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Abstract: Accurately predicting the power output of wind turbines is crucial for ensuring the reliable
and efficient operation of large-scale power systems. To address the inherent limitations of physical
models, statistical models, and machine learning algorithms, we propose a novel framework for
wind turbine power prediction. This framework combines a special type of convolutional neural
network, WaveNet, with a multigate mixture-of-experts (MMoE) architecture. The integration aims
to overcome the inherent limitations by effectively capturing and utilizing complex patterns and
trends in the time series data. First, the maximum information coefficient (MIC) method is applied to
handle data features, and the wavelet transform technique is employed to remove noise from the data.
Subsequently, WaveNet utilizes its scalable convolutional network to extract representations of wind
power data and effectively capture long-range temporal information. These representations are then
fed into the MMoE architecture, which treats multistep time series prediction as a set of independent
yet interrelated tasks, allowing for information sharing among different tasks to prevent error
accumulation and improve prediction accuracy. We conducted predictions for various forecasting
horizons and compared the performance of the proposed model against several benchmark models.
The experimental results confirm the strong predictive capability of the WaveNet–MMoE framework.

Keywords: wind turbine power forecasting; WaveNet; multitask learning; multigate mixture-of-experts;
multistep time series forecasting; maximum information coefficient; wavelet transform

1. Introduction

Wind power forecasting is a crucial mean to ensure the reliable and efficient operation
of large-scale power systems. Accurate wind turbine power forecasting can help grid
operators to better manage the integration of wind energy into the grid, reduce costs,
and improve system stability. The commonly used methods for time series forecasting
include physics models, statistical models, and machine learning methods.

Physics models are derived based on fundamental laws and principles with the aim
of capturing the underlying mechanisms and dynamic characteristics of the predicted
system [1]. However, physics models often rely on simplifying assumptions and may not
fully capture the complexity of real-world systems [2]. They may require precise knowledge
of system parameters, which is often difficult to obtain. Additionally, physics models are
highly sensitive to errors and uncertainties, especially when faced with sudden changes,
unexpected events, or system variations. In such situations, these models may struggle to
adapt and accurately forecast future trends [3].

On the other hand, statistical models are data driven and rely on historical patterns
and statistical techniques for forecasting. These models analyze past observations and
identify patterns and correlations to make future predictions [4]. While statistical models
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offer flexibility and the ability to capture complex relationships within the data, they also
have limitations. One of the main drawbacks of statistical models is their assumption of
data stationarity, where the statistical properties remain constant over time [5]. However,
in real-world scenarios, data may exhibit nonstationary behavior, such as trends, seasonality,
or abrupt changes, which statistical models may struggle to capture. Additionally, statistical
models may face issues of overfitting or underfitting, leading to poor generalization and
unreliable predictions [6].

With the rapid development of machine learning (ML) technology, its application in
the field of forecasting has become increasingly widespread [7–10]. Machine learning meth-
ods leverage large amounts of data and powerful algorithmic capabilities to automatically
learn patterns and regularities from the data, which can be used to predict future trends
and outcomes. In [11], the authors compared the predictive performance of traditional time
series models, such as autoregressive integrated moving average (ARIMA) and exponen-
tial smoothing (ETS), and machine learning models, such as eXtreme gradient boosting
(XGBoost) and neural networks, on different datasets. The results show that machine
learning models have improved accuracy and flexibility compared with traditional time
series models; however, there are still challenges in terms of interpretability and stability.

Machine learning models heavily rely on feature selection and feature engineering.
Feature selection involves selecting the most relevant features from the raw data, while
feature engineering involves transforming and combining the raw data to extract more
valuable features. These processes require domain knowledge and expertise and can
have a significant impact on the performance of the model [12]. Additionally, the pres-
ence of noise in the data is another important issue that prevents the accurate prediction
of time series, which asks for an effective noise-suppressing technique to enhance the
prediction performance.

A challenge in forecasting is the task of multistep forecasting, which refers to predicting
multiple future time steps in a time series prediction problem [13–16]. It involves forecasting
the values or states of a time series for several consecutive time steps ahead. In contrast
to the single-step forecasting task, which focuses on predicting only the next time step,
the multistep forecasting task aims to provide predictions for an extended range. Generally
speaking, for multistep forecasting tasks, an iterative prediction procedure [17] is commonly
used, which utilizes the result of each prediction as an input to predict the next time step.
However, this can lead to error accumulation as the length of the time series increases.
In contrast to the iterative prediction procedure, multistep time series forecasting (MSTF)
treats multistep forecasting as a multi-output problem and predicts all outputs in one
forward pass, which effectively avoids error accumulation. The downside is that this
requires a more complicated model, which increases both space and time complexity.

In machine learning, MTL is a subfield that simultaneously solves multiple related
tasks and improves learning efficiency and prediction accuracy by sharing model pa-
rameters. MTL has been successfully applied in various machine learning applications.
For example, Carlos Busso [18] utilized the MTL method to jointly learn emotional at-
tributes by utilizing their mutual dependencies. To overcome the limitation of multiple
machine learning models for predicting multiple metrics in a single indoor space leading
to contradictory predictions, Betty et al. proposed a deep-neural-network-based multitask
learning model called DeepComfort in 2022 [19]. DeepComfort simultaneously predicts
multiple TC output metrics, namely, TSV, TPV, and TCV, using a single model. It was
validated on the ASHRAE-II database and a dataset created in this study for elementary
school students. Despite facing challenges of illogical responses and data imbalance, it ex-
hibited high F1 scores, accuracy (approximately 90%), and generalization ability. However,
the application of MTL in MSTF tasks has not been explored in the literature yet. Further
research is needed to demonstrate the advantages of the multitask learning approach.
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In summary, the challenges addressed in this paper are listed as follows:

• In machine learning, appropriate feature selection methods are crucial for model
performance. Additionally, the presence of noise in the data can also impact the
performance of the model.

• Although MSTF mitigates the issue of error accumulation commonly encountered in
time series prediction tasks, it necessitates the careful selection of appropriate models
to effectively capture and exploit the intricate patterns and trends present in time
series data, thereby facilitating improved forecasting accuracy.

• The combination of MSTF and MTL, as well as their impact on prediction results, has
not been investigated in the field of wind turbine power prediction.

To address these challenges, this paper proposes a new framework, WaveNet–MMoE,
that combines a special convolutional neural network, WaveNet, with a multitask learning
architecture, multigate mixture-of-experts (MMoE). First, in feature engineering, the maxi-
mum information coefficient (MIC) method is employed for feature selection, while the
wavelet transform technique is utilized to reduce the impact of noise. Second, WaveNet is
employed to extract the representation of wind power data, leveraging its unique dilated
convolutional network to capture distant time information and enhance model perfor-
mance. Finally, these representations are used as inputs to MMoE, treating the multistep
prediction task as a collection of different but interconnected tasks, thereby reducing error
accumulation and improving prediction accuracy.

The contributions of this paper are as follows:

• The MIC method is adopted to rank the correlation of features, effectively eliminating
redundant information while retaining important features. Additionally, the wavelet
transform technique is utilized to remove noise present in the data.

• By leveraging the MTL framework MMoE, the prediction of multiple temporally
correlated information is treated as a set of related yet mutually independent tasks,
enabling these tasks to be executed in parallel, effectively avoiding error accumula-
tion. Moreover, it facilitates the information sharing among different tasks, thereby
improving prediction accuracy.

• This paper investigates the integration of MSTF and MTL in the field of wind turbine
power prediction, along with the challenges arising from increased complexity in
the process.

The remainder of this paper is structured as follows: Section 2 provides a literature
review. Section 3 provides a detailed explanation of the data normalization process and
feature selection based on the maximum information coefficient (MIC). Additionally, it
discusses the utilization of wavelet transformation to remove noise from the data. Section 4
presents the new framework and its components. Section 5 showcases the experimental
results. Section 6 discusses future work and concludes this paper.

2. Literature Review

Current wind turbine power forecasting methods in the literature can be divided
into three categories: physical methods, statistical methods, and ML algorithms [20–22].
Physical methods solve complex weather pattern considerations by converting predicted
meteorological parameters into wind speed curves to infer trends in wind power series [23].
However, due to the complex nature of calculation processes and atmospheric conditions,
physical models have certain limitations.

Statistical methods generally use nonlinear and linear relationships between wind
speed, wind direction and temperature, and power generation, etc., for time series fore-
casting. Autoregressive (AR) models [24], autoregressive moving average (ARMA) mod-
els [25], and autoregressive integrated moving average (ARIMA) models [26] perform
well in processing inference problems by studying statistical regularities in wind power
data. However, due to the randomness and intermittency of wind power series, statistical
methods still have room for improvement.
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In recent years, ML technology [27–34] has developed rapidly and has been widely
applied in various fields, such as mechanics [35–38], medicine [39–42], and energy [43–46].
The advantage of ML technology in prediction lies in its ability to handle nonlinear rela-
tionships and complex data patterns between input variables and output variables [47].
Furthermore, ML technology can automatically learn features from data without the need
for manual feature extraction and selection. This makes ML technology more adaptable
and flexible when dealing with large-scale, high-dimensional, and complex data [48,49].

The current mainstream of ML forecasting methods primarily uses neural
networks [50,51] technology. Different neural network models, including convolutional
neural network (CNN) [52,53], recurrent neural networks (RNN) [54], and later Trans-
formers [55], have had a huge impact in the field of wind power forecasting applications.
When dealing with time series, traditional ML techniques can be impacted, resulting in
network performance issues that affect the accuracy and stability of the model [56]. Due
to the defectiveness of causal convolution in extracting distant information, there is an
urgent need for better models to solve these problems. The Tensorial Encoder Transformer
(TENT) model proposed in [57] has tensorial attention, so by processing weather data in
tensorial format, the spatiotemporal structure of weather data can be obtained. Compared
with 3D CNNs, TENT models can better simulate complex weather data patterns that may
occur in temperature forecasting tasks. In 2021, Qi et al. proposed a novel asynchronous
dilated graph convolutional network (ADGCN) for traffic flow prediction. ADGCN suc-
cessfully extends the dilated one-dimensional causal convolution to graph convolution.
With the increase in network depth, the receptive field of the model grows exponentially.
Experimental results on three public transportation datasets demonstrate that ADGCN out-
performs existing corresponding methods in terms of prediction performance, particularly
in long-term prediction tasks [58].

Despite the increasing utilization of extended temporal convolutional networks as
forecasting models, their application in predicting wind turbine power remains largely
unexplored. In 2020, Zhu et al. proposed a novel network called temporal convolutional
network (TCN). The proposed method addresses the issues of long-term dependencies
and performance degradation in sequence prediction tasks by leveraging dilated causal
convolutions and residual connections in deep convolutional models. Simulation results
demonstrate that TCN exhibits stable training and strong generalization capability. Further-
more, TCN achieves higher prediction accuracy compared with existing predictors, such
as support vector machines, multilayer perceptron, long short-term memory networks,
and gated recurrent unit networks [59]. In 2022, He et al. proposed a novel self-calibrating
temporal convolutional network (SCTCN) for remaining useful life (RUL) prediction of
wind turbine gearbox bearings. This is an improved network based on TCN, which inher-
its TCN’s dilated causal convolutions for capturing long-term historical information and
introduces self-calibration modules to focus on local information within the time series.
As a result, SCTCN can learn more comprehensive historical information, leading to im-
proved accuracy in RUL prediction. Experimental evaluations were conducted on a test rig
and wind turbine gearbox for bearing RUL prediction, validating the effectiveness of the
proposed approach. The experimental results demonstrate that SCTCN achieves higher
prediction accuracy compared with other state-of-the-art methods [60].

Feature selection is a technique within feature engineering that plays a crucial role
in the field of time series prediction, directly impacting the performance and accuracy of
prediction models [61,62]. The goal of feature selection is to identify and choose the most
relevant and informative features from the available set of input variables. By selecting
appropriate features, it is possible to improve the accuracy of predictions and reduce the
computational complexity of the model [63,64]. In 2013, Yang conducted the first study on
feature selection for traffic congestion prediction. By applying feature ranking and selection
techniques, only the most relevant features were retained, reducing the data dimensionality
and improving prediction performance. Experimental results demonstrated that using
the optimally selected features for prediction outperformed using all features [65]. In [66],
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Liu et al. proposed an improved high-accuracy transient stability prediction model for
power systems based on the minimum redundancy maximum relevance (mRMR) feature
selection and winner-take-all (WTA) ensemble learning. Two of the most informative
input features were obtained through the mRMR feature selection method. Subsequently,
the WTA ensemble learning method was employed to combine the predicted results of
generator electromagnetic power and bus voltage magnitude, resulting in an improved
transient stability prediction model that exhibited higher prediction accuracy for unstable
samples. In 2019, Naik et al. proposed an artificial neural network (ANN) regression
prediction model based on the Boruta feature selection technique. After considering
33 different combinations of technical indicators for stock prediction, the Boruta feature
selection technique was employed to identify relevant technical indicators. Experimental
results demonstrated that using the indicators identified by the Boruta feature selection
technique for stock prediction reduced the prediction error rate to 12% [67]. In 2021,
Bagherzadeh et al. conducted a study on the impact of various feature selection methods on
the performance of machine learning algorithms. The experiments involved seven feature
selection methods: variance threshold, analysis of variance (ANOVA), mutual information
(MI), Pearson correlation (PC), backward elimination (BE), random forest (RF), and least
absolute shrinkage and selection operator (LASSO). The results demonstrated that machine
learning algorithms based on MI exhibited the strongest capability, indicating a significant
dependence of model performance on feature selection [68].

In the field of machine learning and data analysis, the interference or random fluc-
tuations caused by noise are often regarded as challenges for models, as they can lead to
inaccurate and unstable predictions [69]. Yan et al. (2018) proposed a prediction model
that combines wavelet analysis with a long short-term memory (LSTM) neural network
to capture complex features, such as nonlinearity, nonstationarity, and sequential corre-
lations in financial time series. The results indicated that LSTM demonstrated superior
predictive performance compared with other machine learning models, such as multilayer
perceptron (MLP), support vector machine (SVM), and K-nearest neighbors (KNN). This
highlights the applicability and effectiveness of LSTM in financial time series forecast-
ing [70]. In 2020, Kim et al. proposed a deep learning model combining a denoising
autoencoder and convolutional long short-term memory (LSTM) for predicting global
ocean weather. The proposed model aimed to forecast ocean weather one week ahead with
an average error of 6.7%. The results demonstrated that the denoising autoencoder effec-
tively removed noise that hindered the training of the deep learning model. The proposed
model showed a certain level of applicability in predicting ocean weather [71]. In 2021,
Samal et al. developed a time convolutional denoising autoencoder (TCDA) network,
which is a combination of a time convolutional network (TCN) and a denoising autoen-
coder (DAE) network. The experiment utilized the DAE network to reconstruct errors and
handle missing values. The results demonstrated that compared with baseline models, such
as SARIMA, FbPROPHET, ANN, SVR, CNN, LSTM, GRU, BILSTM, and BIGRU, TCDA
exhibited superior predictive performance [72].

Wind turbine power forecasting is an MSTF task that involves predicting wind turbine
power data at multiple time points, which is different from simple single-step time series
forecasting. However, in MSTF tasks, inevitably, issues of high time complexity and space
complexity arise. Increasing the complexity of a model may require more computational
resources and time to perform prediction tasks, leading to longer execution times and
increased computational resource demands [73]. Therefore, there is an urgent need to seek
methods to reduce the complexity of models and minimize the consumption of resources
and time.

Multitask learning refers to a machine learning approach that involves simultaneously
learning and optimizing multiple related tasks [74]. In traditional single-task learning,
models are designed to solve a specific individual task, whereas multitask learning aims to
handle multiple tasks concurrently and improve model performance through task inter-
relationships and information sharing. Multitask learning offers several benefits, including
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enhanced model generalization, accelerated training process, and reduced model complex-
ity [75]. It is applicable in various domains, such as natural language processing, computer
vision, and speech recognition, where different tasks can share underlying feature repre-
sentations and collectively improve overall performance. Zhang et al. [76] proposed an
MTL model with three parallel LSTM layers to jointly forecast taxi pick-up and drop-off
demands, which outperforms HA, ARIMA, and single-task LSTM on real-world data. In
2017, Crichton et al. proposed a multitask model based on named entity recognition (NER).
The experiment treated each dataset as a separate task and employed the multitask model
for joint training. The results revealed statistically significant performance differences
between the multi-output model and the single-task model for six datasets. Specifically,
five datasets demonstrated significantly better performance, while one dataset showed
noticeably poorer performance [77]. In 2020, Yang et al. proposed a prediction model based
on multitask learning for forecasting individuals’ daily activities. By combining a convolu-
tional neural network (CNN) with bidirectional long short-term memory (Bi-LSTM) units,
a parallel multitask learning model was established as the prediction model. The experi-
mental results demonstrated that the proposed model achieved an accuracy improvement
of at least 2.22% compared with the single-task learning Bi-LSTM and CNN+Bi-LSTM
models. Additionally, the NMAE, NRMSE, and R2 indicators were enhanced by at least
1.542%, 7.79%, and 1.69%, respectively [78].

3. Data Processing
3.1. Correlation Analysis Based on Maximum Information Coefficient

The data analyzed in this study were obtained from a wind farm in China. The data
were recorded from a wind turbine operated for a period of 24 months from 1 September
2018 to 1 September 2020. Recordings were taken at a frequency of every 10 min. Feature
selection has a significant impact on wind power forecasting. By excluding irrelevant
or redundant features, the selected features can better capture the underlying dynamic
characteristics of the wind power system, thereby improving the model’s generalization
ability and enhancing prediction accuracy. Additionally, feature selection helps reduce the
dimensionality of the input space, alleviating the curse of dimensionality and improving the
computational efficiency of the prediction model. Therefore, we investigate the correlation
between the output power and other features in SCADA data using MIC, and carefully
select the features that are most relevant to the forecasting target.

The statistical measure known as MIC quantifies the degree of linear or nonlinear
correlation between two variables. It is based on the concept of mutual information (MI),
which can be mathematically expressed using the following formula:

I(x; y) =
∫

p(x, y) log2
p(x, y)

p(x)p(y)
dxdy (1)

I[x; y] ≈ I[X; Y] = ∑
X,Y

p(X, Y) log2
p(X, Y)

p(X)p(Y)
(2)

where x and y, respectively, refer to the number of intervals into which the scatter plot is
partitioned, and the approach involves examining the distribution of data points within
each cell to resolve the challenge of calculating joint probabilities in mutual information (MI).
Specifically, a and b represent the number of grid cells used to partition the scatter plot in
the x and y directions, respectively. The formula for MIC is as follows:

mic(x; y) = max
a×b<B

I(x; y)
log2 min(a, b)

(3)

MIC[x; y] = max
|X‖Y|<B

I[X; Y]
log2(min(|X|, |Y|)) (4)
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3.2. Min–Max Normalization

Max-Min normalization, also known as data normalization or feature scaling, is a
commonly used data preprocessing method. It scales the data to a specific range through
linear transformation, typically mapping the data to the range [0, 1]. This method ap-
plies a linear transformation to the original data, mapping the minimum value to 0 and
the maximum value to 1, while scaling the other values proportionally between 0 and 1.
Before inputting the input variables and output variables into our model, it is neces-
sary to normalize them; otherwise, the loss function of the model may not converge.
In our experiments, we employ the max–min normalization method, which is formulated
as follows:

x′ =
x− xmin

xmax − xmin
(5)

where x and x′ represent the data before and after normalization, respectively. xmax and
xmin represent the maximum and minimum of the data, respectively.

This section investigated the parameter values of the MIC between the output wind
turbine power data and other features in the SCADA data, as well as performed data
normalization. Here, the output wind power in SCADA data is considered as the target
feature. The correlation histograms between output power and other features in the SCADA
dataset are shown in Figure 1, from which it can be seen that the first five features have
the strongest correlation. Figure 2 shows a scatter plot of the correlation between wind
turbine power and gearbox input shaft temperature. Figure 3 displays a scatter plot of the
correlation between wind turbine power and wind speed.

After applying feature selection with MIC on the original dataset, the selected features
were utilized as inputs, while the output power was set as the forecasting target. The size of
the sliding window in time series forecasting can be chosen according to the requirements
of the task. A smaller window size allows for a more sensitive capture of short-term
patterns and fluctuations, while a larger window size enables the capture of longer-term
trends and periodicity. Let m denote the number of time steps predicted at a time with
MSTF. An experiment was conducted using the original WaveNet model to forecast the
entire test set with a sliding window size of 250 and m = 3.

Figure 1. Maximum information factor correlation diagram for wind turbine power data.
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Figure 2. Scatter diagram of gearbox input shaft temperature and wind power.

Figure 3. Scatter diagram of wind speed and wind power.

3.3. Wavelet Transform

In time series data, various types of noise often exist, such as high-frequency noise, low-
frequency noise, or transient noise. Typically, this can affect the performance of prediction
models. Wavelet transform can adaptively select suitable wavelet basis functions and
decomposition levels based on the characteristics of the signal, thereby better adapting to
different types and complexities of signals and effectively suppressing noise.

In this stage of the experiment, a wavelet transform technique was employed to remove
noise from the data, aiming to enhance the predictive performance of WaveNet–MMoE.
In the experiment, a wavelet level of 3 was used, and the db4 wavelet basis was chosen.
Figures 4–7 illustrate the effects of noise reduction on selected feature data. The results
showed that wavelet transform, when used to remove noise, resulted in data that were
smoother and clearer.
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Figure 4. Denoising of pcs measured generator speed.
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Figure 5. Denoising of rotor speed.
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Figure 6. Denoising of gearbox input shaft temperature.
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4. The WaveNet–MMoE Architecture Based on WaveNet and MMoE
4.1. WaveNet

Many neural network models encounter difficulties when applied to real-world prob-
lems. One of the problems is the long-term dependency problem, where the model loses the
ability to connect distant information as each time interval increases. WaveNet is an autore-
gressive probabilistic model that uses its unique dilated causal convolution. Dilated causal
convolution skips some input values with a certain stride and applies the convolution
kernel to an area larger than its own size, so that even with fewer layers, it has a relatively
large receptive field, overcomes the drawback of causal convolution in capturing local
information, and obtains more temporal information. Its modeling method is as follows:

p(x) =
T

∏
t=1

p(xt | x1, . . . , xt−1) (6)

where x1, . . . , xt−1 denotes the sound wave, and t stands for time. Figure 8 shows the basic
structure of WaveNet.

Causal
Conv Dilated 

causal

�tanh
×

1×1
+

+

Residual

K Layers

Skip-
connections

output 
layer

input

Figure 8. The structure of WaveNet.

The gated convolution can be formulated as

output = tanh(Wf ,k ∗ input)
⊙

œ(Wg,k ∗ input). (7)

where ∗ denotes the convolution operation and
⊙

is the corresponding position multiplica-
tion operator. The short-circuit structure of residual is added for better training. The final
result is obtained after superposition based on the intermediate results of the output of
each layer.
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The fundamental constituent of WaveNet is the causal convolution. By using causal
convolution, it is ensured that the model does not violate the order of the data when
modeling them. The prediction p(xt+1 | x1, . . . , xt) output by the model at moment t does
not depend on any of the data at future moments xt+1, xt+2, . . . , xT. The drawback of causal
convolution is that it can only capture local information. To expand the receptive field,
one needs to increase the size of the convolution kernel or add more layers to the model.
However, these methods are not effective for longer time series. Therefore, WaveNet uses
dilated causal convolution. Dilated convolution skips input values with a certain stride
and applies the convolution kernel to an area larger than its own size, so that it can have
a large receptive field even with fewer layers. A visualization of a stack of dilated causal
convolutional layers with causal convolutions is shown in Figure 9. With the increase in
dilation, the receptive field of the dilated causal convolution in the figure expands from the
original four points to eight points.

Input

Hidden 
Layer

Hidden 
Layer

Output

Input

Hidden 
Layer

Dilation=1

Hidden 
Layer

Dilation=2

Dilation=4
Output

Visualization of a stack 
of dilated causal 

convolutional layers.

Visualization of a stack of 
causal convolutional layers.

Figure 9. A stack of dilated causal convolutional layers and causal convolution.

4.2. MMoE

Single-task learning (STL) is a common approach in machine learning that aims to
train models to solve specific individual tasks. In STL, the model is designed to optimize
and adapt to a specific objective function, and there exists a clear one-to-one mapping
between input data and output labels. However, STL also has some drawbacks. It is
limited in its ability to address multiple related tasks effectively. When faced with multiple
tasks, each task typically requires training a separate model, resulting in lengthy training
processes and significant resource consumption. Additionally, STL fails to fully exploit
the interdependencies and shared information among different tasks, which can adversely
affect the predictive performance of the model. To overcome these limitations, multitask
learning (MTL) has been proposed as an approach in which a single model is trained to
address multiple related tasks simultaneously, aiming to leverage the shared information
and knowledge among tasks to enhance the model’s performance and generalization
capability. Additionally, MTL aims to reduce the model’s time complexity, shorten the
training time, and minimize resource consumption. Figure 10 shows the STL and MTL.

Multigate mixture-of-experts (MMoE) is a model architecture designed to address
the problem of multitask learning. It incorporates multiple expert networks and a gating
network to enable sharing and interaction among tasks. Each expert network is respon-
sible for learning the feature representation for a specific task, while the gating network
dynamically determines how to allocate the outputs of the expert networks. Through this
approach, MMoE is able to capture the relationships between tasks and achieve improved
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performance through the combination of shared feature representation and expert networks.
Figure 11 illustrates the structure of MMoE, and its representation equation is as follows:

yk = hk(f k(x)) (8)

f k(x) =
n

∑
i=1

gk(x)ifi(x) (9)

where x denotes the input, Wgk ∈ Rn∗d represents a trainable matrix where n is the number
of experts, and d is the dimensionality of the feature. k denotes the independent output unit
of the kth task, hk represents the tower network, and gk represents the control gate of the
kth task. The function f k(x) in Equation (4) is expressed as a combination of expert outputs
using Equation (5), where gk(x) = softmax(Wgkx) is an input–output mapping function that
outputs weights on all experts.
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Figure 10. The operational mechanism of STL and MTL.
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Figure 11. The structure of MMoE.
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4.3. WaveNet–MMoE

In the combined model, the feature data selected by MIC is fed to WaveNet. After a
simple causal convolution operation, the signal sequence passes through two layers of
convolution with varying dilation rates, while creating residual connections and skip
connections at each layer, to accelerate the convergence of the model. The output of each
skip connection is used for subsequent calculations and added together as the final output
to MMoE. After training by expert networks, the gate network performs a weighted sum of
the outputs and provides predictions to multiple towers. In this experiment, conventional
DNN structures are used for towers.

Figure 12 illustrates the structure of WaveNet–MMoE. When m = 2, WaveNet extracts
deep-level feature information and inputs it to MMoE with the same number of gates for
prediction at different time steps.

Wind power data

WaveNet

MIC

Expert0 Expert1 Expert2 Gate

DNN DNN

Gate

Original 
data

Feature 
selection

Network 
structure

Predicted 
time steps

Predicted 
time step 1

Predicted 
time step 2

Figure 12. The overall structure of WaveNet–MMoE.

5. Experimental Analysis
5.1. Analysis of Forecast Results

In this experiment, 90% of the dataset was allocated for training purposes, whereas
the remaining 10% was reserved for model evaluation through testing. In the experiment,
the same network architecture was used for WaveNet and WaveNet–MMoE. The dilation
rates were set to 8 and 12, the kernel size was set to 3, and the number of filters was set to
16 and 32. This was used to stack different dilated convolutions. The output layer consisted
of a fully connected layer with three neurons, which was used for the final prediction task.
In MMoE, the number of experts was set to 8, the input dimension was set to 72, and each
expert had an output dimension of 3. The Adam optimizer was chosen, the batch size was
set to 512, and a total of 100 iterations were performed. Table 1 presents a performance
comparison between WaveNet–MMoE and eight other models. In order to comprehensively
evaluate the performance of the model, we chose mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE), mean absolute percentage error (MAPE),
and coefficient of determination (R2) as evaluation metrics. MAE measures the mean
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absolute difference between the actual and predicted values, regardless of the direction of
errors. Its formula can be expressed as

MAE =
1
n

n

∑
i=1
|ŷi − yi| (10)

where n is the number of samples, ŷi is the prediction, and yi is the observation.

Table 1. The evaluation results of WaveNet–MMoE and other models for m = 3 and m = 6.

Prediction
Window Size Method

Metrics

MAE MAPE MSE RMSE R2

3

CNN 0.079 1.340 0.014 0.118 0.474
FNN 0.073 1.293 0.012 0.110 0.544
CNN-LSTM 0.070 1.278 0.011 0.105 0.566
LSTM 0.070 1.275 0.011 0.105 0.567
Transformer 0.066 0.689 0.013 0.113 0.515
Decision Tree 0.077 1.010 0.017 0.130 0.335
CNN-Tree 0.108 1.690 0.029 0.170 −0.109
WaveNet 0.056 0.712 0.009 0.095 0.645
WaveNet–MMoE 0.052 0.556 0.009 0.095 0.656

6

CNN 0.084 1.454 0.016 0.126 0.406
FNN 0.072 1.064 0.012 0.110 0.528
CNN-LSTM 0.076 1.307 0.014 0.118 0.482
LSTM 0.075 1.357 0.013 0.114 0.501
Transformer 0.075 0.782 0.017 0.130 0.360
Decision Tree 0.090 1.278 0.023 0.152 0.137
CNN-Tree 0.113 1.794 0.032 0.179 −0.219
WaveNet 0.063 0.803 0.012 0.110 0.557
WaveNet–MMoE 0.060 0.736 0.011 0.105 0.572

The MAPE is an evaluation metric used to measure the accuracy of forecasting models.
It is a relative measure that scales the MAD as a percentage instead of a unit of measurement.
This approach uses absolute values to avoid the positive and negative errors from offsetting
each other, providing a measure of relative error. The formula for the MAPE can be
expressed as

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (11)

where n is the number of samples, ŷi is the prediction, and yi is the observation.
Mean squared error (MSE) measures the average squared difference between predicted

values and actual values. It quantifies the average magnitude of errors to assess the overall
performance of a model. A lower MSE indicates a better fit of the model to the data.
The formula is as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

Root mean squared error (RMSE) is the square root of MSE and is used to interpret the
error in the same units as the target variable. It is a popular evaluation metric as it provides
a more interpretable measure of average error. Similar to MSE, a lower RMSE indicates a
better fit of the model. The formula is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (13)
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The R2 coefficient, also known as the coefficient of determination, is a statistical
measure that represents the proportion of the variance in the dependent variable that can
be explained by the independent variables in a regression model. It ranges between 0 and 1,
where a higher value indicates a better fit of the model to the data. In other words, R2

measures the explanatory and predictive power of the regression model with respect to the
variation in the dependent variable. The formula is as follows:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(ȳi − yi)

2 (14)
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Figure 13. Scores of different methods at m = 3.

As shown in Table 1, the proposed multitask model outperforms several single-task
models in predicting wind turbine power at different time steps. When m = 3, compared
with the best-performing single-task model, the MAE and MAPE metrics decrease by at
least 7% and 22%, respectively, while R2 increases by 2%. When m = 6, compared with the
best-performing model, the MAE, MAPE, MSE, and RMSE decrease by 5%, 8%, 8%, and 5%,
respectively, while R2 increases by 3%. This indicates that WaveNet–MMoE exhibits good
predictive performance. Figure 13 shows the performance of various metrics on the test
set at different epochs, while Figure 14 compares the predictions of WaveNet–MMoE
with decision tree and CNN-Tree models, and Figure 15 depicts the prediction results of
WaveNet–MMoE for m = 3.

Sustainability 2023, 1, 0 17 of 22

0 200 400 600 800 1000 1200
Number of samples

0

500

1000

1500

2000

2500

P
re

d
ic

te
d
 v

a
lu

e
 (

k
w

)

True value
Decision Tree
WaveNet-MMoE

(a) Decision Tree vs. WaveNet–MMoE

0 200 400 600 800 1000 1200
Number of samples

0

500

1000

1500

2000

P
re

d
ic

te
d
 v

a
lu

e
 (

k
w

)

True
CNN-Tree
WaveNet-MMoE

(b) CNN-Tree vs. WaveNet–MMoE

Figure 14. Comparison of prediction results for m = 3.

(a) Decision Tree vs. WaveNet–MMoE

Figure 14. Cont.



Sustainability 2023, 15, 10816 17 of 22

Sustainability 2023, 1, 0 17 of 22

0 200 400 600 800 1000 1200
Number of samples

0

500

1000

1500

2000

2500

P
re

d
ic

te
d
 v

a
lu

e
 (

k
w

)

True value
Decision Tree
WaveNet-MMoE

(a) Decision Tree vs. WaveNet–MMoE

0 200 400 600 800 1000 1200
Number of samples

0

500

1000

1500

2000
P
re

d
ic

te
d
 v

a
lu

e
 (

k
w

)
True
CNN-Tree
WaveNet-MMoE

(b) CNN-Tree vs. WaveNet–MMoE

Figure 14. Comparison of prediction results for m = 3.
(b) CNN-Tree vs. WaveNet–MMoE

Figure 14. Comparison of prediction results for m = 3.

0 500 1000 1500 2000
Number of samples

0

500

1000

1500

2000

Pr
ed

ic
te

d 
va

lu
e 

(k
w

)

True
WaveNet-MMoE

Figure 15. Prediction results of WaveNet–MMoE for m = 3.

5.2. Analysis of Forecast Results

Data preprocessing is a crucial step in data analysis and machine learning. It involves
cleaning, transforming, and organizing raw data to provide high-quality data for subse-
quent analysis and modeling. The goal of data preprocessing is to eliminate noise, missing
values, and outliers in the data; adjust the distribution and scale of the data; and select and
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extract the most relevant features. Table 2 presents the results of selected methods after
feature selection using MIC and denoising through wavelet transform.

Table 2. Data processing score.

Type of Datasets Model
Metrics

MAE MAPE RMSE

Original

Decision Tree 0.0933 1.3522 0.1493
Transformer 0.1259 2.4574 0.1762
WaveNet 0.1064 0.8091 0.1571
WaveNet–MMoE 0.0765 0.6420 0.1184

MIC

Decision Tree 0.0782 1.0515 0.1344
Transformer 0.0664 0.7162 0.1143
WaveNet 0.0604 0.7621 0.1016
WaveNet–MMoE 0.0529 0.5628 0.0956

MIC + Wavelet

Decision Tree 0.0773 1.0103 0.1305
Transformer 0.0659 0.6894 0.1128
WaveNet 0.0559 0.7117 0.0965
WaveNet–MMoE 0.0520 0.5561 0.0950

From Table 2, it can be observed that when the data undergo feature selection using the
mutual information coefficient (MIC), some methods exhibit lower values of MAE, MAPE,
and RMSE compared with predictions using the original data. Subsequently, after applying
denoising through wavelet transform based on the MIC feature selection, the MAE, MAPE,
and RMSE values of some methods are also lower than those of the methods without
wavelet denoising. This indicates the necessity of data processing.

6. Conclusions

This paper presents a novel framework for wind turbine power forecasting, integrating
the MIC method, wavelet transform, WaveNet model, and MTL architecture MMoE. Exper-
imental results demonstrate significant improvements in multiple performance metrics of
the proposed multitask model compared with several single-task models when predicting
wind turbine power at different time steps. The framework provides a new perspective
for multistep time series prediction compared with conventional single-task prediction
models. Additionally, the necessity of using MIC and wavelet transform techniques in
data preprocessing is validated, as proper data preprocessing enhances the prediction
accuracy of this approach. Overall, this study offers an effective method to address the
issue of error accumulation in wind turbine power forecasting. Future research can explore
the application of this framework to other renewable energy sources and investigate its
potential for real-time prediction.

Author Contributions: Conceptualization, H.W. and C.P.; methodology, C.P. and H.W.; software,
H.W.; validation, H.W. and C.P.; formal analysis, H.W. and C.P.; investigation, B.L. and X.C.; data
curation, B.L.; writing—original draft preparation, H.W.; writing—review and editing, H.W. and C.P.;
visualization, H.W.; supervision, X.C. and S.L.; project administration, H.W.; funding acquisition, C.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Natural Science Foundation of China under Grant 62006095,
by the Natural Science Foundation of Hunan Province, China, under Grant 2021JJ40441, and by the
Jishou University Graduate Research and Innovation Project TXJD202303.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.



Sustainability 2023, 15, 10816 19 of 22

Abbreviations
The following abbreviations are used in this manuscript:

MMoE multigate mixture-of-experts
ML machine learning
MI mutual information
MIC maximum information coefficient
MSTF multistep time series forecasting
MTL multitask learning
STL single-task learning
AR autoregressive
ARMA autoregressive moving average
ARIMA autoregressive integrated moving average
ETS exponential smoothing
XGBoost eXtreme gradient boosting
CNN convolutional neural networks
RNN recurrent neural networks
TENT Tensorial Encoder Transformer
TCN temporal convolutional networks
DCCCN dilated causal convolutional networks
ADGCN asynchronous dilated graph convolutional network
SCTCN self-calibrating temporal convolutional network
RUL remaining useful life
WTA winner-take-all
ANN artificial neural network
ANOVA analysis of variance
PC pearson correlation
BE backward elimination
RF random forest
LASSO least absolute shrinkage and selection operator
LSTM long short-term memory
ConvLSTM convolutional LSTM
MTL-TCNN multitask learning temporal convolutional neural network
HA historical average
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