
Citation: Li, X.; Nishio, M.;

Sugawara, K.; Iwanaga, S.; Chun, P.-j.

Surrogate Model Development for

Slope Stability Analysis Using

Machine Learning. Sustainability

2023, 15, 10793. https://doi.org/

10.3390/su151410793

Academic Editors: Marc A. Rosen,

Jiankun Huang, Yunqi Wang,

Liqun Lyu and Jun Li

Received: 18 April 2023

Revised: 4 July 2023

Accepted: 5 July 2023

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Surrogate Model Development for Slope Stability Analysis
Using Machine Learning
Xianfeng Li 1,2,* , Mayuko Nishio 3, Kentaro Sugawara 4, Shoji Iwanaga 4 and Pang-jo Chun 1,2

1 Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan;
chun@g.ecc.u-tokyo.ac.jp

2 Department of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan
3 Department of Engineering Mechanics and Energy, Faculty of Engineering, Information and Systems,

University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan; nishio@kz.tsukuba.ac.jp
4 Geoscience Research Laboratory, Co., Ltd., 2-3-25 Koraku, Bunkyo City, Tokyo 112-0004, Japan;

sugawara@geolab.jp (K.S.); iwanaga@geolab.jp (S.I.)
* Correspondence: li@i-con.t.u-tokyo.ac.jp

Abstract: In many countries, slope failure is a complex natural issue that can result in serious natural
hazards, such as landslide dams. It is associated with the challenge of slope stability evaluation,
which involves the classification problem of slopes and the regression problem of predicting the
factor of safety (FOS) value. This study explored the implementation of machine learning to ana-
lyze slope stability using a comprehensive database of 880 homogenous slopes (266 unstable and
614 stable) based on a simulation model developed as a surrogate model. A classification model was
developed to categorize slopes into three classes, including S (stable, FOS > 1.2), M (marginally stable,
1.0 ≤ FOS ≤ 1.2), and U (unstable, FOS < 1.0), and a regression model was used to predict the target
FOS value. The results confirmed the efficiency of the developed classification model via testing,
achieving an accuracy of 0.9222, with 96.2% accuracy for the U class, 55% for the M class, and 95.2%
for the S class. When U and M are in the same class (i.e., the U + M class), the test accuracy is 0.9315,
with 93.3% accuracy for the S class and 92.9% accuracy for the U + M class. The low accuracy level
for class M led to minor inaccuracies, which can be attributed to a data imbalance. Additionally, the
regression model was found to have a high correlation coefficient R-square value of 0.9989 and a
low test mean squared error value of 5.03 × 10−4, which indicates a strong relationship between the
FOS values and the selected slope parameters. The significant difference in the elapsed time between
the traditional method and the developed surrogate model for slope stability analysis highlights the
potential benefits of machine learning.

Keywords: slope stability; factor of safety; machine learning; surrogate model

1. Introduction

Landslides are common geological hazards that cause significant social and economic
damage. These natural hazards are influenced by various factors, including external triggers
such as rainfall and earthquakes, as well as internal factors such as slope configuration and
soil characteristics [1,2]. It is urgent for engineers and researchers to analyze the stability of
slopes to prevent or mitigate the potential risks posed by landslides [3].

Traditionally, slope stability is evaluated by calculating the factor of safety (FOS) and
determining an appropriate treatment design. If the FOS is greater than 1.0, the slope
is considered stable, whereas if it is less than 1.0, the slope is considered unstable [4].
Common methods for calculating the safety factor in slope stability analyses include the
limit equilibrium method (LEM) and numerical calculation methods based on theories
of elasticity and plasticity [5,6]. However, the accuracy of the LEM is limited owing to
the assumptions about slip surfaces and interslice forces, whereas numerical calculation
methods require a precisely fitting constitutive model, which is challenging to achieve [7–9].
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The complexity of the interactions among the factors affecting slope stability also makes it
challenging to accurately evaluate real slope stability with an FOS.

Machine learning algorithms, such as artificial neural networks (ANNs) [10], support
vector machines (SVM) [11], and gradient boosting machines (GBM) [12], have increasingly
been used to evaluate slope stability as a nonlinear problem because of their ability to
extract valuable information from actual slope case records. These methods evaluate the
slope stability based on geotechnical parameters (cohesion and internal friction angle),
slope geometry (slope height and slope angle), water conditions (pore water pressure), and
dynamic conditions (earthquake effect) and have been proven to be promising in slope
stability evaluations. However, even with an FOS > 1.0, the slopes may still fail. According
to Mahmoodzadeh et al. [13], slopes with an FOS > 1.2 are considered safe, and the dataset
used in previous studies is summarized in their study, which ranged from 10 to 699 cases.
Despite the efforts by researchers to collect real on-site data, the dataset is often too small to
establish its applicability and repeatability. Therefore, there is a need for surrogate model
development [14] in slope stability analysis. The use of machine learning models allows
for instantaneous results without the need for numerical simulations, making it an ideal
approach.

This study investigates the use of machine learning models to analyze the complex
nonlinear relationships in slope stability evaluations, utilizing a comprehensive database
of 880 homogenous slopes (266 unstable and 614 stable) generated by FLAC 3D Version
7.0 software (Fast Lagrangian Analysis of Continua in 3 Dimensions, Itasca Company,
Minneapolis, MN, USA) instead of traditional real on-site data. A classification model was
developed to categorize slopes into three classes: S (stable, FOS > 1.2), M (marginally stable,
1.0 ≤ FOS ≤ 1.2), and U (unstable, FOS < 1.0). Furthermore, a regression model was used
to predict the target FOS. This study used virtual slope data to develop the models and
evaluate their performance.

2. Dataset
2.1. Modeling: A Simple and Homogeneous Soil Slope

This section models a simple and homogeneous soil slope, with a height of 6 m and
an angle of 45◦, as shown in Figure 1. The basic slope model had a width of 20 m and
a height of 10 m. To maintain the rigid behavior of the model based on the boundary
conditions, the slope must be embedded in the bedrock. In the analysis, the unit weight,
elastic modulus, and Poisson’s ratio of the soil were set at 20 kN/m3, 14 MPa, and 0.3,
respectively. To ensure the validity of the analysis, a range of shear strength properties
are utilized, and both numerical simulations using FLAC 3D and analyses using the limit
equilibrium method (LEM) were conducted for the parametric study. The FOS results are
listed in Table 1.
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Table 1. Factors of safety (FOS) using numerical simulation and LEM.

No. Cohesion/kPa Friction
Angle/◦ FOS * FOS_LEM

[6] FOS Difference Relative
Error/%

1 2 5 - 0.25 - -
2 2 15 - 0.50 - -
3 2 25 - 0.74 - -
4 2 45 1.15 1.35 0.20 14.81
5 5 5 - 0.41 - -
6 5 15 - 0.70 - -
7 5 25 - 0.98 - -
8 5 35 1.25 1.28 0.03 2.34
9 5 45 1.57 1.65 0.08 4.85
10 10 5 - 0.65 - -
11 10 15 1.02 0.98 0.04 4.08
12 10 25 1.32 1.30 0.02 1.54
13 10 35 1.64 1.63 0.01 0.61
14 10 45 2.02 2.04 0.02 0.98
15 20 5 1.22 1.06 0.16 15.09
16 20 15 1.59 1.48 0.11 7.43
17 20 25 1.93 1.85 0.08 4.32
18 20 35 2.29 2.24 0.05 2.23
19 20 45 2.73 2.69 0.04 1.49
20 5 0 - 0.20 - -
21 10 0 - 0.40 - -
22 20 0 1.00 0.80 0.20 25.00

* ‘-’ means that the FOS value is less than 1.0 without a specified output value.

Therefore, in most cases, the FOS obtained using the numerical simulation is compa-
rable to that obtained using the traditional LEM method under different combinations of
soil parameters (i.e., cohesion and internal friction angle). However, there are a few cases
in which there is a larger difference in the FOS values between the numerical simulation
and the LEM, particularly when the cohesion is 20 kPa and the friction angle is 0◦, at
which point the error can reach up to 25%. In addition, if the slope is unstable (i.e., FOS is
less than 1.0), the numerical simulation analysis does not provide any calculated results.
Conversely, if there is no FOS output, the slope is considered unstable.

2.2. An Established Dataset

In this study, several numerical simulations based on FLAC 3D were conducted to
model numerous homogenous slopes and obtain their factors of safety (FOS). As aforemen-
tioned, all models had a density of 20 kN/m3, a Young’s modulus of 14 MPa, a Poisson’s
ratio of 0.3, and a tensile strength of 0. Four key parameters were considered to repre-
sent the slope characteristics: slope height (H), slope angle (α), cohesion (c), and internal
friction angle (ϕ). Values of 3 m, 6 m, and 9 m were considered for the slope height, and
values of 26.57◦, 45◦, and 63.43◦ were used for the slope angle. For the soil parameters
(shear strength), a range of 2–50 kPa was considered for soil cohesion, and a range of
0–45◦ was considered for the internal friction angle. This resulted in a dataset consisting of
880 homogenous slopes with FOS values as the output. The generated dataset is shown in
Appendix A Table A1. The dataset was then used for the classification model for slopes
and the regression model for FOS prediction, which are introduced in Section 3, model
development. Note that the dataset used in this study was selected solely by the simple
full factorial experiment method, without considering data balance. In addition, the deci-
sion to use homogeneous slopes in this study was a deliberate choice made to establish a
clear understanding of the neural network’s behavior and performance under simplified
conditions.

The frequency distribution of the FOS values used in this study is shown in Figure 2,
with 266 unstable slopes and 614 stable slopes. To understand the relationship between the
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FOS values and other parameters, scatterplots of all key parameters against the FOS are
plotted in Figure 3. Additionally, a typical relationship between the FOS and the internal
friction angle is shown in Figure 4, with a slope height of 6 m, a slope angle of 45◦, and
various cohesion values (2–50 kPa). The results indicate that the calculated FOS increases
with an increase in both the cohesion and friction angle, which is consistent with previous
findings [4]. However, an increase in slope height and slope angle resulted in an initial
increase in the FOS, followed by a decrease, which differs from previous research. This
discrepancy may be attributed to the range of slope heights and slope angles selected in
this study.
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3. Model Development

Artificial neural networks (ANNs) are machine learning models inspired by the struc-
ture and function of the human brain. ANNs are used to model complex relationships
between inputs and outputs and can improve their predictions over time [15,16]. In contrast,
deep neural networks (DNNs), also known as deep learning models [17], are modifications
of ANNs that differ primarily in the number of layers they contain [18]. While ANNs
have a single layer of input neurons connected to a single layer of output neurons, DNNs
consist of multiple layers of neurons, with each layer feeding into the next. The increased
complexity of DNNs enables them to learn and identify complex features and patterns in
data that may not be apparent in simpler models such as ANNs.

DNNs have a wide range of applications in civil engineering, including crack detection
in concrete [19] and asphalt pavement [20], bridge damage identification [21,22], and the
automatic recognition of soil desiccation cracks [23]. Overall, the greater complexity and
improved feature recognition capabilities of DNNs make them powerful tools for a variety
of machine learning tasks (e.g., classification and regression), particularly those involving
large and complex datasets. Additionally, the use of a surrogate model with machine
learning can help reduce the computation time and cost.

3.1. A Deep Neural Network Model for Slope Classification

A deep neural network for classification is a machine learning tool used to categorize
input data into different classes [24]. This model facilitates data collection, network creation
and training, and performance evaluation using cross-entropy and confusion matrices. A
trained, feedforward, and fully connected DNN model designed for slope classification
is shown in Figure 5. This network consisted of nine fully connected hidden layers, with
each subsequent layer receiving input from the previous layer. The first hidden layer was
connected to the network input. Each layer adjusts the input via a weight matrix and
the addition of a bias vector, and the final layer, followed by the application of a softmax
activation function, produces the network output in the form of classification labels. The
hidden layer has a neuron size of {8 16 16 32 16 32 16 16 8}, determined by trial and
error, which ensures excellent performance. The output has three classes, i.e., S (stable,
FOS > 1.2), M (marginally stable, 1.0 ≤ FOS ≤ 1.2), and U (unstable, FOS < 1.0). When
U and M are in the same class, the output has two classes: S and U + M. The process of
building a deep neural network for classification typically includes the following steps:



Sustainability 2023, 15, 10793 6 of 36

(a) Data preprocessing: The first step is to prepare the input data and target labels used to
train the network. This typically involves dividing the data into training and test sets.

(b) Network construction and training: The next step is to train the network using the
training data. A DNN model is trained on the input data, which requires specifying
the input data, target labels, and the type of network to be trained.

(c) Prediction: Once the network is trained, the model can be used to predict the test set.
(d) Performance evaluation: The performance of the network can be evaluated using a

confusion matrix.
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3.2. A Deep Neural Network Model for the Factor of Safety Regression

A DNN for regression is a machine learning technique that utilizes neural networks
to predict numerical values from input data [17,25]. Furthermore, it involves training a
network using input data and their corresponding target values and generating predicted
values for new input data. In this study, a feedforward DNN model was designed for
FOS regression. The network architecture was similar to that of the DNN model used for
classification, with the main difference being the output value. In the regression network,
the predicted target values (FOS) were generated by the final fully connected layer. Using
trial and error, the DNN model for regression consisted of 11 layers with neuron sizes of
{8 16 16 32 32 64 32 32 16 16 8}, as illustrated in Figure 6. The procedure for a regression
DNN typically involves the following steps:

(a) Data preprocessing: The dataset is divided into training and test sets, and necessary
preprocessing steps such as feature normalization and the handling of missing values
are performed.

(b) Network construction and training: A DNN consisting of input, hidden, and output
layers is constructed, with the architecture of the network determined by factors such
as the number of hidden layers and nodes. The network is trained using a training
set.

(c) Prediction: The trained model is utilized to generate predicted values for new input
data.

(d) Performance evaluation: The performance of the model was evaluated using metrics
such as the mean squared error (MSE) and correlation coefficient R-square value.
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4. Results and Discussion
4.1. Slope Classification

In this study, 70% of the generated dataset was used to train the machine learning
classification model, and the remaining 30% was used for testing. To eliminate subjectivity
in data selection, both the training and test datasets were randomly selected. The rectified
linear unit (ReLU) function was used as the action function for the classification model.
Table 2 lists the training error and accuracy for three classes (S, M, and U) and two classes
(S and U + M). For three classes, the training accuracy was 0.9919 with a training error of
0.0081, whereas for two classes, the training accuracy was 0.9692 with a training error of
0.0308. Both had high accuracies (>0.9000).

Table 2. Error and accuracy of training, cross-validation training, and test sets.

Output Training Cross-Validation Training Test

Three classes
Error 0.0081 0.1104 0.0778

Accuracy 0.9919 0.8896 0.9222

Two classes
Error 0.0308 0.0908 0.0685

Accuracy 0.9692 0.9092 0.9315

For the three classes, using the model to predict the test set, the test accuracy of
the model was approximately 0.9222 with a test error of 0.0778. According to the con-
fusion matrix in Figure 7a, the test accuracy for the U (unstable) and S (stable) classes
was above 95%, whereas that for the M (marginally stable) class was approximately 55%,
owing to a data imbalance. Therefore, class M had relatively fewer cases than the other
two classes. For example, referring to the dataset in Appendix A Table A1, the M class
has just 76 cases because the range of the FOS is relatively small, from 1.0 to 1.2, while
the U class has 266 cases, and the S class has 538 cases. Thus, the generated class M was
significantly smaller than the other two classes. However, class M is marginally stable;
thus, it is probably stable and unstable. Such an M-class slope is also extremely dangerous
and requires more attention to avoid slope failures. This classification model was devel-
oped to classify slopes into three classes, including S (stable), M (marginally stable), and
U (unstable), with a higher test accuracy of over 90%.
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Similarly, when U and M are in the same class, another classification model was
developed to categorize the slopes into two classes: S (stable, FOS > 1.2) and U + M
(unstable, FOS < 1.2). Using this training model to predict the test set, the test accuracy
was approximately 0.9315, which was slightly higher than the accuracy of the three-class
model, and the test error was 0.0685. Figure 7b presents the confusion matrix for the
test set, showing that the test accuracy for the S (stable) class was 93.3%, and the test
accuracy for the U + M class was approximately 92.9%, both exceeding 90.0%. Thus, this
classification model was also developed to classify slopes into two classes, S (stable) and
U + M (unstable), with a higher test accuracy of over 90%. Regardless of the class, the
machine learning model had a high accuracy of more than 90%. If the dataset is sufficient,
the three classes are considered superior.

However, the cross-validation misclassification error provides an estimate of how
well a model performs on the new data. In this study, a 10-fold cross-validation was
conducted, and the findings are presented in Table 2. Therefore, for the three classes, the
cross-validation training error of 0.1104 was higher than the training error of 0.0081, which
was much closer to the test error of 0.0778. In addition, the cross-validation accuracy of
0.8896 was lower than the training accuracy of 0.9919, which was much closer to the test
accuracy of 0.9222. Therefore, relying solely on the misclassification error of the training
data underestimates the misclassification rate of the new data. Consequently, the cross-
validation error provided a more accurate estimate of the performance of the model on the
new data than the training error. Similar findings were also observed for both classes.

4.2. Slope FOS Prediction

In this study, 80% of the generated dataset was allocated to training, and the training
and test sets were randomly selected. The ReLU function was selected as the activation
function for the regression DNN model, with linear activation used as the output layer.
Thus, 704 data points were used to construct the machine learning regression model with
four input parameters (slope height, slope angle, cohesion, and internal friction angle)
and one output target value of the FOS. Figure 8 displays the training loss curve with
iterations, and Figure 9 depicts the relationship between the “true” FOS and the predicted
FOS for the test set on slopes based on the regression model. The mean squared error (MSE)
for the test set was approximately 5.03 × 10−4, and the correlation coefficient R-square
for the regression model was 0.9989, indicating a strong linear relationship between the
predicted FOS value and the true FOS obtained by numerical simulation. This means that
this regression model can be used to predict FOS accurately. Thus, the regression model



Sustainability 2023, 15, 10793 9 of 36

accurately predicted the FOS value and effectively modeled the relationship between the
FOS values and the selected slope parameters.
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Actually, the FOS provides a quantitative assessment of slope stability. Calculating
the FOS is essential in slope stability analysis to evaluate safety, optimize design, manage
risks, support decision making, and comply with regulatory requirements. The proper
assessment and control of the FOS are essential for ensuring the long-term stability and
reliability of slopes. Therefore, the regression model used to predict the factor of safety
(FOS) holds significant meaning for engineering practices.
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4.3. Time Consumption

Table 3 presents a comparison of the times consumed by the various calculation
methods for slope stability analysis. The traditional method, which uses FLAC 3D to
determine the FOS, requires approximately 125 s for a typical case, as shown in Figure 1.
In contrast, using the machine learning model for classification, the elapsed times for
the training and test set classification of the 880 datasets for the three classes were only
1.549320 s and 0.001513 s, respectively. Similarly, for regression, the elapsed times for the
training and test set regressions of the 880 datasets were only 0.045756 s and 0.003117 s,
respectively. These results show that a surrogate model based on machine learning can
be utilized to predict the FOS values in real time. The significant difference in the elapsed
time between the traditional method and the developed surrogate model for slope stability
analysis highlights the potential benefits of machine learning. By allowing quick and
accurate predictions of the FOS, decision makers can take prompt action to prevent and
mitigate hazards, thereby reducing the risk of accidents and damage. Consequently, such a
surrogate model using machine learning models can complement traditional computational
methods, accelerate the FOS prediction process, and contribute to the development of
effective and efficient risk management strategies.

Table 3. Time consumption of various calculation methods for slope stability analysis.

Methods Numerical
Simulation

Classification
(Three Classes) Regression

Set - Training Test Training Test

Case No. 1 616 (70%) 264 (30%) 704 (80%) 176 (20%)
Time/s 125 1.549320 0.001513 0.045756 0.003117

4.4. Discussion

Using the traditional limit equilibrium method (LEM), the factor of safety is defined
by the following equation [26]:

FOS =
shear strength o f soil

shear stress required f or equilibrium
, (1)

It can also be expressed as follows:

FOS =
τf i

τi
=

c + σitanϕ

τi
, (2)

where τi and σi are the shear stress and normal stress at the i-th slice of the slip surface,
respectively, and c and ϕ are the cohesion and internal friction angle, respectively. The
critical slip surface corresponds to the surface that yields the lowest factor of safety (FOS),
with this minimal value representing the true FOS.

According to the defined FOS by LEM, the cohesion and internal friction angle play
crucial roles as parameters. As the surrogate model can predict the FOS, a comparison
between the typical FOS calculations (based on Table 1; data with the FOS less than 1.0 have
been removed) obtained from the traditional LEM method and the surrogate model is
listed in Table 4. The results indicate that the developed surrogate model can accurately
predict the FOS value. When the FOS obtained from the LEM method exceeds 1.0, the
relative error is mostly below 10%, except for Case No. 4, which reaches approximately
15%. It is believed that enhancing the accuracy of the surrogate model would require a
larger and more diverse dataset. The traditional method primarily focuses on the cohesion
and friction angle, whereas the surrogate model incorporates two additional factors related
to slope shape: slope height and slope angle. Although further improvements are necessary
to enhance the accuracy of the surrogate model, Section 4.3 demonstrates the effectiveness
of this approach.
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Table 4. Typical factors of safety (FOS) using LEM and the developed surrogate model.

No. Cohesion/kPa Friction
Angle/◦

FOS_LEM
[6]

FOS by
Surrogate

Model
The Difference Relative

Error/%

4 2 45 1.35 1.16 −0.19 −14.37
8 5 35 1.28 1.24 −0.04 −3.41
9 5 45 1.65 1.54 −0.11 −6.72

12 10 25 1.30 1.33 0.03 1.97
13 10 35 1.63 1.63 0.00 0.04
14 10 45 2.04 2.02 −0.02 −1.05
15 20 5 1.06 1.16 0.10 9.58
16 20 15 1.48 1.60 0.12 8.11
17 20 25 1.85 1.93 0.08 4.56
18 20 35 2.24 2.29 0.05 2.40
19 20 45 2.69 2.75 0.06 2.21

By incorporating the findings of the surrogate model into traditional studies, re-
searchers can enhance the efficiency of slope stability assessments. This integration allows
for a more comprehensive analysis and a deeper understanding of slope behavior, ulti-
mately leading to improved engineering practices and decision making in geotechnical
engineering.

The surrogate model can be used to calibrate and validate traditional LEM parameters.
By comparing the FOS predictions of the surrogate model with the results obtained from
the LEM, researchers may assess the accuracy and reliability of the traditional method.
This helps in fine-tuning the LEM parameters and improving its predictive capabilities.
Additionally, researchers can systematically vary the input parameters within a range and
observe the corresponding changes in the FOS predicted by the surrogate model. This
analysis provides insights into the relative importance and influence of different factors on
slope stability, aiding researchers in identifying critical parameters and optimizing their
analyses.

4.5. Contributions, Limitations, and Further Research

The main strength of this work lies in the proposal of a surrogate model using machine
learning to evaluate slope stability and compare the FOS value with the traditional LEM
method. This study contributes to slope analysis in the following ways: (a) expanding
classifications: the concept of a marginally stable class for slopes is introduced, which
challenges the traditional binary classification of stable and unstable slopes; (b) surrogate
modeling: the study showcases the potential of surrogate models in slope stability analysis,
offering a cost-effective and time-efficient alternative to traditional methods.

Thus, when conducting a slope stability analysis, the classification model can be used
first. Table 5 summarizes the countermeasures based on the slope classification. In cases
in which the result falls into class U, prompt treatment should be considered, such as
modifying the slope shape (slope height and slope angle) or increasing the strength of the
soil (cohesion and friction angle) using methods like water drainage. Additionally, the
regression model can also be used to obtain the FOS for slope analysis if it exceeds 1.0.
For slopes classified as class M, real-time monitoring and early warning are necessary to
prevent sudden slope failure. When the slope is classified as class S, regular monitoring
and maintenance can be implemented based on the FOS values. A higher FOS indicates a
greater safety margin for the slope. The proposed countermeasures can be applied to the
slope to prevent or mitigate the potential risks posed by landslides.

However, this work has several limitations that need to be acknowledged. Firstly, there
is a lack of empirical validation for the surrogate model, specifically regarding its ability to
accurately predict unstable slopes leading to landslide events. As a result, the utilization of
this model for decision making purposes requires further clarification and study. Another
limitation of the current study is its focus on homogeneous slopes with constant Mohr–
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Coulomb shear strength parameters. Future studies should aim to incorporate more realistic
conditions that closely resemble actual field sites. For instance, researchers can consider
incorporating complex soil and/or rock layers, as well as variations in other factors such as
pore water pressure, rainfall, and seismic events. In doing so, the applicability and validity
of the findings in practical scenarios can be enhanced. A final limitation worth noting is the
issue of data imbalance, which requires greater attention.

Table 5. Proposed countermeasures based on the surrogate model.

Slope Classification FOS Countermeasures

U <1.0 Prompt treatment
M 1.0 ≤ FOS ≤ 1.2 Monitoring and early warning
S >1.2 Regular monitoring and maintenance

In future studies, it is recommended to utilize newer and more diverse datasets with
various input parameters to predict the factor of safety (FOS) in different slopes. This ap-
proach would help identify the most accurate algorithms and determine the most effective
parameters that influence slope stability. In conclusion, while this work presents a valu-
able contribution to slope stability analysis, it is important to address the aforementioned
limitations in future studies to further refine the models and enhance their applicability
and reliability.

5. Conclusions

This study investigated the application of a surrogate model using machine learning
to evaluate slope stability by capturing the intricate nonlinear and multidimensional rela-
tionships between the parameters. The slope analysis problem is divided into two parts:
the classification of slopes into stable, marginally stable, and unstable classes and regres-
sion to predict the factor of safety (FOS) value. This study utilized a comprehensive
database of 880 homogeneous slopes generated by the FLAC 3D Version 7.0 software
for surrogate model development. The classification model was efficient, achieving a
test accuracy of 0.9222, with a class accuracy of 96.2% for the U class (unstable), 55% for
the M class (marginally stable), and 95.2% for the S class (stable). When U and M are
in the same class (i.e., the U + M class), the test accuracy is 0.9315, with 93.3% accuracy
for the S class and 92.9% accuracy for the U + M class. The regression model demon-
strated a high correlation coefficient R-square value of 0.9989 and a low test MSE value of
5.03 × 10−4, indicating a strong relationship between the FOS values and the selected
slope parameters. However, the generated dataset may not be representative of all the
actual site conditions, and more complex geological conditions and other input factors
must be considered. Moreover, such a surrogate model can complement traditional compu-
tational methods and accelerate the prediction of the FOS in slope stability analysis. This
capability enables decision makers to promptly take the necessary actions to prevent and
mitigate potential hazards, thus contributing to the development of effective and efficient
risk management strategies. Incorporating surrogate models into slope stability problems
can effectively achieve long-term sustainability while minimizing risks and preserving
natural resources.
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Appendix A

Table A1. Dataset used in this study.

Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

1 3 26.57 2 5 - U

2 3 26.57 2 10 - U

3 3 26.57 2 15 - U

4 3 26.57 2 20 - U

5 3 26.57 2 25 - U

6 3 26.57 2 30 - U

7 3 26.57 2 35 - U

8 3 26.57 2 40 - U

9 3 26.57 2 45 - U

10 3 26.57 5 5 - U

11 3 26.57 5 10 - U

12 3 26.57 5 15 - U

13 3 26.57 5 20 - U

14 3 26.57 5 25 - U

15 3 26.57 5 30 - U

16 3 26.57 5 35 - U

17 3 26.57 5 40 - U

18 3 26.57 5 45 - U

19 3 26.57 10 5 - U

20 3 26.57 10 10 - U

21 3 26.57 10 15 - U

22 3 26.57 10 20 - U

23 3 26.57 10 25 - U

24 3 26.57 10 30 - U

25 3 26.57 10 35 1.04 M

26 3 26.57 10 40 1.12 M

27 3 26.57 10 45 1.2 M

28 3 26.57 15 5 - U

29 3 26.57 15 10 - U

30 3 26.57 15 15 1.04 M

31 3 26.57 15 20 1.12 M

32 3 26.57 15 25 1.2 M
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Table A1. Cont.

Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

33 3 26.57 15 30 1.28 S

34 3 26.57 15 35 1.36 S

35 3 26.57 15 40 1.46 S

36 3 26.57 15 45 1.54 S

37 3 26.57 20 5 1.14 M

38 3 26.57 20 10 1.23 S

39 3 26.57 20 15 1.31 S

40 3 26.57 20 20 1.4 S

41 3 26.57 20 25 1.49 S

42 3 26.57 20 30 1.57 S

43 3 26.57 20 35 1.67 S

44 3 26.57 20 40 1.76 S

45 3 26.57 20 45 1.86 S

46 3 26.57 25 5 1.4 S

47 3 26.57 25 10 1.49 S

48 3 26.57 25 15 1.58 S

49 3 26.57 25 20 1.68 S

50 3 26.57 25 25 1.76 S

51 3 26.57 25 30 1.85 S

52 3 26.57 25 35 1.95 S

53 3 26.57 25 40 2.05 S

54 3 26.57 25 45 2.17 S

55 3 26.57 30 5 1.67 S

56 3 26.57 30 10 1.76 S

57 3 26.57 30 15 1.85 S

58 3 26.57 30 20 1.93 S

59 3 26.57 30 25 2.04 S

60 3 26.57 30 30 2.13 S

61 3 26.57 30 35 2.23 S

62 3 26.57 30 40 2.34 S

63 3 26.57 30 45 2.46 S

64 3 26.57 35 5 1.91 S

65 3 26.57 35 10 2.02 S

66 3 26.57 35 15 2.12 S

67 3 26.57 35 20 2.21 S

68 3 26.57 35 25 2.3 S

69 3 26.57 35 30 2.4 S

70 3 26.57 35 35 2.51 S

71 3 26.57 35 40 2.62 S

72 3 26.57 35 45 2.74 S
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Table A1. Cont.

Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

73 3 26.57 40 5 2.16 S

74 3 26.57 40 10 2.29 S

75 3 26.57 40 15 2.38 S

76 3 26.57 40 20 2.48 S

77 3 26.57 40 25 2.57 S

78 3 26.57 40 30 2.68 S

79 3 26.57 40 35 2.79 S

80 3 26.57 40 40 2.9 S

81 3 26.57 40 45 3.02 S

82 3 26.57 45 5 2.41 S

83 3 26.57 45 10 2.55 S

84 3 26.57 45 15 2.64 S

85 3 26.57 45 20 2.74 S

86 3 26.57 45 25 2.83 S

87 3 26.57 45 30 2.93 S

88 3 26.57 45 35 3.07 S

89 3 26.57 45 40 3.18 S

90 3 26.57 45 45 3.3 S

91 3 26.57 50 5 2.69 S

92 3 26.57 50 10 2.8 S

93 3 26.57 50 15 2.9 S

94 3 26.57 50 20 3 S

95 3 26.57 50 25 3.1 S

96 3 26.57 50 30 3.2 S

97 3 26.57 50 35 3.33 S

98 3 26.57 50 40 3.45 S

99 3 26.57 50 45 3.58 S

100 3 26.57 2 0 - U

101 3 26.57 5 0 - U

102 3 26.57 10 0 - U

103 3 26.57 15 0 - U

104 3 26.57 20 0 1 M

105 3 26.57 25 0 1.25 S

106 3 26.57 30 0 1.5 S

107 3 26.57 35 0 1.76 S

108 3 26.57 40 0 2.02 S

109 3 26.57 45 0 2.27 S

110 3 26.57 50 0 2.51 S

111 3 45 2 5 - U

112 3 45 2 10 - U
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Table A1. Cont.

Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

113 3 45 2 15 - U

114 3 45 2 20 - U

115 3 45 2 25 - U

116 3 45 2 30 - U

117 3 45 2 35 - U

118 3 45 2 40 - U

119 3 45 2 45 - U

120 3 45 5 5 - U

121 3 45 5 10 - U

122 3 45 5 15 - U

123 3 45 5 20 - U

124 3 45 5 25 - U

125 3 45 5 30 - U

126 3 45 5 35 - U

127 3 45 5 40 - U

128 3 45 5 45 - U

129 3 45 10 5 - U

130 3 45 10 10 - U

131 3 45 10 15 - U

132 3 45 10 20 - U

133 3 45 10 25 - U

134 3 45 10 30 - U

135 3 45 10 35 1.04 M

136 3 45 10 40 1.12 M

137 3 45 10 45 1.2 M

138 3 45 15 5 - U

139 3 45 15 10 - U

140 3 45 15 15 1.04 M

141 3 45 15 20 1.13 M

142 3 45 15 25 1.21 S

143 3 45 15 30 1.28 S

144 3 45 15 35 1.36 S

145 3 45 15 40 1.44 S

146 3 45 15 45 1.54 S

147 3 45 20 5 1.13 M

148 3 45 20 10 1.23 S

149 3 45 20 15 1.31 S

150 3 45 20 20 1.41 S

151 3 45 20 25 1.49 S

152 3 45 20 30 1.57 S
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Table A1. Cont.

Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

153 3 45 20 35 1.67 S

154 3 45 20 40 1.76 S

155 3 45 20 45 1.87 S

156 3 45 25 5 1.38 S

157 3 45 25 10 1.49 S

158 3 45 25 15 1.59 S

159 3 45 25 20 1.68 S

160 3 45 25 25 1.76 S

161 3 45 25 30 1.85 S

162 3 45 25 35 1.95 S

163 3 45 25 40 2.06 S

164 3 45 25 45 2.16 S

165 3 45 30 5 1.63 S

166 3 45 30 10 1.75 S

167 3 45 30 15 1.85 S

168 3 45 30 20 1.94 S

169 3 45 30 25 2.04 S

170 3 45 30 30 2.14 S

171 3 45 30 35 2.23 S

172 3 45 30 40 2.34 S

173 3 45 30 45 2.46 S

174 3 45 35 5 1.85 S

175 3 45 35 10 2.01 S

176 3 45 35 15 2.12 S

177 3 45 35 20 2.2 S

178 3 45 35 25 2.31 S

179 3 45 35 30 2.42 S

180 3 45 35 35 2.5 S

181 3 45 35 40 2.61 S

182 3 45 35 45 2.74 S

183 3 45 40 5 2.12 S

184 3 45 40 10 2.25 S

185 3 45 40 15 2.39 S

186 3 45 40 20 2.47 S

187 3 45 40 25 2.58 S

188 3 45 40 30 2.69 S

189 3 45 40 35 2.77 S

190 3 45 40 40 2.91 S

191 3 45 40 45 3.02 S

192 3 45 45 5 2.36 S
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

193 3 45 45 10 2.5 S

194 3 45 45 15 2.63 S

195 3 45 45 20 2.74 S

196 3 45 45 25 2.85 S

197 3 45 45 30 2.94 S

198 3 45 45 35 3.04 S

199 3 45 45 40 3.18 S

200 3 45 45 45 3.32 S

201 3 45 50 5 2.58 S

202 3 45 50 10 2.74 S

203 3 45 50 15 2.88 S

204 3 45 50 20 2.99 S

205 3 45 50 25 3.1 S

206 3 45 50 30 3.21 S

207 3 45 50 35 3.32 S

208 3 45 50 40 3.46 S

209 3 45 50 45 3.59 S

210 3 45 2 0 - U

211 3 45 5 0 - U

212 3 45 10 0 - U

213 3 45 15 0 - U

214 3 45 20 0 - U

215 3 45 25 0 1.17 M

216 3 45 30 0 1.4 S

217 3 45 35 0 1.64 S

218 3 45 40 0 1.87 S

219 3 45 45 0 2.13 S

220 3 45 50 0 2.36 S

221 3 63.43 2 5 - U

222 3 63.43 2 10 - U

223 3 63.43 2 15 - U

224 3 63.43 2 20 - U

225 3 63.43 2 25 - U

226 3 63.43 2 30 - U

227 3 63.43 2 35 - U

228 3 63.43 2 40 - U

229 3 63.43 2 45 - U

230 3 63.43 5 5 - U

231 3 63.43 5 10 - U

232 3 63.43 5 15 - U
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

233 3 63.43 5 20 - U

234 3 63.43 5 25 - U

235 3 63.43 5 30 - U

236 3 63.43 5 35 - U

237 3 63.43 5 40 - U

238 3 63.43 5 45 - U

239 3 63.43 10 5 - U

240 3 63.43 10 10 - U

241 3 63.43 10 15 - U

242 3 63.43 10 20 - U

243 3 63.43 10 25 - U

244 3 63.43 10 30 - U

245 3 63.43 10 35 1.04 M

246 3 63.43 10 40 1.12 M

247 3 63.43 10 45 1.2 M

248 3 63.43 15 5 - U

249 3 63.43 15 10 - U

250 3 63.43 15 15 1.05 M

251 3 63.43 15 20 1.12 M

252 3 63.43 15 25 1.21 S

253 3 63.43 15 30 1.29 S

254 3 63.43 15 35 1.36 S

255 3 63.43 15 40 1.45 S

256 3 63.43 15 45 1.53 S

257 3 63.43 20 5 1.12 M

258 3 63.43 20 10 1.23 S

259 3 63.43 20 15 1.31 S

260 3 63.43 20 20 1.4 S

261 3 63.43 20 25 1.48 S

262 3 63.43 20 30 1.57 S

263 3 63.43 20 35 1.67 S

264 3 63.43 20 40 1.75 S

265 3 63.43 20 45 1.86 S

266 3 63.43 25 5 1.34 S

267 3 63.43 25 10 1.5 S

268 3 63.43 25 15 1.59 S

269 3 63.43 25 20 1.68 S

270 3 63.43 25 25 1.75 S

271 3 63.43 25 30 1.85 S

272 3 63.43 25 35 1.94 S
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

273 3 63.43 25 40 2.05 S

274 3 63.43 25 45 2.16 S

275 3 63.43 30 5 1.59 S

276 3 63.43 30 10 1.74 S

277 3 63.43 30 15 1.85 S

278 3 63.43 30 20 1.95 S

279 3 63.43 30 25 2.04 S

280 3 63.43 30 30 2.13 S

281 3 63.43 30 35 2.23 S

282 3 63.43 30 40 2.32 S

283 3 63.43 30 45 2.44 S

284 3 63.43 35 5 1.8 S

285 3 63.43 35 10 1.99 S

286 3 63.43 35 15 2.1 S

287 3 63.43 35 20 2.2 S

288 3 63.43 35 25 2.3 S

289 3 63.43 35 30 2.4 S

290 3 63.43 35 35 2.51 S

291 3 63.43 35 40 2.63 S

292 3 63.43 35 45 2.75 S

293 3 63.43 40 5 2.05 S

294 3 63.43 40 10 2.22 S

295 3 63.43 40 15 2.35 S

296 3 63.43 40 20 2.46 S

297 3 63.43 40 25 2.57 S

298 3 63.43 40 30 2.68 S

299 3 63.43 40 35 2.79 S

300 3 63.43 40 40 2.9 S

301 3 63.43 40 45 3.04 S

302 3 63.43 45 5 2.27 S

303 3 63.43 45 10 2.46 S

304 3 63.43 45 15 2.63 S

305 3 63.43 45 20 2.74 S

306 3 63.43 45 25 2.85 S

307 3 63.43 45 30 2.96 S

308 3 63.43 45 35 3.06 S

309 3 63.43 45 40 3.17 S

310 3 63.43 45 45 3.28 S

311 3 63.43 50 5 2.49 S

312 3 63.43 50 10 2.68 S
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

313 3 63.43 50 15 2.87 S

314 3 63.43 50 20 3.01 S

315 3 63.43 50 25 3.12 S

316 3 63.43 50 30 3.23 S

317 3 63.43 50 35 3.31 S

318 3 63.43 50 40 3.45 S

319 3 63.43 50 45 3.58 S

320 3 63.43 2 0 - U

321 3 63.43 5 0 - U

322 3 63.43 10 0 - U

323 3 63.43 15 0 - U

324 3 63.43 20 0 - U

325 3 63.43 25 0 1.15 M

326 3 63.43 30 0 1.36 S

327 3 63.43 35 0 1.56 S

328 3 63.43 40 0 1.81 S

329 3 63.43 45 0 2.05 S

330 3 63.43 50 0 2.27 S

331 6 26.57 2 5 - U

332 6 26.57 2 10 - U

333 6 26.57 2 15 - U

334 6 26.57 2 20 - U

335 6 26.57 2 25 - U

336 6 26.57 2 30 - U

337 6 26.57 2 35 - U

338 6 26.57 2 40 - U

339 6 26.57 2 45 - U

340 6 26.57 5 5 - U

341 6 26.57 5 10 - U

342 6 26.57 5 15 - U

343 6 26.57 5 20 - U

344 6 26.57 5 25 - U

345 6 26.57 5 30 - U

346 6 26.57 5 35 - U

347 6 26.57 5 40 - U

348 6 26.57 5 45 - U

349 6 26.57 10 5 - U

350 6 26.57 10 10 - U

351 6 26.57 10 15 - U

352 6 26.57 10 20 - U
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

353 6 26.57 10 25 - U

354 6 26.57 10 30 - U

355 6 26.57 10 35 1.05 M

356 6 26.57 10 40 1.11 M

357 6 26.57 10 45 1.2 M

358 6 26.57 15 5 - U

359 6 26.57 15 10 - U

360 6 26.57 15 15 1.05 M

361 6 26.57 15 20 1.13 M

362 6 26.57 15 25 1.2 M

363 6 26.57 15 30 1.29 S

364 6 26.57 15 35 1.36 S

365 6 26.57 15 40 1.46 S

366 6 26.57 15 45 1.54 S

367 6 26.57 20 5 - U

368 6 26.57 20 10 1.21 S

369 6 26.57 20 15 1.32 S

370 6 26.57 20 20 1.4 S

371 6 26.57 20 25 1.49 S

372 6 26.57 20 30 1.57 S

373 6 26.57 20 35 1.66 S

374 6 26.57 20 40 1.75 S

375 6 26.57 20 45 1.86 S

376 6 26.57 25 5 1.18 M

377 6 26.57 25 10 1.43 S

378 6 26.57 25 15 1.58 S

379 6 26.57 25 20 1.67 S

380 6 26.57 25 25 1.76 S

381 6 26.57 25 30 1.85 S

382 6 26.57 25 35 1.94 S

383 6 26.57 25 40 2.05 S

384 6 26.57 25 45 2.17 S

385 6 26.57 30 5 1.36 S

386 6 26.57 30 10 1.64 S

387 6 26.57 30 15 1.81 S

388 6 26.57 30 20 1.87 S

389 6 26.57 30 25 2.01 S

390 6 26.57 30 30 2.13 S

391 6 26.57 30 35 2.23 S

392 6 26.57 30 40 2.34 S
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Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

393 6 26.57 30 45 2.46 S

394 6 26.57 35 5 1.51 S

395 6 26.57 35 10 1.81 S

396 6 26.57 35 15 2.03 S

397 6 26.57 35 20 2.2 S

398 6 26.57 35 25 2.27 S

399 6 26.57 35 30 2.41 S

400 6 26.57 35 35 2.5 S

401 6 26.57 35 40 2.62 S

402 6 26.57 35 45 2.74 S

403 6 26.57 40 5 1.73 S

404 6 26.57 40 10 1.99 S

405 6 26.57 40 15 2.24 S

406 6 26.57 40 20 2.45 S

407 6 26.57 40 25 2.55 S

408 6 26.57 40 30 2.68 S

409 6 26.57 40 35 2.77 S

410 6 26.57 40 40 2.9 S

411 6 26.57 40 45 3.02 S

412 6 26.57 45 5 1.88 S

413 6 26.57 45 10 2.18 S

414 6 26.57 45 15 2.45 S

415 6 26.57 45 20 2.68 S

416 6 26.57 45 25 2.84 S

417 6 26.57 45 30 2.95 S

418 6 26.57 45 35 3.06 S

419 6 26.57 45 40 3.17 S

420 6 26.57 45 45 3.31 S

421 6 26.57 50 5 2.09 S

422 6 26.57 50 10 2.36 S

423 6 26.57 50 15 2.63 S

424 6 26.57 50 20 2.86 S

425 6 26.57 50 25 3.08 S

426 6 26.57 50 30 3.15 S

427 6 26.57 50 35 3.27 S

428 6 26.57 50 40 3.45 S

429 6 26.57 50 45 3.58 S

430 6 26.57 2 0 - U

431 6 26.57 5 0 - U

432 6 26.57 10 0 - U
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

433 6 26.57 15 0 - U

434 6 26.57 20 0 - U

435 6 26.57 25 0 - U

436 6 26.57 30 0 1.08 M

437 6 26.57 35 0 1.27 S

438 6 26.57 40 0 1.44 S

439 6 26.57 45 0 1.6 S

440 6 26.57 50 0 1.81 S

441 6 45 2 5 - U

442 6 45 2 10 - U

443 6 45 2 15 - U

444 6 45 2 20 - U

445 6 45 2 25 - U

446 6 45 2 30 - U

447 6 45 2 35 - U

448 6 45 2 40 1 M

449 6 45 2 45 1.15 M

450 6 45 5 5 - U

451 6 45 5 10 - U

452 6 45 5 15 - U

453 6 45 5 20 - U

454 6 45 5 25 - U

455 6 45 5 30 1.1 M

456 6 45 5 35 1.25 S

457 6 45 5 40 1.39 S

458 6 45 5 45 1.57 S

459 6 45 10 5 - U

460 6 45 10 10 - U

461 6 45 10 15 1.02 M

462 6 45 10 20 1.17 M

463 6 45 10 25 1.32 S

464 6 45 10 30 1.46 S

465 6 45 10 35 1.63 S

466 6 45 10 40 1.82 S

467 6 45 10 45 2.02 S

468 6 45 15 5 - U

469 6 45 15 10 1.15 M

470 6 45 15 15 1.32 S

471 6 45 15 20 1.47 S

472 6 45 15 25 1.63 S
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

473 6 45 15 30 1.8 S

474 6 45 15 35 1.98 S

475 6 45 15 40 2.17 S

476 6 45 15 45 2.39 S

477 6 45 20 5 1.22 S

478 6 45 20 10 1.42 S

479 6 45 20 15 1.59 S

480 6 45 20 20 1.79 S

481 6 45 20 25 1.93 S

482 6 45 20 30 2.1 S

483 6 45 20 35 2.29 S

484 6 45 20 40 2.51 S

485 6 45 20 45 2.73 S

486 6 45 25 5 1.43 S

487 6 45 25 10 1.68 S

488 6 45 25 15 1.87 S

489 6 45 25 20 2.05 S

490 6 45 25 25 2.23 S

491 6 45 25 30 2.41 S

492 6 45 25 35 2.6 S

493 6 45 25 40 2.81 S

494 6 45 25 45 3.06 S

495 6 45 30 5 1.53 S

496 6 45 30 10 1.94 S

497 6 45 30 15 2.13 S

498 6 45 30 20 2.32 S

499 6 45 30 25 2.52 S

500 6 45 30 30 2.7 S

501 6 45 30 35 2.91 S

502 6 45 30 40 3.12 S

503 6 45 30 45 3.38 S

504 6 45 35 5 1.97 S

505 6 45 35 10 2.19 S

506 6 45 35 15 2.38 S

507 6 45 35 20 2.6 S

508 6 45 35 25 2.79 S

509 6 45 35 30 3.01 S

510 6 45 35 35 3.2 S

511 6 45 35 40 3.42 S

512 6 45 35 45 3.67 S
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

513 6 45 40 5 2.22 S

514 6 45 40 10 2.44 S

515 6 45 40 15 2.65 S

516 6 45 40 20 2.85 S

517 6 45 40 25 3.08 S

518 6 45 40 30 3.3 S

519 6 45 40 35 3.55 S

520 6 45 40 40 3.7 S

521 6 45 40 45 3.98 S

522 6 45 45 5 2.46 S

523 6 45 45 10 2.71 S

524 6 45 45 15 2.9 S

525 6 45 45 20 3.12 S

526 6 45 45 25 3.32 S

527 6 45 45 30 3.55 S

528 6 45 45 35 3.81 S

529 6 45 45 40 4.04 S

530 6 45 45 45 4.27 S

531 6 45 50 5 2.71 S

532 6 45 50 10 2.95 S

533 6 45 50 15 3.15 S

534 6 45 50 20 3.37 S

535 6 45 50 25 3.58 S

536 6 45 50 30 3.8 S

537 6 45 50 35 4.07 S

538 6 45 50 40 4.33 S

539 6 45 50 45 4.57 S

540 6 45 2 0 - U

541 6 45 5 0 - U

542 6 45 10 0 - U

543 6 45 15 0 - U

544 6 45 20 0 1 M

545 6 45 25 0 1.2 M

546 6 45 30 0 1.46 S

547 6 45 35 0 1.61 S

548 6 45 40 0 1.95 S

549 6 45 45 0 2.19 S

550 6 45 50 0 2.37 S

551 6 63.43 2 5 - U

552 6 63.43 2 10 - U
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

553 6 63.43 2 15 - U

554 6 63.43 2 20 - U

555 6 63.43 2 25 - U

556 6 63.43 2 30 - U

557 6 63.43 2 35 - U

558 6 63.43 2 40 - U

559 6 63.43 2 45 - U

560 6 63.43 5 5 - U

561 6 63.43 5 10 - U

562 6 63.43 5 15 - U

563 6 63.43 5 20 - U

564 6 63.43 5 25 - U

565 6 63.43 5 30 - U

566 6 63.43 5 35 - U

567 6 63.43 5 40 - U

568 6 63.43 5 45 1.01 M

569 6 63.43 10 5 - U

570 6 63.43 10 10 - U

571 6 63.43 10 15 - U

572 6 63.43 10 20 - U

573 6 63.43 10 25 - U

574 6 63.43 10 30 1.07 M

575 6 63.43 10 35 1.16 M

576 6 63.43 10 40 1.31 S

577 6 63.43 10 45 1.39 S

578 6 63.43 15 5 - U

579 6 63.43 15 10 - U

580 6 63.43 15 15 1.04 M

581 6 63.43 15 20 1.14 M

582 6 63.43 15 25 1.25 S

583 6 63.43 15 30 1.35 S

584 6 63.43 15 35 1.46 S

585 6 63.43 15 40 1.59 S

586 6 63.43 15 45 1.75 S

587 6 63.43 20 5 1.03 M

588 6 63.43 20 10 1.16 M

589 6 63.43 20 15 1.29 S

590 6 63.43 20 20 1.41 S

591 6 63.43 20 25 1.52 S

592 6 63.43 20 30 1.63 S
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Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

593 6 63.43 20 35 1.74 S

594 6 63.43 20 40 1.87 S

595 6 63.43 20 45 2.02 S

596 6 63.43 25 5 1.26 S

597 6 63.43 25 10 1.39 S

598 6 63.43 25 15 1.53 S

599 6 63.43 25 20 1.65 S

600 6 63.43 25 25 1.77 S

601 6 63.43 25 30 1.9 S

602 6 63.43 25 35 2.02 S

603 6 63.43 25 40 2.15 S

604 6 63.43 25 45 2.28 S

605 6 63.43 30 5 1.48 S

606 6 63.43 30 10 1.63 S

607 6 63.43 30 15 1.75 S

608 6 63.43 30 20 1.88 S

609 6 63.43 30 25 2.01 S

610 6 63.43 30 30 2.15 S

611 6 63.43 30 35 2.29 S

612 6 63.43 30 40 2.42 S

613 6 63.43 30 45 2.55 S

614 6 63.43 35 5 1.71 S

615 6 63.43 35 10 1.84 S

616 6 63.43 35 15 1.99 S

617 6 63.43 35 20 2.12 S

618 6 63.43 35 25 2.25 S

619 6 63.43 35 30 2.39 S

620 6 63.43 35 35 2.54 S

621 6 63.43 35 40 2.69 S

622 6 63.43 35 45 2.84 S

623 6 63.43 40 5 1.92 S

624 6 63.43 40 10 2.08 S

625 6 63.43 40 15 2.21 S

626 6 63.43 40 20 2.35 S

627 6 63.43 40 25 2.49 S

628 6 63.43 40 30 2.63 S

629 6 63.43 40 35 2.78 S

630 6 63.43 40 40 2.94 S

631 6 63.43 40 45 3.13 S

632 6 63.43 45 5 2.14 S
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

633 6 63.43 45 10 2.29 S

634 6 63.43 45 15 2.43 S

635 6 63.43 45 20 2.57 S

636 6 63.43 45 25 2.71 S

637 6 63.43 45 30 2.86 S

638 6 63.43 45 35 3.02 S

639 6 63.43 45 40 3.18 S

640 6 63.43 45 45 3.37 S

641 6 63.43 50 5 2.36 S

642 6 63.43 50 10 2.53 S

643 6 63.43 50 15 2.67 S

644 6 63.43 50 20 2.81 S

645 6 63.43 50 25 2.95 S

646 6 63.43 50 30 3.09 S

647 6 63.43 50 35 3.25 S

648 6 63.43 50 40 3.44 S

649 6 63.43 50 45 3.61 S

650 6 63.43 2 0 - U

651 6 63.43 5 0 - U

652 6 63.43 10 0 - U

653 6 63.43 15 0 - U

654 6 63.43 20 0 - U

655 6 63.43 25 0 1.07 M

656 6 63.43 30 0 1.33 S

657 6 63.43 35 0 1.55 S

658 6 63.43 40 0 1.76 S

659 6 63.43 45 0 1.97 S

660 6 63.43 50 0 2.2 S

661 12 45 2 5 - U

662 12 45 2 10 - U

663 12 45 2 15 - U

664 12 45 2 20 - U

665 12 45 2 25 - U

666 12 45 2 30 - U

667 12 45 2 35 - U

668 12 45 2 40 - U

669 12 45 2 45 1 M

670 12 45 5 5 - U

671 12 45 5 10 - U

672 12 45 5 15 - U
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Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

673 12 45 5 20 - U

674 12 45 5 25 - U

675 12 45 5 30 - U

676 12 45 5 35 - U

677 12 45 5 40 1.04 M

678 12 45 5 45 1.19 M

679 12 45 10 5 - U

680 12 45 10 10 - U

681 12 45 10 15 - U

682 12 45 10 20 - U

683 12 45 10 25 - U

684 12 45 10 30 1.06 M

685 12 45 10 35 1.2 M

686 12 45 10 40 1.33 S

687 12 45 10 45 1.47 S

688 12 45 15 5 - U

689 12 45 15 10 - U

690 12 45 15 15 - U

691 12 45 15 20 - U

692 12 45 15 25 1.11 M

693 12 45 15 30 1.26 S

694 12 45 15 35 1.4 S

695 12 45 15 40 1.55 S

696 12 45 15 45 1.71 S

697 12 45 20 5 - U

698 12 45 20 10 - U

699 12 45 20 15 1 M

700 12 45 20 20 1.12 M

701 12 45 20 25 1.29 S

702 12 45 20 30 1.42 S

703 12 45 20 35 1.57 S

704 12 45 20 40 1.76 S

705 12 45 20 45 1.96 S

706 12 45 25 5 - U

707 12 45 25 10 - U

708 12 45 25 15 1.13 M

709 12 45 25 20 1.26 S

710 12 45 25 25 1.44 S

711 12 45 25 30 1.6 S

712 12 45 25 35 1.75 S
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713 12 45 25 40 1.93 S

714 12 45 25 45 2.14 S

715 12 45 30 5 - U

716 12 45 30 10 1.07 M

717 12 45 30 15 1.22 S

718 12 45 30 20 1.43 S

719 12 45 30 25 1.55 S

720 12 45 30 30 1.74 S

721 12 45 30 35 1.93 S

722 12 45 30 40 2.11 S

723 12 45 30 45 2.3 S

724 12 45 35 5 1.01 M

725 12 45 35 10 1.19 M

726 12 45 35 15 1.37 S

727 12 45 35 20 1.53 S

728 12 45 35 25 1.67 S

729 12 45 35 30 1.89 S

730 12 45 35 35 2.07 S

731 12 45 35 40 2.27 S

732 12 45 35 45 2.47 S

733 12 45 40 5 1.1 M

734 12 45 40 10 1.29 S

735 12 45 40 15 1.45 S

736 12 45 40 20 1.64 S

737 12 45 40 25 1.86 S

738 12 45 40 30 1.97 S

739 12 45 40 35 2.22 S

740 12 45 40 40 2.44 S

741 12 45 40 45 2.65 S

742 12 45 45 5 1.23 S

743 12 45 45 10 1.42 S

744 12 45 45 15 1.59 S

745 12 45 45 20 1.75 S

746 12 45 45 25 1.97 S

747 12 45 45 30 2.11 S

748 12 45 45 35 2.35 S

749 12 45 45 40 2.57 S

750 12 45 45 45 2.79 S

751 12 45 50 5 1.34 S

752 12 45 50 10 1.53 S
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753 12 45 50 15 1.72 S

754 12 45 50 20 1.89 S

755 12 45 50 25 2.07 S

756 12 45 50 30 2.31 S

757 12 45 50 35 2.52 S

758 12 45 50 40 2.73 S

759 12 45 50 45 2.96 S

760 12 45 2 0 - U

761 12 45 5 0 - U

762 12 45 10 0 - U

763 12 45 15 0 - U

764 12 45 20 0 - U

765 12 45 25 0 - U

766 12 45 30 0 - U

767 12 45 35 0 - U

768 12 45 40 0 - U

769 12 45 45 0 1.04 M

770 12 45 50 0 1.15 M

771 12 63.43 2 5 - U

772 12 63.43 2 10 - U

773 12 63.43 2 15 - U

774 12 63.43 2 20 - U

775 12 63.43 2 25 - U

776 12 63.43 2 30 - U

777 12 63.43 2 35 - U

778 12 63.43 2 40 - U

779 12 63.43 2 45 - U

780 12 63.43 5 5 - U

781 12 63.43 5 10 - U

782 12 63.43 5 15 - U

783 12 63.43 5 20 - U

784 12 63.43 5 25 - U

785 12 63.43 5 30 - U

786 12 63.43 5 35 - U

787 12 63.43 5 40 - U

788 12 63.43 5 45 - U

789 12 63.43 10 5 - U

790 12 63.43 10 10 - U

791 12 63.43 10 15 - U

792 12 63.43 10 20 - U
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Table A1. Cont.

Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

793 12 63.43 10 25 - U

794 12 63.43 10 30 - U

795 12 63.43 10 35 - U

796 12 63.43 10 40 - U

797 12 63.43 10 45 1.02 M

798 12 63.43 15 5 - U

799 12 63.43 15 10 - U

800 12 63.43 15 15 - U

801 12 63.43 15 20 - U

802 12 63.43 15 25 - U

803 12 63.43 15 30 - U

804 12 63.43 15 35 - U

805 12 63.43 15 40 1.04 M

806 12 63.43 15 45 1.14 M

807 12 63.43 20 5 - U

808 12 63.43 20 10 - U

809 12 63.43 20 15 - U

810 12 63.43 20 20 - U

811 12 63.43 20 25 - U

812 12 63.43 20 30 1.04 M

813 12 63.43 20 35 1.14 M

814 12 63.43 20 40 1.21 S

815 12 63.43 20 45 1.31 S

816 12 63.43 25 5 - U

817 12 63.43 25 10 - U

818 12 63.43 25 15 - U

819 12 63.43 25 20 - U

820 12 63.43 25 25 1.09 M

821 12 63.43 25 30 1.19 M

822 12 63.43 25 35 1.3 S

823 12 63.43 25 40 1.39 S

824 12 63.43 25 45 1.48 S

825 12 63.43 30 5 - U

826 12 63.43 30 10 - U

827 12 63.43 30 15 1.01 M

828 12 63.43 30 20 1.13 M

829 12 63.43 30 25 1.23 S

830 12 63.43 30 30 1.31 S

831 12 63.43 30 35 1.42 S

832 12 63.43 30 40 1.54 S
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Table A1. Cont.

Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

833 12 63.43 30 45 1.66 S

834 12 63.43 35 5 - U

835 12 63.43 35 10 1.03 M

836 12 63.43 35 15 1.14 M

837 12 63.43 35 20 1.27 S

838 12 63.43 35 25 1.35 S

839 12 63.43 35 30 1.46 S

840 12 63.43 35 35 1.56 S

841 12 63.43 35 40 1.62 S

842 12 63.43 35 45 1.81 S

843 12 63.43 40 5 1.01 M

844 12 63.43 40 10 1.13 M

845 12 63.43 40 15 1.29 S

846 12 63.43 40 20 1.24 S

847 12 63.43 40 25 1.49 S

848 12 63.43 40 30 1.58 S

849 12 63.43 40 35 1.7 S

850 12 63.43 40 40 1.81 S

851 12 63.43 40 45 1.97 S

852 12 63.43 45 5 1.13 M

853 12 63.43 45 10 1.25 S

854 12 63.43 45 15 1.4 S

855 12 63.43 45 20 1.51 S

856 12 63.43 45 25 1.64 S

857 12 63.43 45 30 1.73 S

858 12 63.43 45 35 1.83 S

859 12 63.43 45 40 1.96 S

860 12 63.43 45 45 2.07 S

861 12 63.43 50 5 1.21 S

862 12 63.43 50 10 1.31 S

863 12 63.43 50 15 1.49 S

864 12 63.43 50 20 1.64 S

865 12 63.43 50 25 1.7 S

866 12 63.43 50 30 1.83 S

867 12 63.43 50 35 1.97 S

868 12 63.43 50 40 2.06 S

869 12 63.43 50 45 2.24 S

870 12 63.43 2 0 - U

871 12 63.43 5 0 - U

872 12 63.43 10 0 - U
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Table A1. Cont.

Case No. Slope
Height/m Slope Angle/◦ Cohesion/kPa Friction Angle/◦ FOS Labels

873 12 63.43 15 0 - U

874 12 63.43 20 0 - U

875 12 63.43 25 0 - U

876 12 63.43 30 0 - U

877 12 63.43 35 0 - U

878 12 63.43 40 0 - U

879 12 63.43 45 0 - U

880 12 63.43 50 0 1.03 M
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