
the performance of optimization algorithms. It is a convex optimization problem and is
often used to evaluate the performance of local optimization algorithms.

Rastrigin: The Rastrigin function is a non-convex optimization benchmark used to test
the performance of optimization algorithms. It is often used to evaluate the performance of
global optimization algorithms as it is multimodal and has many local minima.
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Table 2. Comparing outcomes of algorithms in benchmark testing functions.

Benchmark Test Function
Algorithms

ITLBOA TLBO PSO

Schwefel
Mean 1.6× 103 ± 57 3.7× 103 ± 284 5.2× 103 ± 374

Time (s) 0.89 0.93 1.04

Ackley
Mean 7.3× 10−17 ± 1× 10−19 8.5× 10−10 ± 2× 10−9 5.9× 10−6 ± 7× 10−7

Time (s) 0.91 0.93 1.04

Rosenbrock
Mean 28.75± 0.4 68.6± 3.7 256.8± 6.9

Time (s) 1.31 1.22 1.3

Rastrigin
Mean 0 82.4± 4.3 163.7± 5.8

Time (s) 1.16 1.11 1.23

Griewank
Mean 0 6.7± 16× 10−2 25.2± 8× 10−1

Time (s) 1.17 1.14 1.21

Griewank: The Griewank function is a non-convex optimization benchmark used to
test the performance of optimization algorithms. It is often used to evaluate the performance
of global optimization algorithms as it is multimodal and has many local minima.

In the experimental MCE system, there are 14-bus IEEE buses, 20-node gas networks,
and 14-node heat networks [22,23]. In the sample MCE system, there are 2 electrical gas
compressors, 5 boilers, 2 gas generators, 4 CHP units, 5 electric pumps, and direct links to
gas, electrical power, and heat. Figures 1–3 show a schematic diagram of sub-networks for
the electrical network (Figure 1), gas network (Figure 2), and heat system (Figure 3). The
integrated testing system considers four industrial IDR users as energy hubs, including
flexible electricity and heat loads. Variables have the following minimums and maximums:
V = [0.9, 1.1] pu, pressures = [5, 80] bar, supply temperatures [130, 110] ◦C, and return
temperatures [55, 40] ◦C. Coefficients of heating ratio curves for gas-powered generators
are agen = 0.008, bgen = 4, cgen = 150, dgen = 15, and egen = 0.5. Cost factors are u f uel = 0,
v f uel = 0.14126 $/m3, and v f uel = 0. of the gas. The information needed to optimize the
proficiency of the integrated system is illustrated in Table 3. Table 4 provides the technical
features of the three systems of the integrated system. For the ITLBOA algorithm, the size
of the population is 80 and the overall number of iterations is 500. Flexible users’ shift of
energy is limited to 25% of every hub’s energy demand. Figure 4 shows electricity and
heat demand percentages for the integrated hubs over a 24 h period. Table 5 shows the
interdependencies between the three heat, electricity, and gas systems within IDR hubs.

Figure 5 shows the power prices of the DRP per hour. Specifically, every hub’s
needs are met by its devices or via the transmission sub-network within the MCE systems.
When the hubs’ production power exceeds their loads, the excess energy is delivered
to the associated network. An integrated system’s OEF problem poses a computational
challenge due to the large-scale nature of gas, electricity, and heat sub-networks. It is,
fortunately, possible to significantly minimize this problem with the suggested highly
efficient approach. Since the proposed approach utilizes a combination of optimization
techniques and machine learning algorithms to identify the optimal energy flows in the
MCE system, it is capable of providing an accurate solution to the OEF problem while also
reducing the computational complexity of the problem. Furthermore, the use of machine
learning algorithms allows the system to adapt to changes in power prices and adjust
the optimal energy flows accordingly. In addition, the proposed approach can be used
to identify the most cost-effective energy sources for each hub in the MCE system, thus
allowing for the most efficient use of energy resources. In the suggested OEF approach,
the inverse of a variable Jacobian is not used for all iterations, as in Newton–Raphson
approaches [24]. In addition, the holomorphic approach to address electric power flow
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can achieve a viable solution when all viable solutions exist; holomorphic methods do not
require a primary guess of the system [25].
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Figure 3. Diagram of the heat system.

Table 3. Technical information about energy sources in the MCE.

Unit Boiler of hub4 Boiler of hub3 Boiler of hub2 Boiler of hub1 Slack Boiler

Tboil
min,s,j, C 115 115 115 115 115

Tboil
max,s,j, C 125 125 125 125 125

Φboiler,min
H,j , MW 0 0 0 0 0

Φboiler,max
H,j , MW 5 5 5 5 15

Unit CHP of hub4 CHP of hub3 CHP of hub2 CHP of hub1

Tchp
min,s,j, C 115 115 115 115

Tchp
max,s,j, C 125 125 125 115

Φchp,min
H,j , MW 0 0 0 0

Φchp,max
H,j , MW 30 30 30 30

Unit Generator 2 Generator 1

Qgen
max,j, j 50 80

Qgen
min,j, j 0 0

Pgen
min,j, MW 10 15

Pgen
max,j, MW 80 332.4

Table 4. Information about the sub-networks.

Heat system cp = 4182 kJ/kg K ρw = 960 kg/m3 g = 9.81 kgm/S2 Hp = 100 m ηHP = 0.65
U = 0.2 W/m K η

chp
t = 0.88 Φboil,max

H = 5 MW bboil = 0.822 aboil = 0.0169 Tg = 10 ◦C

Electrical
system

achp = 0.463 bchp = −0.0491 cchp = 4.49
dchp

1 = 0.8 dchp
2 = 0.6 echp

1 = 0.0736 echp
2 = 0.0845

Gas system
GHV = 40.611 MBTU/m3 εG = 0.05 mm Za = 0.8 γG = 0.6106 λG = 1.309

π0 = 1.0133 bar TG = 281.15 k T0 = 273.2 k ηGC = 0.8
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Table 5. MCE configuration.

Devices Generator Slack Generator Moto-Compressor Moto-Compressor Slack Boiler
and Pump

Heat node - - - - 1
Power bus 2 1 5 3 30
Gas node 19 12 9 18 3

Devices IDR hub4 IDR hub3 IDR hub2 IDR hub1

Heat node 13 10 9 4
Power bus 7 17 23 14
Gas node 10 6 7 15Sustainability 2023, 15, x FOR PEER REVIEW 14 of 23 
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The holomorphic approach to addressing electric power flow in power systems is a
mathematical approach that uses holomorphic functions to solve the equations of power
flow in a power system. This approach is based on the fact that the power flow equations
can be written as a set of holomorphic functions. This approach is advantageous because
it allows for the solution of the equations without having to resort to numerical methods,
which can be time-consuming and difficult to implement. Additionally, holomorphic
functions can be used to analyze system behavior under different operating conditions,
providing a more detailed understanding of system dynamics. This approach is also useful
for detecting and diagnosing faults in power systems as it allows for the identification of
potential issues that may not be visible with other methods. The main advantages of this
method over the Newton–Raphson method are as below:

The holomorphic approach provides an exact solution to the power flow equations,
while the Newton–Raphson method only provides an approximate solution.

The holomorphic approach is computationally efficient and does not require any itera-
tion, while the Newton–Raphson method requires multiple iterations to reach a solution.

The holomorphic approach is more accurate as it takes into account the non-linearity
of the power flow equations, while the Newton–Raphson method is based on linear ap-
proximations.

Figure 6 depicts the impact of DRP on the performance of the OEF of the experimental
MCE system. According to the figure, the IDR program for the MCE systems reduces
operational costs. The figure shows that with the greater flexibility of users’ involvement,
the operational costs of the system are significantly decreased. A direct control method
allows the ISO for managing flexible heat and electrical loads by means of an acceptable
level of user involvement [26]. Incentives must be paid by the ISO to flexible users, though.
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Figure 6. Operating costs of the MCE system in the presence of DR involvement levels.

The load duration curves for the power and heating sub-systems in the presence and
sans of the DRP are presented in Figure 7. To meet the heating and electricity needs of IDR
users during peak times, the ISO consumes gas through CHP and hub boilers. The overall
electrical loads of the system including and excluding the DRP during 24 h are shown in
Figure 7a. The figures indicate that the total system electrical loads are decreased within
peak durations. As a result of the DRP, the electrical load shape is better balanced as well.
Due to the DRP per hour, the heat and electricity peak loads are shifted to times in which
the price of providing electricity and heat is lower [27–29]. The DR led to a decrease in
peak loads and a smoothing of the load curve of the heating system in Figure 7b.
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Figure 7. Load duration curves for the heat and electricity sub-systems including and excluding the
DRP. (a) Overall power curve for MCE systems; (b) overall heating curve for MCE systems.

For the purpose of investigating the DRP, three sub-networks were examined. Figure 8
shows the overall electrical power generated by generators in the MCE system in the
presence and absence of DRP. The figure shows the reduction in electrical power generated
by generators in the MCE in the presence of DRP.

Figure 9 shows the overall heat produced by the MCE system including and excluding
DRP. The integrated heat DRP reduces the overall heat generated outside the energy hubs
in the MCE. Heat network efficiency is improved by the DRP.

The overall gas produced by the system from the outside DR hubs in the presence and
sans of DRP is depicted in Figure 10. A higher amount of gas is produced by the system in
the presence of the DRP. This is because, in the DR hubs, equipment that is interdependent
like CHPs and boilers consumes greater quantities of natural gas to provide both electricity
and heat. Despite this, the overall operational prices of the multi-energy carrier system
decreased because gas has a lower cost compared to various energy sources.
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Figure 8. Overall electricity produced via the electrical system.
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Figure 9. Overall heat produced via the heating system.
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Figure 10. Overall gas produced via the gas system.

The losses of the networks in the presence of DRP and in the absence of DR in the two
systems are depicted in Figure 11. It is concluded that the use of DRP diminishes electrical
losses. Furthermore, if the DRP is incorporated into an integrated system, the overall heat



Sustainability 2023, 15, 10481 17 of 23

loss decreases. In view of the assumption that the gas network is zero-loss, no gas loss
is considered.
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Figure 11. Altering in loss power in the presence and absence of DRP. (a) Power system; (b) heating system.

Figure 12 illustrates the change in nodal operations of the integrated network. When
DRP is used, nodal voltages on the electrical system tend to be nearer the optimum voltage
(1 pu), and such values tend to be near their maximum or minimum levels when not using
DRP. Gas network nodal pressures in the absence of DRP outcomes are similar to those
obtained in the presence of DRP outcomes. Gas network nodal operation is not affected
significantly by flexible electricity and heat demands. According to Figure 12c, the nodal
supply temperatures of the heating system in the absence of DRP tend to be closer to the
maximum and minimum bounds than when DRP is utilized.
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This paper compares the outcomes of the algorithm to the outcomes of other optimizer
schemes to evaluate how the ITLBOA affects the OEF of the MCE experimental system.
Table 6 illustrates this analysis.

Table 6. Algorithm outcomes of OEF for testing MCE systems.

Method of Solution ITLBOA TLBO PSO

Overall
operational

costs ($)

Time, s 4268 4311 4401

SD 0.137 0.314 0.529

Worst 647,871 647,893 647,912

Mean 647,859 647,878 647,887

Optimal 647,858 647,876 647,884

6. Conclusions

The goal of the study was to peruse the involvement of integrated flexible users, a
particular type of demand-side management activity, in MCE systems such as electricity,
heat, and gas. This will be beneficial for both the energy provider and the customers as
it will reduce the cost of energy. In addition, the coordination of multiple energy carriers
will also help to reduce the environmental impact of energy production and consumption.
This is because the coordination of multiple energy carriers will lead to more efficient
use of energy, which will reduce the amount of energy wasted. This, in turn, will reduce
the amount of greenhouse gases released into the atmosphere. Finally, the integration of
multiple energy carriers will also make the energy system more resilient as it will be better
able to cope with unexpected energy demand changes. An OEF scheme of the multi-power
carrier system has been used for determining DR hubs’ impact. The OEF scheme considers
electrical as well as heat loads in real time. The MCE is operated by elastic energy users.
With the developed OEF scheme, electric, gas, and heat networks can be coordinated with
industrial DR hubs while taking network security into consideration. Energy demand
curves are smoothed by flexible energy users based on simulation outcomes. In addition,
flexible energy users decrease the overall operational costs for integrated multi-power
carrier systems. In addition, as the number of flexible electric and heat users increases,
multi-energy carrier system operation prices decrease even further. As the number of
flexible users in the system increases, DRP’s impact will become more evident.
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Abbreviations

DRP Demand response program OEF Optimal energy flow
ITLBOA Improved teaching–learning-based optimization algorithm CHP Combined heat and power
GT Gas turbine EB Electric boilers
PV Photovoltaic P2G Power-to-gas
WT Wind turbine GS Gas storage
MES Multi-energy system DR Demand response
IGEHS Integrated gas, electric, and heat system CCG Column-and-Constraint Generation
RE Renewable energy MCE Multi-carrier energy
DSE Demand-side energy IDR Integrated disaster response
ISO Independent system operator

Nomenclature

Variable Definition
Uq,fuel, Vq,fuel, Wq,fuel Fuel price’s ratio ($/ton)

τq,fuel Amount of fuel type consumed

Lt
e,out,r/L

t
h,out,r Output electrical/heat energy of every hub from the demand side (MW)

Pgen
E,j Generators’ production active power (MW)

Pgen
min,j/P

gen
max,j Minimum/maximum generators’ production active power (MW)

Qgen
E,j Generators’ production reactive power (MVAR)

Qgen
min,j/Q

gen
max,j Minimum/maximum generators’ production reactive power (MVAR)

Vi, Vj Voltage of the node in the system (pu)

φ
chp
H CHP heat production (MW)

φboiler
H Boiler heat production (MW)

Tchp
s,j Initial temperatures of the CHP (K)

Tboiler
s,j Initial temperatures of the boiler (K)

|Pline
E, ij| Transmission flow of electrical line

|Fline
G, ij| Transmission flow of gas line

|∅line
H, ij| Transmission flow of heat line

Hday
r Entire amounts of heat energy demand of the hub per day (MW)

Eday
r Entire amounts of electrical energy demand of the hub per day (MW)

Fg·k Gas transmission from node gth to kth (m3/day)

Fg·L Gas demand at node (m3/day)

Fg·S Gas injection via node gth (m3/day)

FCHP
g /Fcomp

g /Fboiler
g CHP/turbo-compressor/boiler consumption gas (m3/day)

.
mboiler

H /
.

mCHP
H Boiler/CHP ’s mass flow ratio (kg/s)

.
mout/

.
min Output/input mass flow via a pump (kg/s)

.
mhb Mass flow via the pipeline among node hth and bth (kg/s)
.

mHP
H Heat pump’s mass flow (kg/s)

.
mload

H Heat load’s mass flow (kg/s)

Tend End of the pipeline’s temperature (K)

Tstart Beginning of the pipeline’s temperature (K)

l Heat pipeline’s length (km)

ηchp/ηcomp/ηHP Efficiency of the CHP/compressor/pump
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DH,L
hb Pipeline’s diameter (mm)

LH,L
hb Pipeline’s length (km)

ΘH,L
hb Pipeline’s friction ratio

ρW Water density/kg/m3

Tin/Tout Input/output mass flow’s temperature in a mixed node (K)

Pcomp
k,in /Pcomp

k,out Pressure of input/output gas compressor

Qdem/gen
i /Pdem/gen

i Reactive/active power demand

QCHP
i /PCHP

i Reactive/active power production of CHP

QSH
i Shunt capacitors reactive production (MVAR)

Pcomp
i Consumed electric power via compressor (MVA)

Ppump
i Consumed power via heating pump (MVA)

Hp Network’s pump head (m)

NE Number of electrical bus

θi Voltage angle

Yij Electrical transmission line admittance

Nh Number of heat nodes

aboil,aboil Partial boiler ratios

∃h/∃e Incentive cost that operator should pay to the flexible Heat/electric
customers ($)

Γ Heat transition ratio (W/mK)

Tg Temperature of ground (K)

cp Specific heat of the water (kJ/kgK)

α
comp
gk /α

comp
gk /α

comp
gk Compressor consumption ratio

γG Gas’s gravity ratio

λG Natural gas specific heat proportion

Ep Gas pipelines’ absolute rugosity ratio (mm)

Lgk Length of pipeline (km)

Z Gas’s compressibility at the gas flow’s temperature

Ta Gas flow’s temperature (K)

T0 Base temperature, (K)

P0 Base pressure (kPa)

PCHP
E CHP’s active power (MW)

PHP
E Heat power’s electrical demand (MW)

Pcomp
E,g Power demand of compressor (MW)

φh,load Customer point’s heat energy demand (MW)

φhb Heat energy flow via the heat pipeline (MW).

agen,bgen,cgen,dgen,egen Consumption ratios of generator

RGL
gk Reynolds number

KH,L
hb Pipe’s resistance ratio

DGL
gk Pipeline diameter (mm)

Π
gk
a Pipeline mean pressure (kPa)

Π
comp
g,in Compressor’s input pressure (kPa)

Π
comp
k,out Compressor’s output pressure (kPa)

Hgk
p Pipeline’s slope pipeline correction (kPa2)

Hcomp
gk Compressor ratio among gth node and kth node

FGG Consumption gas via gas-fired power agent (m3/day)
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FP2G
t Gas generation of P2G agent (m3/day)

ϑH,L
hb Flow velocity (m/s)

φboil,maax
H Maximum heat production of boiler (MW)

φdem
h Demand for heat energy at hth node (MW)
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