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Abstract: With the goal of achieving carbon neutrality in the shipping industry, the issue of sustainable
port development is becoming more and more valued by the port authorities. The shipping industry
requires more effective carbon emission reduction analysis frameworks. This paper takes China’s
Shanghai Port as the research object and analyzes it from the perspective of port-integrated logistics.
Combined with the port data of Shanghai Port from 2008 to 2022, the principal component analysis
gray correlation analysis model was used to screen the factors affecting the port’s carbon emissions,
and three calculation models for Shanghai Port’s carbon emission sources were proposed. In addition,
an expanded stochastic impact model based on the regression of population, affluence, and technology
(STIRPAT) was constructed for the influencing factors of Shanghai Port’s carbon dioxide emissions
and combined with the method of ridge regression to further identify important influencing factors.
At the same time, a gray neural network model was established to predict the carbon emissions of
Shanghai Port from 2021 to 2030 and compare them with their real value. The conclusion shows
that there is a close relationship between Shanghai Port carbon emissions and container throughput,
throughput energy consumption, number of berths, total foreign trade import and export, and net
profit attributable to the parent company. Gray neural network model data calculations show that the
growth rate of Shanghai Port’s carbon emissions will gradually slow down in the next ten years until
the carbon peak is completed around 2033. The study can provide a reference for the sustainable
development of other ports.

Keywords: sustainable port; carbon emissions forecast; integrated model; port-integrated logistics

1. Introduction

With the gradual development of the world economy, global environmental problems
have become increasingly acute. In recent years, problems such as the greenhouse effect,
melting glaciers, and the hole in the ozone layer have emerged one after another, bringing
endless troubles to mankind. These ecological crises have attracted worldwide attention,
and the control of carbon dioxide emissions has also become the focus of attention [1].
Under the new situation of deteriorating global environmental quality and an increasingly
severe energy crisis, the “green industrial revolution” caused by global climate deterioration
is being promoted all over the world, and more and more countries and regions have begun
to realize the importance of green development and ecological environment protection [2].
It is of great significance to begin to actively deal with the issue of carbon emissions and
introduce relevant control policies and low-carbon development strategies in order to
achieve the goal of controlling carbon emissions. As the country with the largest carbon
emissions in the world, China is determined to carry out energy conservation and emission
reduction. In September 2020, the Chinese government put forward the “3060 Dual Carbon
Goals”. China will reach the peak of carbon emissions in 2030 and achieve carbon neutrality
in 2060. The port of China’s economic artery has become an important goal of China’s
energy conservation and emission reduction [3].
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As an important node in the modern logistics supply chain, the port has generated
huge economic benefits from its daily activities [4]. However, while the port brings eco-
nomic benefits, its production activities will also cause a lot of pollution, including water
pollution, noise pollution, air pollution, and so on. With increasing global trade, the port
industry is also becoming more prosperous, but correspondingly, the port also produces
a large amount of carbon dioxide. According to the IPCC’s (United Nations Intergov-
ernmental Panel on Climate Change) “Special Report on Global Warming of 1.5 ◦C” [5],
the port industry accounts for about 3% of the total global greenhouse gas emissions. In
2011, the carbon emissions of the ports were 779.50 million tons, and they rose slowly.
In 2013, the carbon emissions of the ports reached 838.33 million tons. After 2013, the
carbon emission trend of the port has been stable and declining, and the carbon emission in
2018 was 810.89 million tons. Undoubtedly, as an important part of international shipping,
taking appropriate measures to reduce port carbon emissions is of great significance to the
achievement of the shipping industry’s carbon emission reduction goals [6].

Shanghai is an important economic, transportation, technological, industrial, financial,
and shipping center in China and one of the largest metropolitan areas in the world in terms
of scale and area. The cargo throughput and container throughput of Shanghai Port rank
first in the world, and it is a good riverside and seaside international port. Shanghai is also
the location of China’s first free trade zone, the “China (Shanghai) Pilot Free Trade Zone”.
The Yangtze River Delta urban agglomeration, composed of Shanghai, Jiangsu, Zhejiang,
and Anhui, has become one of the six world-class urban agglomerations [7]. Shanghai
attaches great importance to energy conservation and emission reduction. Recently it
issued the “Shanghai 14th Five-Year Plan” Comprehensive Work Implementation Plan
for Energy Conservation and Emission Reduction [8], which proposes that “By 2025, the
energy consumption per unit of GDP will have been reduced by 14% compared with
2020, and the total energy consumption will be reasonably controlled.” The emission
reductions of key projects for the four major pollutants of nitrogen oxides (NOx), volatile
organic compounds (VOCs), chemical oxygen demand (COD), and ammonia nitrogen
(NH3-N) reached 13,000 tons, 9900 tons, 16,300 tons, and 1200 tons, respectively. The
policy mechanism for energy conservation and emission reduction has become more sound;
the energy utilization efficiency of key industries and the control level of major pollutant
emissions have basically reached the international advanced level; the recycling industry
and social system have basically formed; and the green transformation of economic and
social development has achieved remarkable results. Shanghai is actively taking relevant
measures to reduce carbon emissions.

In recent years, the issue of port carbon emission reduction has attracted the attention
of many scholars. Most scholars have analyzed how to reduce port carbon emissions from
the perspective of port energy conservation and emission reduction efficiency measurement.
For example, using the super-efficient SBM model (an efficiency measurement model was
improved on the basis of the traditional DEA model, which can exclude constraints whose
efficiency value is less than 1.) to measure the energy conservation and emission reduction
efficiency of the Bohai Rim port group to evaluate and explore the factors that affect port
carbon emission reduction and give corresponding policy recommendations [9]. At the
same time, some scholars have conducted research on the use of shore power in ports and
have given a carbon emission calculation model [10]. In short, most scholars’ research
discussions are about the optimization of port operation and energy use schemes or how to
provide alternative transportation solutions to achieve the purpose of reducing port carbon
emissions. However, the current academic research on the multi-level driving factors that
may affect carbon emissions is still insufficient. Most studies are limited to the study of
carbon emissions in a single port and lack analysis at the level of the port’s integrated
logistics system. In addition, due to inaccurate forecasts for ports across China, there is
also a shortfall in developing targeted strategies for low-carbon emissions in ports. On
this basis, this paper proposes an innovative, comprehensive framework to analyze the
carbon emission issue of port-integrated logistics systems and explore the potential driving
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factors of carbon emissions. Taking Shanghai Port as an example, this paper proposes three
calculation models of Shanghai Port’s carbon emission sources, predicts carbon emissions,
and further gives corresponding policy recommendations.

The rest of the paper is structured as follows: Section 2 presents the related work of this
study; Section 3 outlines the methodology employed in the article; Section 4 states the data
sources, conducts variable selection and empirical analysis, and discusses the results. Finally,
Section 5 presents targeted policy recommendations, and Section 6 draws conclusions.

2. Literature Review
2.1. Research on Port Carbon Emission

Reducing greenhouse gas emissions and developing new emission reduction tech-
nologies are important measures to develop green and sustainable ports [11]. The current
academic research on port carbon emission reduction can be roughly divided into two per-
spectives: macroscopic and microscopic [12].

From a macro perspective, Lingpeng Meng et al. [13] believe that with the increase
in additional costs of government supervision and the reduction of incentives for port
enterprises, the probability of the government’s active regulation of carbon emission
reduction will increase, and the probability of port enterprises’ initiative to implement
carbon emission reduction will increase accordingly. Increases over time, reducing the
additional costs of passive mitigation and increasing opportunity costs. Likun Wang
et al. [14] found that the carbon emissions of port container transportation are negatively
correlated with the local GDP (Gross Domestic Product) and the number of port berths and
positively correlated with the value of the local tertiary industry, road freight volume, and
local and surrounding waterway freight volume. Lei Yang [15] and others believe, from the
perspective of society, that when the carbon price and environmental concern are low or
high, low-sulfur fuel oil should be used. Otherwise, shore power may be more attractive.
Wang Shuang [9,16] and others found that environmental supervision is the main factor
affecting the green energy saving efficiency of the Bohai Port Group, and technical factors
also have a positive effect on energy saving and emission reduction in port groups. At the
same time, the comprehensive economic strength has a positive effect on the improvement
of the green energy efficiency of the port group.

At the microlevel, Xiaoyan Guo et al. [17] believe that transportation structure and fuel
choice significantly affect network emission reductions. Yu Yao et al. [18] argue that port
carbon emissions are strongly linked to port throughput, productivity, containerization,
and intermodal transport. Ling Sun [10,19] believes that only a small number of coastal
provinces and cities are suitable for using shore power, and they are limited by the berthing
times of ships. However, this condition has nothing to do with the size of the ship but with
the power generation ratio. Sheng-Long Kao [20] and others believe that the impact of
shore power supply on carbon emission reduction is significantly greater than the speed
limit policy. Yu-Chung Tsao et al. [21] found that the development of the dry port concept
and intermodal transport can reduce the carbon cost of road transport. Lower speeds and
onshore power availability can reduce local air pollution, by Hui-Huang Tai et al. [22].

In terms of emission reduction measures, Lei Yang and others took Shenzhen Port as
an example and proposed methods such as improving loading and unloading efficiency,
replacing heavy fuel oil with low-sulfur fuel oil, and shore power [15,23]. Bei Wang and
others proposed to conduct a comprehensive study of port emission inventories and emis-
sion reduction technical measures and analyze them according to the actual situation of
different ports [11,24]. Yu Yao et al. proposed that China’s port authorities need to increase
the proportion of containerization and develop multimodal transport; at the same time,
under the new vision of clean energy and automation equipment, according to the optimiza-
tion of port operation management, including peak shaving and intelligent management
systems, the port authorities are responsible for updating energy use and energy efficiency
to minimize the proportion of non-green energy consumption [18,25]. Sheng-Long Kao
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et al. propose to balance the emissions improvement scenario by combining a new speed
policy with a 50% shore power supply [20,26].

2.2. Research on Carbon Emission Analysis Method

The calculation and analysis of port carbon footprints are key steps in evaluating port
carbon emissions. At present, many scholars in the academic circle use various methods to
study the issue of port carbon emission reduction. Xiaoyan Guo et al. [17,27] developed a
carbon emission estimation model for a hinterland-based container intermodal network.
Taking Shanghai Port and the Yangtze River Delta (YRD) hinterland as examples, the pat-
terns of well-to-wheel (WTW) and tank-to-wheel (TTW) over the past decade are estimated.
Key drivers are identified through sensitivity analysis, and changes in carbon emissions
under different carbon reduction policy scenarios are analyzed. Taking Shenzhen Port as
an example, Lei Yang et al. [15,28] provided a method to measure the carbon emissions of
the integrated logistics system of the port based on the comprehensive logistics perspective
of the port. Likun Wang et al. [14,29] propose an easy-to-implement method for calculating
CO2 emissions from port container distribution (PCD) and study their spatial characteristics
and drivers. Yu Yao et al. [18,30] proposed an integrated framework, combining population,
affluence, and technology regression (STIRPAT), global Malmquist-Luenberger (GML), and
multiple linear regression (MLR) random effects models to explore the drivers of carbon
emissions from Chinese ports. Shumin Lin [31] proposed a mathematical model aimed at
minimizing the sum of the total carbon emission cost and the total penalty cost to study the
comprehensive optimization problem of the space allocation of tidal port berths, quayside
cranes, and storage yards with channel capacity constraints under the carbon tax policy.
Yao Yu et al. [12,32] proposed the Stochastic Effects of Population, Wealth, and Technology
Regression (STIRPAT)-long short-term memory (LSTM)-autoregressive integrated moving
average (ARIMAX) composite model with explanatory variables for estimating carbon
emissions. Sheng-Long Kao et al. [20] combined the Automatic Identification System (AIS),
Ship Emission Estimation Model (SEEM), Geographic Information System (GIS) mapping,
and scenario simulation technology to create a Ship Emission Scenario Simulation Model
(SESSM) for mapping and evaluating the current ship emissions. Xing Jiang [33] proposed
an adaptive, dual-population, multi-objective genetic algorithm, NSGA-II-DP, to calculate
ship channel scheduling and berth allocation problems. Hui-Huang Tai et al. [22] proposed
an activity-based model to calculate ship exhaust emissions. Yuyan Zhou et al. [34] used the
WRF-CMAQ model to estimate the impact of port-related source emissions on air quality.
Wang Shuang et al. [9] used the super-efficiency SBM model to measure the energy-saving
and emission-reduction efficiency of ports. In addition, based on the STIRPAT model, the
influencing factors of energy savings and emission reduction efficiency were constructed
for analysis.

In summary, only a few quantitative studies evaluate and predict the assessment and
prediction of carbon emissions in ports from the perspective of port comprehensive logistics.
In this study, a systematic combination method is adopted. Based on the carbon emissions
data of Shanghai Port over the years, the carbon emissions volume of Shanghai Port is
predicted and analyzed, and the problems existing in Shanghai Port’s carbon emission
reduction correspond to solutions.

3. Methodology

This paper takes Shanghai Port, located in East China, as the research object. First of
all, by consulting the “Sustainable Development” reports issued by Shanghai Port Group
over the years, the IPCC method is used to calculate the carbon emissions of Shanghai Port.
Secondly, according to the existing research, the index of the influencing factors of carbon
emissions is determined as a candidate set, and the principal component analysis method
is used for noise reduction. Then, the statistical software SPSSPRO (Scientific Platform
Serving for Statistics Professional, which is a new online data analysis platform that is
different from the traditional client mode of SPSS and SAS.) uses gray relational analysis
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to calculate the correlation degree of the candidate set after noise reduction and screen
out and organize the factors that have an important impact on port carbon emissions. At
the same time, the influence of key factors is quantified through the Stochastic Influence
Expansion Model Based on Population, Wealth, and Technology Regression (STIRPAT) and
multiple regression models, and the factors related to port carbon emissions are analyzed
in detail. Finally, the gray prediction model-BP neural network model (GM(1,1)-BP neural
network model) is used to predict the carbon emissions of Shanghai Port, analyze the
carbon emission reduction problem of Shanghai Port, and give policy suggestions at the
same time. The overall flow of the method in this paper is shown in Figure 1.
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3.1. Research on Port Integrated Logistics

Port-integrated logistics mainly provides warehousing and transshipment services
with the port as a node and integrates various services, such as agency, processing, dis-
tribution, procurement logistics, finance, and information processing. These services are
integrated into three centers: the logistics service center, the business service center, and
the information service center, to provide users with multi-functional and comprehensive
logistics services [35]. As shown in Figure 2.
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The logistics service center is the main feature of comprehensive port logistics. Its
functions are developed from the warehousing and transportation services in traditional
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port logistics, and now they also include procurement, distribution, agency, processing,
and other businesses. The purpose is to serve the personalized logistics needs of differ-
ent customers.

The business service center means that in addition to traditional warehousing and
transportation services, the port also provides customers with commercial and financial
services such as agency, insurance, and banking, as well as modern logistics services such
as procurement logistics, supply chain services, and logistics finance. For example, it could
use its own resource advantages to develop procurement logistics or cooperate with other
companies to establish a supply chain service platform.

The information service center has an important function that is different from tradi-
tional port logistics. Its main task is to process and feed back information on logistics, trade,
finance, and government affairs, to provide customers with information services, and to
realize the interaction of business flow, logistics flow, and information flow. For example,
establish an information sharing database to improve the information management level of
enterprises in the port. Port integrated logistics provides customers with multi-functional,
integrated, and personalized integrated logistics services through these three centers to
gain competitive advantages.

3.2. PCA-GRA

Principal Component Analysis (PCA) is an index screening method. Its principle
is based on the idea of dimensionality reduction and realizes the method of integrating
multiple scattered indicators into a small number of comprehensive indicators [36]. Gray
relational analysis (GRA) is a multi-factor statistical analysis method. The basic idea is to
judge whether the connection is close according to the similarity of the geometric shapes of
the sequence curves. The closer the similarity of the corresponding shapes of the curves of
different sequences is, the higher the correlation between sequences is, and vice versa [37].
The advantage of PCA-GRA (Principal Component Analysis-Grey Relation Analysis) is
that it can greatly reduce the loss caused by information asymmetry and has low data
requirements. According to the changing situation of two factors (direction, size, speed,
etc.), you can judge the relationship between the two. The steps of PCA-GRA are as follows:

Step 1: Select the analysis index sequence and establish the reference sequence and
comparison sequence. Among them, the reference sequence refers to the data sequence
that reflects the characteristics of the system, and the comparison sequence refers to the
data sequence composed of factors that affect the behavior of the system. The reference
sequence is recorded as X0 = [x0(1), x0(2), . . . , x0(n)], and the comparison sequence is
Xi = [xi(1), xi(2), . . . , xi(n)], i = 1, 2, . . . , m. In this paper, the reference sequence is the
carbon emissions of the Shanghai port, and the comparison sequence is the data set related
to the carbon emissions of the Shanghai port found in the existing literature and research.

Step 2: Dimensionless processing of data sequences. The dimensions of the original
data series are usually different, so the original data series should be dimensionless for the
convenience of data comparison and analysis. The specific formula is as follows:

X′i(k) =
xi

xi(1)
(
k = 1, 2, . . . n, i = 1, 2, . . . n′

)
(1)

The reference sequence is dimensionless, and the comparison sequence is dimension-
less to obtain Xt

0 = [x′0(1), x′0(2), . . . , x′0(n)]. Dimensionless comparison sequence to get
X′i(1) = [x′i(1), x′i(2), . . . , x′i(n)], i = 1, 2, . . . , m. k is one of the subsequence identifiers.

Step 3: Calculate the absolute value of the difference between the reference sequence
and the comparison sequence, namely |x0(k)− xi(k)|, (k = 1, 2, . . . . . . n, i = 1, 2, . . . . . . n′),
and find the maximum and minimum values in it, which are denoted as a and b, respectively.
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Step 4: Calculate the correlation coefficient of each indicator in the comparison se-
quence and the reference sequence; the specific formula is as follows:

γ(x0(k), xi(k)) =
a + ρb

|x0(k)− xi(k)|+ ρb
(
k = 1, 2, . . . . . . n, i = 1, 2, . . . . . . n′

)
(2)

Among them is the resolution coefficient, which generally takes a value in the range
of 0 to 1 and is usually selected.

Step 5: Calculate the correlation degree.

γ0i = γ0i ∑n
k=1 γ0i(k), i = 1, 2, . . . , m (3)

In the formula, ρ is the discriminant coefficient, and the smaller ρ is, the higher the
discriminant rate is. By default, ρ is set to 0.5, the recognition effect is moderate, and the
stability is good.

3.3. STIRPAT and MLR

Today, the STIRPAT model is widely used to solve the problem of peak carbon emis-
sions. Compared with other models, the STIRPAT model more accurately measures the
impact of social and economic factors on the environment. It examines the influence of
the environment on the problem of peak carbon emissions [28]. Compared with the en-
vironment, it eliminates the impact of the same proportion of changes. At the same time,
the STIRPAT model also has strong scalability, which can change with changes in actual
problems. The basic form of the model is:

I = aPbAcTde (4)

In this formula, I is the environmental pressure; P is the population factor; A is
the wealth factor; T is the technical level; a is the model coefficient; e is the random error
disturbance of the model; and modulus of elasticity in previous studies, due to the difficulty
of obtaining data, few scholars have verified the impact of the port’s net profit on its carbon
emissions. And this paper expands the formula to include port factors, economic factors,
technical factors, and other factors and incorporates the port’s net profit attributable to the
parent company into the calculation model, which is as follows:

I = aPbAcTdGfe (5)

And under the premise of not affecting the stability of the original data, in order to
reduce the volatility between the data, the logarithmic change processing is performed on
both sides of the model equation at the same time, and (3) is obtained:

lnI = lna + blnP + clnA + dlnT + flnG + lne (6)

Among them, G represents other factors, and f is the elastic coefficient of other factors.
The extended STIRPAT model is used to measure the factors that affect the carbon emissions
of the integrated logistics system of the Shanghai Port. Further, it is necessary to carry out
multiple linear regressions on the established STIRPAT model to quantify the influence of
the driving factors on Shanghai Port’s carbon dioxide emissions.

3.4. GM (1,1)-BP Neural Network Model

The gray neural network prediction model is a combined model that combines the
gray GM (1,1) model with the BP neural network model [38], and its construction steps are
as follows:

Build a BP network model of the residual sequence. The residual of the original
time series and the predicted value using the GM (1,1) model is recorded as e(0)(k). Let
{e(0)(k)}(k = 1, 2, · · · n) be the residual sequence and S represent the prediction order; that
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is, use the information from e(0)(k− 1), e(0)(k− 2), · · · , e(0)(k− S) to predict the value
at time K. e(0)(k− 1), e(0)(k− 2), · · · , e(0)(k− S) is used as the S input sample of the BP
neural network, and the value of e(0)(k) is used as the predicted expected value.

Based on the trained BP neural network, predict the residual sequence {e(0)(k)} and
determine {e(0) ′(k)}. Compute the new predicted values:

X(0) ′(k, 1) = X(0) ′(k) + e(0)
′
(k, 1), (k = 1, 2, · · · , n) (7)

3.5. Index Selection

By reviewing the existing literature [1–30], we can find out the selection of factors
affecting carbon emissions in the comprehensive logistics system of Shanghai Port, as
shown in the following Table 1:

Table 1. Index selection.

First-Level Indicators Secondary Indicators Variable Unit

Port Factor
Container Cargo Throughput P1 million TEU

Number of berths P2 individual
Coastal Pier Length P3 million meters

Economic Factors

Operating costs E1 100 million yuan
Total assets E2 100 million yuan

Total import and export of foreign trade E3 One hundred million U.S. dollars
Net profit attributable to parent company E4 100 million yuan

Gross Product of the Region E5 100 million yuan

Technical Factor Throughput energy consumption T1 tons/10,000 tons

Other Factor
Number of employees G1 individual

Transhipment G2 none

4. Empirical Analysis
4.1. Introduction of Port of Shanghai

Shanghai Port is the main gateway to China’s international trade and the world’s
largest container shipping port. Shanghai Port is located in the middle of the east coast of
mainland China, at the intersection of the “T”-shaped water transportation network formed
by the “golden waterway” Yangtze River and coastal transportation channels. Anhui
River and Taihu Lake water systems. The highway and railway networks criss-cross, the
collection and distribution channels are smooth, the geographical location is important, the
natural conditions are superior, and the hinterland economy is developed [39]. According
to the “14th Five-Year Plan for the Construction of Shanghai International Shipping Center”,
the container throughput target of Shanghai Port will reach more than 47 million TEUs in
2025. In 2021, the annual container throughput of Shanghai Port will reach 47.025 million
TEUs, and the second-placed Singapore Port will have an annual container throughput
of nearly 10 million TEUs, further widening the gap. At the same time, Shanghai has
steadily entered the top three in the ranking of international shipping centers. The main
port area is distributed along the Huangpu River. It is composed of the port area on the
south bank of the Yangtze River Estuary, the port area on the north bank of Hangzhou Bay,
the Huangpu River port area, and the Yangshan deep-water port area Main portals and
windows in Figure 3.
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4.2. Analysis of Carbon Emission Sources in Port Integrated Logistics System

The carbon emission of the port integrated logistics system refers to the total emission
of greenhouse gases produced by each link of the port integrated logistics system within
a certain period of time. Due to the availability of data and the operability of analysis,
this paper mainly measures the carbon dioxide emissions in the port’s integrated logistics
system emissions. The carbon emissions of the port integrated logistics system come
from the services provided by the three types of functions of the system, including the
logistics service center, information service center, and business service center. In the daily
operation of the port, these services will directly or indirectly generate carbon emissions.
By combining past literature and research [15–20], this paper mainly measures the carbon
emissions of the port integrated logistics system from three aspects: port facilities, means
of transportation, and material consumption [40]:

4.2.1. Carbon Emissions Source Analysis in Port Facilities

The main source of carbon emissions in port facilities is the heavy equipment required
for port services, including equipment for loading and unloading, handling, stacking
operations, and storage at docks and yards. Which is necessary equipment for port ser-
vices, usually including some equipment, such as shoreside container cranes, container
forklift trucks, and terminal tractors. This article selects one of the shore container cranes
for analysis:

Qc
a =


gePc

i Cim
i tim

a a ∈ Aim

gePc
i Cex

i tex
a a ∈ Aex

gePc
i

(
Cim

i tim
a + Cex

i tex
a

)
a ∈ Atr

(8)

Among them, Qc
a is the carbon emission of loading and unloading container a by the

shore container crane; Pc
i is the rated power of the quayside container crane i in working

condition; Cim
i and Cex

i are the carbon emission intensity of the quay container crane i when
loading and unloading the import container and export container, respectively; tim

a and tex
a

are the time spent by the quay container crane when loading and unloading the container
a, respectively; and Aim, Aex and Atr are the collections of import boxes, export boxes, and
transfer boxes, respectively. In the formula, it can be divided into three cases. The first
case is for the import container a ∈ Aim, and Qc

a is the carbon emission gePc
i Cim

i tim
a of the

unloading operation of the shore container crane; the second case is for the export container
a ∈ Aex, and Qc

a is the shore container The carbon emission gePc
i Cex

i tex
a of the crane; the

third case is for the transfer box a ∈ Atr, and Qc
a is composed of two parts: the carbon

emission gePc
i Cim

i tim
a of the unloading operation of the container crane on the shore, and

the carbon emission of the gePc
i Cex

i tex
a loading operation.

4.2.2. Carbon Emissions Source Analysis in Transportation

The carbon emission sources in Shanghai port transportation vehicles mainly come
from transportation vehicles, ships, and other transportation vehicles. This paper selects
the ships arriving at the port for carbon emission analysis. The process of ships entering
and leaving the port area can be divided into three stages: entering the port, berthing, and
leaving the port. During the berthing phase, the operation of the auxiliary engine and
boiler is usually maintained through fuel consumption, and if the ship is connected to
shore power, the operation of the auxiliary engine is maintained through electrical energy.
In the stage of entering and leaving the port, the ship is in a state of maneuvering, and the
operation of the main engine, auxiliary engine, and boiler in a low-speed state is mainly
maintained through fuel consumption. Based on the above analysis, the carbon emission
calculation formula for the ship entering and leaving the port can be obtained:

Qs
a =

gf

(
Ps

aCs
i ts

a + Pb
aCb

i tb
a + Qo

a

)
a ∈ Af

gf(P
s
aCs

i ts
a + Qo

a) + gePe
atb

a a ∈ Ae

(9)
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Among them, Qs
a is the carbon emission of ship a entering and leaving the port;

gf and ge are the carbon emission factors of fuel consumption and electricity consumption,
respectively; Ps

a is the main engine, auxiliary engine, and the average fuel oil consumption
rate of the boiler; Pb

a is the average fuel oil consumption rate of the ship a when the auxiliary
engine and the boiler are in normal operation during the berthing phase; Pe

a is the power
consumption of the ship after using the shore power device; Cs

i and Cb
i are, respectively, the

carbon emission intensity of ship a when it enters, leaves, and berths in state i; ts
a and tb

a are
the time spent by ship a in the port entry and exit stage, and the length of berth; Qo

a is the
fuel consumption of ship a due to auxiliary operation tools, such as tugboats when entering
and leaving the port; Af and Ae represent the situation that ship a does not use shore power
after berthing, and the situation that ship a uses shore power after berthing. The formula
is divided into two cases. In the first case, for a ship berthing without using shore power,
Qs

a is composed of three parts: the carbon emission Ps
aCs

i ts
agf of the ship’s maneuvering

state, the carbon emission Pb
aCb

i tb
agf of the berthing state, and the carbon emission Qo

agf of
other operations. Composition: the second case is that for ships using shore power, Qs

a is
composed of three parts: carbon emissions Ps

aCs
i ts

agf in the ship’s maneuvering state, carbon
emissions Qo

agf in other operations, and carbon emissions gePe
atb

a in berthing.

4.2.3. Analysis of Carbon Emission Sources in Material Consumption

In the daily operation of Shanghai Port, a large amount of material will be consumed.
Ports and related enterprises need to consume a lot of paper documents, paper packaging,
and materials for distribution and processing when various process handovers are provided.
The carbon emissions from this part of material consumption are mainly due to the waste
and recycling of materials. The calculation method proposed in this paper is as follows:

Qs
w = ∑

i
Cs

i Ws
i (10)

Among them, Qs
w is the carbon emissions generated by the materials consumed

in Shanghai Port’s daily operations. Cs
i is the amount of carbon dioxide generated by

consuming 1 kg of material i. Ws
i is the amount of material i. It can be seen from the formula

that the carbon dioxide generated by the material consumption during the operation of the
Shanghai Port in Shanghai Port is summed up by the carbon dioxide emissions generated
by each kind of material.

4.3. Data Sources and Calculation Methods

This paper selects Shanghai Port, located in East China, as the research object. Consid-
ering data availability and quantitative requirements, the indicators and data for 2008–2022
required for this study are mainly obtained from the following sources: Construct a port
carbon footprint calculation model, and calculate the corresponding total carbon footprint.
this paper still refers directly to the “IPCC Carbon Emission Calculation Guidelines (2006)”
for carbon emission factor default value data. The energy consumption of port throughput,
container cargo throughput, water-to-water transfer rate, and the number of employees are
all from the “Sustainable Development Report” issued by Shanghai Port Group over the
years. The data on Shanghai Port’s operating costs, total assets, and net profit attributable
to the parent company are all from the “SIPG Financial Report” issued by Shanghai Port
Group. The length of coastal wharves, the number of berths, the GDP of Shanghai, and the
total amount of foreign trade imports and exports are derived from the Shanghai Statistical
Yearbook and Shanghai Port Yearbook over the years.

4.4. Analysis of Carbon Emissions in Shanghai Port over the Years

A large part of carbon emissions in Shanghai Port is that three types of power car-
bon emissions, fuel oil carbon emissions, and diesel carbon emissions in the daily opera-
tions of ports were analyzed by SPSSPRO, and the data of electric carbon emissions, fuel
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oil carbon emissions and diesel carbon emissions data in Shanghai. There is shown in
Figures 4 and 5 below:
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Figure 4. Three kinds of energy carbon emissions map.
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Figure 5. Shanghai Port Energy Carbon Emissions Map.

It can be seen from Figures 4 and 5 that from 2008 to 2022, the carbon emissions of
Shanghai Port showed an overall growth trend. From 950,100 tons in 2008 to 1.2295 million
tons in 2022, the average annual growth rate is 2%. Due to the impact of the new crown
epidemic in 2020, the total carbon emissions of Shanghai Port will show a trough trend.
From 950,100 tons in 2008 to 1.2295 million tons in 2022, the average annual growth rate
is 2%. Due to the impact of the new crown epidemic in 2020, the total carbon emissions
of Shanghai Port will show a trough. After the epidemic situation improves in 2021, the
carbon emissions of Shanghai Port will pick up. Among the electricity carbon emissions,
fuel oil carbon emissions, and diesel carbon emissions analyzed in this paper, from 2009
to 2019, the proportion of electricity carbon emissions has increased year by year, from
71.13% in 2009. To 81.46% in 2019. the proportion of Shanghai Port’s carbon emissions to
carbon emissions has increased by 10.33% in the past ten years; the proportion of fuel oil
carbon emissions and diesel carbon emissions has decreased year by year, from 8.99% and
19.88% in 2009 to 2019 to 7.42% and 11.12% of the previous year, and the proportion of
fuel oil carbon emissions and diesel carbon emissions in Shanghai Port has decreased by
1.57% and 8.66% in the past ten years; the proportion of fuel oil carbon emissions and diesel
carbon emissions has decreased, which is in stark contrast to the year-on-year increase
in the proportion of carbon emissions from electric energy, indicating that Shanghai Port
Group is committed to using clean energy, reducing carbon emissions in Shanghai Port, and
contributing to energy conservation and emission reduction. At the same time, it is also
observed that from 2020 to 2022, the proportion of carbon emissions from electric power
energy will drop from 79.73% to 68.63%, while the proportion of carbon emissions from fuel
oil and diesel will increase accordingly. This is because since 2020, due to the fact that port
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production activities have not been greatly affected, the volume of my country’s import
and export trade has increased significantly, which in turn has generated strong shipping
demand [41]. Shanghai Port has increased fuel consumption when the original power
facility scale cannot be expanded in a short period of time. The proportion of consumption
of oil and diesel to meet the fast-growing shipping demand.

4.5. Identification of Carbon Emission Influencing Factors Based on PCA-GRA

Since the selected data samples are composed of 12 different index (The 11 indicators
are in Table 1, and one variable is port carbon emissions.) feature variables and different
index features have different dimensions and dimensional units, in order to eliminate the
dimensional influence between different indicators and make different data indicators
comparable at the same time without affecting the results of data analysis, this paper
normalizes the data used and then performs principal component analysis and noise
reduction processing through SPSSPRO. Before PCA, KMO and Bartlett sphericity tests
were performed to determine the validity of the data [42]. The results are shown in Table 2
below. The KMO measurement value is 0.751 > 0.6, which shows that there is a correlation
between the item variables, which meets the requirements of principal component analysis.
The significance rate for Bartlett’s test of sphericity for the chi-square statistic is less than
0.010. Therefore, the sample data is suitable for PCA.

Table 2. KMO and Bartlett’s test.

KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.751

Bartlett’s Test of Sphericity
Approx. Chi-square 335.464

df 55
Sig 0.000 ***

Note: *** indicate that the regression coefficients are significant at the 1% levels, respectively; t values are
in brackets.

An analysis of variance was performed on dimensionless data. In the variance ex-
planation table, when the principal component is 2, the characteristic root of the total
variance explanation is lower than 1, so a total of 1 principal component is extracted, and
the contribution rate of the variable explanation reaches 90.377 in Figure 6.
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Set the values to 0.094, eliminate the length of the coastal terminal and operating costs
of the coastal terminal, and select the indicators of the container cargo throughput, the
water rotation rate of water, the total value of the region, the total assets, the number of
employees, the total foreign trade import and export amount, the number of berths, and the
net profit of the mother-in-law and throughput energy consumption of these nine variables.

In this paper, the GRA method is used to further screen multiple characteristic vari-
ables. The correlation coefficient represents the subsequence P1 (container cargo through-
put), P2 (number of berths), E2 (total assets), E3 (total foreign trade import and export), E4
(represented by parent net profit), E5 (gross product of the region), T1 (throughput energy
consumption), G1 (number of employees), and G2 (water transfer rate) in relation to the
value of the degree of correlation with the corresponding dimension of the parent sequence
(the larger the number, representing stronger correlation), the gray correlation analysis
diagram is as follows.

First, select the highest correlation factor in each module, and then set the threshold
to α = 0.60. In other variables, the factor will also be included in the final model, and the
results are shown in Figure 7. According to existing research [9], screen and exclude G1
(number of employees). Through a comprehensive analysis of the impact of the carbon
emissions of various indicators on the comprehensive logistics system of Shanghai and Port,
this article finally chose the container cargo throughput (P1), the number of berths (P2), the
total foreign trade import and export (E3), and the net profit of the mother (E4). The six
factors of throughput energy consumption (T1) and water rotation rate (G2) were calculated.
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4.6. Analysis of Improved STIRPAT Model

According to the six variables previously selected through gray correlation analysis as
explanatory variables (container cargo throughput, number of berths, total foreign trade
import and export, net profit attributable to the parent company, and throughput energy
consumption), Shanghai Port energy carbon emission is the explained variable. A model
was built and screened to ensure the accuracy of the empirical analysis. Using SPSSPRO to
conduct preliminary regression analysis, the results are shown in Table 3 below:
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Table 3. Results of linear regression analysis.

Variable

Non-Standardized
Coefficient

Standardization
Coefficient

t p VIF R2 Adjust
R2 F

B Standard
Error Beta

Regression
equation
constant

term

0.9 0 - 12,402,841,551.451 0.000 *** -

1 1
F = 9.636633925398487

× 1022

p = 0.000 ***

lnP1 1 0 2.238 120,138,107,535.799 0.000 *** 200.715
lnT1 1 0 1.493 177,883,342,981.064 0.000 *** 40.748
lnE4 0 0 0 0.05 0.961 28.495
lnP2 0 0 0 0.076 0.942 4.204
lnE3 0 0 0 −0.096 0.926 14.966
lnG2 0 0 0 0.022 0.983 7.405

Due to variables: CO2 emissions (ton)

Note: *** represent the significant level of 1%.

It can be seen from Table 3 that the analysis of the results of the F test can be obtained,
the significance the p value is 0.000 ***, the level is significant, and the null hypothesis
of a regression coefficient of 0 is rejected, so the model basically meets the requirements.
However, among the independent variables, only the p values of container cargo through-
put and throughput energy intensity are less than 5%, and the p values of the other four
variables are all greater than 0.9, which is not significant in the model test. At the same
time, it can be observed that the VIF values of container cargo throughput and throughput
energy consumption intensity are 200.715 and 40.748, respectively. both of these values are
>5, indicating that there is serious multicollinearity in the independent variables. There-
fore, the coefficients fitted by OLS regression cannot be guaranteed to be accurate. When
there is serious multicollinearity among the variables in the multiple linear regression
equation, the variance and standard error of the OLS estimator will be relatively large, and
the significance test will not pass, so the coefficients of OLS regression fitting cannot be
guaranteed to be accurate. If OLS regression is used to analyze the influencing factors of
port carbon emissions, this will lead to an inaccurate factor analysis and wrong conclusions.
Therefore, OLS regression cannot be used here to analyze the influencing factors of port
carbon emissions.

4.7. Ridge Regression Results and Discussion

In order to avoid the multicollinearity problem that may exist due to small independent
variable samples, this paper adopts an improved least squares estimation method—ridge
regression analysis—for data analysis and uses the ridge regression operation function in
SPSSPRO to obtain different K values [43]. Standardized regression coefficients Through
the ridge trace diagram, determine the K value. The selection principle of K value is that
the minimum K value is reached when the standardized regression coefficient of each
independent variable tends to be stable. In general, the smaller the K value, the smaller
the deviation. According to the results of ridge regression analysis, when K = 0.172, the
coefficient is gradually stable, R2 is 0.904, the F test passes the test at a significance level of
1%, and the fitting degree is good. Therefore, the parameter 0.172 is selected for regression,
and the results are shown in Table 4 below:
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Table 4. Results of Ridge Regression Analysis.

K = 0.172

Non-Standardized
Coefficient

Standardization
Coefficient t p R2 Adjust R2 F

B Standard Error Beta

regression
equation
constant

term

10.478 0.45 - 23.269 0.000 ***

0.938 0.904 27.41 (0.000 ***)lnP1 0.084 0.016 0.187 5.099 0.001 ***
lnT1 0.183 0.054 0.273 3.372 0.008 ***
lnE4 0.095 0.016 0.495 5.816 0.000 ***
lnE3 0.108 0.035 0.266 3.08 0.013 **
lnP2 0.123 0.053 0.208 2.343 0.044 **

Due to variables: CO2 emissions (ton)

Note: ***and ** represent the significant level of 1% and 5%, respectively.

The regression coefficient of ridge regression is the elasticity coefficient. Based on the
above analysis, the final linear model is:

lnI = 10.478 + 0.084× lnP1 + 0.183× lnP2 + 0.095× lnE4 + 0.108× lnE3 + 0.123× lnT1 (11)

It can be seen from the formula that container cargo throughput, throughput energy
consumption, net profit attributable to the parent company, total foreign trade import
and export, and the number of berths have a positive impact on Shanghai Port’s carbon
emissions. It can be seen from the formula that the change percentages of port carbon
emissions caused by a 1% change in variables from small to large are: container cargo
throughput, 0.084%; net profit attributable to the parent company, 0.095%; total foreign
trade import and export, 0.108%; throughput energy consumption, 0.123%; and number of
berths, 0.183%.

4.8. Prediction and Analysis of Carbon Emissions in Shanghai Port Integrated Logistics System

The gray prediction model can predict irregular time series [44], which is in line with
the data trends of Shanghai Port’s carbon emissions, container cargo throughput, number of
berths, total foreign trade import and export, net profit attributable to the parent company,
and throughput energy consumption over the years.

Use the gray prediction method to suggest a GM (1,1) prediction model; record x(0)(k)
(k = 1, 2, · · · ,20). Taking the container cargo throughput, number of berths, total foreign
trade import and export, net profit attributable to the parent company, and throughput
energy consumption from 2008 to 2020 as the benchmark values, value is predicted the five
variables and carbon emissions of Shanghai Port will be adjusted in 2021 to 2030.

After using the gray prediction model to predict that the carbon emissions of Shanghai
Port in the next 10 years will show an increasing trend year by year, the neural network
model trend extrapolation method is used to further improve the prediction results and
predict the carbon emissions of Shanghai Port in the next 10 years. The BP neural network is
a multi-level feedback network, which is a kind of fuzzy and uncertain neuron network that
can carry out self-organization and self-learning. Since the BP artificial neural network has a
thinking process similar to the human brain, it can simulate the human brain for continuous
learning and training, so as to solve some problems with ambiguity and uncertainty [45].
Therefore, the artificial neural network is used to analyze the carbon emission samples of
Shanghai Port, and through the learning, identification, and evaluation of new samples,
the weight of each factor affecting the carbon emission of Shanghai Port is fully considered
so as to predict the carbon emission of Shanghai Port in the next 10 years. Through
MATLAB software (MATLAB is a commercial mathematics software program produced by
Mathworks.), the historical data of Shanghai Port from 2008 to 2020 can be used to predict
emissions in the next ten years. The predicted results are as follows in Table 5:
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Table 5. Prediction Results of Carbon Emissions Based on Gray Neural Network.

Years Carbon Emissions (ton)

2021 49,698,654.85
2022 49,728,648.53
2023 49,758,281.33
2024 49,785,596.70
2025 49,808,899.45
2026 49,827,299.75
2027 49,840,884.41
2028 49,850,429.03
2029 49,856,907.70
2030 49,861,152.41

Compare the obtained Shanghai Port carbon emissions results from 2020 to 2030 with
the original data, as shown in Figure 8. Through the analysis of the fitting results of the
model, it can be seen that the data curve fitting degree of the predicted curve and the
actual value is high, and the data value is very close. The input layer in the model has
5 neurons, and each neuron corresponds to an impact factor (container cargo through-
put, number of berths, total foreign trade import and export, net profit attributable to
the parent company, and throughput energy consumption), and the input is these im-
pact factors, which are the values after data normalization. The output layer can only
have one neuron, which is the carbon emissions of Shanghai Port. Therefore, the estab-
lished BP neural network model can accurately predict the future 10 years of Shanghai
Port carbon emissions. Using the model to predict the carbon emissions of Shanghai
Port from 2021 to 2030, they are 49,698,654.85 tons, 49,675,333.29 tons, 49,677,713.98 tons,
49,678,628.27 tons, 49,678,909.08 tons, 49,678,975.47 tons, 49,678,987.01 tons, 4,967,898 tons,
8.41 tons, 49,678,988.52 tons, and 49,861,152.41 tons. Figure 8 shows the change trend of the
actual value, historical fitting value, and future forecast value of Shanghai Port’s carbon
emissions. Through the GM(1,1)-BP neural network model, the change in Shanghai Port’s
carbon emissions from 2021 to 2030 can be concluded: in the next 10 years, the carbon
emissions of Shanghai Port will first increase and then decrease year by year (Figure 9).
That is, the graph presents a relatively obvious inverted U shape, and based on the existing
Shanghai Port carbon emission data, it can be obtained that Shanghai Port’s carbon emis-
sions will reach their maximum in 2033, and that 2033 is the peak moment of Shanghai
Port’s carbon emissions. The prediction results are also in line with the “3060” strategy
proposed by the country.
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5. Strategies for Reducing Carbon Emissions in Port
5.1. Establish an Energy Forecasting and Early Warning Mechanism and an Emergency Response
Mechanism to Meet the Needs of Trade Fluctuations

In 2020, Shanghai Port has increased the proportion of fuel and diesel consumption
because electricity and energy consumption cannot meet the surge in shipping demand.
Therefore, Shanghai Port needs to establish and improve the energy security reserve and
purchase system to effectively control energy. Consumption and use, improve energy fore-
casting, early warning, and emergency response mechanisms, enhance energy security and
emergency response capabilities, and build energy consumption emergency plans when
trade demand fluctuates [11], so as to improve green energy security capabilities, ensure a
stable, reliable, and effective supply of green energy, and empower green energy [46]. The
construction of ports and green shipping have gained momentum.

5.2. Vigorously Promote the Construction of Green Ports and Improve Energy Efficiency

Ports can ensure the quality of equipment and reasonably control it through central-
ized bidding and procurement of equipment, reduce investment, and optimize resource
allocation [47]. Compared with traditional fossil energy sources, such as coal and oil,
port equipment uses fossil-free fuels, such as hydrogen or biofuels, or uses natural re-
newable energy sources, such as solar energy, wind energy, and hydropower, to generate
electricity [48]. At present, electrification is a prominent trend in the port industry. The con-
struction and use of new energy-saving and emission-reduction tools, such as photovoltaic
power generation, “new energy vehicle” tire cranes, and automated heavy-box rail cranes,
have a positive effect on protecting the ecological environment and will endow green ports,
as green Shipping construction has greater momentum [49]. Ports can actively connect
with shipping companies, carry out cooperation with leading shore power equipment
manufacturing companies to carry out technical research, and promote the advancement of
shore power technology and the improvement of safety performance and power connection
success rates.

5.3. Optimize Port Operation Management

Shanghai Port Group can promote the conservation of internal resources and reduce
the generation and discharge of pollutants by promoting green offices [50]. On the one
hand, in terms of supplier management, suppliers are screened from various aspects, such
as management systems, procurement processes, and environmental protection indica-
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tors, and suppliers are required to provide high-quality and reliable equipment. priority
principle [51]. On the other hand, we can compile an inventory of air pollution emissions,
energy consumption, and carbon emissions and propose an index system for systematically
evaluating the construction and development level of green ports.

5.4. Improve Berth Utilization and Reduce Loading and Unloading Time

According to the above regression results, it can be seen that the number of berths
is directly proportional to the carbon emissions of Shanghai Port. However, the number
of berths is generally difficult to change. At the same time, the increase and decrease of
berths will also cost a lot of manpower, material, and financial resources [52]. Therefore,
efficiency can be improved by increasing the utilization rate of berths and reducing load-
ing and unloading times, so as to control the number of berths and promote green port
development. On the one hand, by improving the service capacity and level of Shanghai
Port, we can improve the utilization efficiency of berths, improve the channel conditions,
and ensure that ships can enter and leave the port smoothly; on the other hand, we can
promote technological progress, promote the progress of terminals and berths, and reduce
comprehensive energy consumption and pollution emissions.

6. Conclusions

Since the implementation of China’s “3060” strategy, many enterprises in China are
committed to reducing carbon emissions generated in their daily business activities and
making themselves more sustainable. This study proposed an innovative framework that
integrates PCA-GRA, StiePat-MLR, and GM (1,1)-BP neural network models to refer to
the world’s largest container port, Shanghai Port, and explore drivers related to carbon
emissions. The analysis framework proposed in this paper for calculating the port carbon
emission factors of Shanghai Port can also be used to measure the carbon emission factors
of other ports. The specific conditions of different ports need to be analyzed in detail, and
the significance of the conclusions of the factors affecting carbon emissions in each port
may have some differences.

The results show that: (1) since 2008, the energy consumption of Shanghai Port has
shown an overall growth trend, and the carbon footprint of Shanghai Port Group’s energy
consumption has shown a slow growth trend. And power consumption is the main source
of Shanghai Port’s carbon emissions. From 2008 to 2019, under SIPG’s implementation of
energy-saving and emission-reduction measures, the proportion of Shanghai Port’s electric-
ity consumption has increased year by year. However, due to the strong trade demand after
2020, Shanghai Port will increase the proportion of fuel and diesel consumption to meet
the surge in shipping demand. (2) The daily operation of the port will generate carbon
emissions. After calculation, it is found that the main factors affecting the carbon emissions
of Shanghai Port are container throughput, throughput energy consumption, number of
berths, net profit attributable to the parent company, and total foreign trade import and
export. Among them, the greatest impact on Shanghai Port’s carbon emissions is the
number of berths; (3) the growth rate of Shanghai Port’s carbon emissions will continue to
slow down in the next ten years and will reach the carbon peak point around 2033.

Based on the above results, management suggestions for Shanghai Port are put for-
ward, including: (1) Establishing an energy forecasting and early warning mechanism, and
an emergency response mechanism to meet the needs of trade fluctuations; (2) Vigorously
promoting the construction of green ports and improve energy efficiency; Carry out car-
bon emission reduction monitoring from the chain point of view, optimize port operation
management; and (3) improve berth utilization and reduce loading and unloading time.
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