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Abstract: Bauxite mining, catalyzed by the escalating global demand for aluminum, leads to serious
environmental repercussions, necessitating the development of efficient land rehabilitation techniques.
This study presents a sustainable solution for post-bauxite mining land rehabilitation by leveraging
red mud waste and cow manure fertilizer. Applied in PT Antam, Sanggau Regency, West Kalimantan,
this research examines the potential of these ameliorants to restore ecological functions and promote
the growth of Albizia falcata plants. Our findings reveal a remarkable enhancement in soil pH
levels and nutrient availability (N, P, K, Ca, Mg, and Na) when applying a blend of 10% red mud
and 20% cow manure fertilizer. Consequently, a significant improvement in the growth of Albizia
falcata plants by factors ranging from 8 to 13 times was recorded. These results, alongside potential
economic benefits, highlight the promise of this approach not to only confront the challenges posed
by bauxite mining but also to contribute to global land rehabilitation strategies. While this study
provides substantial insights, it recommends further exploration of this method involving diverse
plant species, treatments with different ameliorants, and a broader range of observed variables. The
study underscores the critical role of government intervention through stringent regulations and the
need for a more comprehensive environmental and cost-benefit analysis to foster sustainable mining
practices and responsible land rehabilitation.

Keywords: bauxite mining; post-mining land rehabilitation; red mud waste and cow manure
fertilizer; Albizia falcata cultivation; sustainable mining practices

1. Introduction

The expanding global demand for aluminum has catalyzed a surge in bauxite mining
across the globe [1,2]. This mining process necessitates the removal of vegetation, topsoil,
and overburden layers, yielding severe environmental repercussions, including soil degra-
dation, habitat alterations, and landscape transformations [3,4]. Issues stemming from
bauxite mining frequently include ecosystem damage, water and air pollution, landscape
degradation, waste management difficulties, and socio-economic impacts [5,6].

Recent academic research has underscored the importance of comprehensive sustain-
able mining strategies in confronting environmental issues linked with mining operations,
notably in deep mines. Dong et al. (2019) stressed the role of cleaner production, an integra-
tive preventive environmental approach, in reducing the ecological impacts of mining [7].
This research brought to light developments and new perspectives on environmental issues
and deep mining strategies for cleaner production in mines. Their investigations offered
a summary of the general impacts of the mining industry on the ecological environment,
presented remedies for ecological contamination caused by tailings dams, and recom-
mended distinct strategies for safer and more effective resource extraction in deep mines.
In a parallel vein, Cai et al. (2021) introduced vital engineering technologies intended for
green, intelligent, and sustainable development in deep metal mines [8]. This research
drew attention to the engineering hurdles that arise in the deep mining of metal mineral
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resources and suggested a variety of technologies and innovative methods to address
these challenges.

Despite these challenges, the economic significance of bauxite mining, including pro-
viding essential mineral resources such as aluminum, creating employment opportunities,
and fostering innovation and technological advancement, cannot be understated [9–13].
Moreover, efficient post-mining land rehabilitation is imperative for ensuring the sustain-
ability of mining activities [14,15]. A solitary bauxite mine can impact over 100 hectares of
land annually, thereby underlining the urgent need for stringent regulations and interven-
tion strategies to mitigate the substantial environmental effects [16,17].

Post-mining land rehabilitation techniques are instrumental in restoring ecological
functions, preventing additional environmental harm, adhering to regulations, and pro-
moting sustainable environmental conservation [18–20]. Such techniques can facilitate
the restoration of former mining sites to their natural state, recovering soil productivity,
reinstating biodiversity, and balancing water and nutrient cycles, thus aligning with the
principles of sustainable development and responsible mining practices [21,22].

To tackle the environmental hurdles associated with post-mining land, this research
introduces a rehabilitation method that leverages red mud waste and organic materials for
land improvement [23]. Red mud waste, a byproduct of bauxite ore refinement, when amal-
gamated with organic matter like cow manure fertilizer, can efficaciously augment soil pH
and enhance nutrient retention [24–26]. This method also harbors economic benefits such
as improved availability of wood raw materials, decreased production costs, novel business
opportunities, enhanced business sustainability and reputation, and diversified business
portfolios, thus addressing the scarcity of wood resources and curtailing environmental
damage incurred through excessive limestone exploitation [27–29].

The present study not only devises pragmatic solutions to confront economic, so-
cial, and environmental challenges related to bauxite mining but also contributes to the
development of efficient land rehabilitation techniques applicable globally. By adhering
to regulations and implementing these techniques, mining firms can effectively and effi-
ciently meet their land rehabilitation obligations, bringing benefits to both the environment
and local communities [30,31]. Therefore, the appropriate management of post-mining
land is integral to mitigating adverse environmental impacts and fostering sustainable
mining practices, underscoring the crucial role of governmental intervention via stringent
regulations given the considerable macro-environmental implications.

2. Materials and Methods

This year-long study was undertaken on the premises of PT Antam in Sanggau Re-
gency, West Kalimantan, with soil chemical analyses executed by the Soil Chemistry and
Fertility Laboratory of the Faculty of Agriculture at Tanjungpura University. The research
implemented a factorial arrangement in a completely randomized block design, incorpo-
rating eight treatments. These treatments included R0 (100% Ultisol soil), R1 (95% Ultisol
soil + 5% red mud), R2 (90% Ultisol soil + 5% red mud + 5% cow manure), R3 (85% Ul-
tisol soil + 5% red mud + 10% cow manure), R4 (80% Ultisol soil + 10% red mud + 15%
cow manure), R5 (70% Ultisol soil + 10% red mud + 20% cow manure), R6 (70% Ultisol
soil + 15% red mud + 15% cow manure), and R7 (60% Ultisol soil + 15% red mud + 25%
cow manure).

In this experiment, a total of 128 Albizia falcata seedlings were engaged. Eight treat-
ments were devised, each comprising four replications, with each replication including six
seedlings. These seedlings were systematically planted at an interval of 3 × 3 m, leading to
the presence of 24 Albizia falcata seedlings within each treatment group. Subsequently, the
Albizia falcata seedlings were cultivated on post-bauxite mining land in alignment with the
predetermined planting medium treatments. To promote the growth of these seedlings,
organic pots were utilized as containers for the planting medium. The composition of these
organic pots consisted of a blend of 80% cow manure compost and 20% red mud. Thereafter,
planting medium mixtures corresponding to each treatment (eight in total) were filled into
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the organic pots. The planting medium within these organic pots was then incubated for a
span of two weeks to adequately prepare the medium prior to the planting of the Albizia
falcata seedlings.

Sequentially, soil samples were extracted for chemical properties analysis. Soil pH was
ascertained via a pH meter with pH 7.0 and pH 4.0 buffer solutions [32], while the organic
carbon content was established via the Walkey and Black wet oxidation method [33]. Total
nitrogen content was quantified employing the Kjeldahl method [34], available phosphorus
through the Bray-I method [35], and exchangeable potassium (K+), calcium (Ca2+), magne-
sium (Mg2+), and sodium (Na+) using the NH4Oac 1 N pH 7 extraction method [36]. The
cation exchange capacity (CEC) was evaluated using the indophenol blue method [37].

Subsequently, Albizia falcata seedlings, two months old and approximately 62 cm in
height, were planted in each organic pot. Growth parameters, encompassing plant height
and stem diameter, were measured upon the plants’ attaining 10 weeks of age. The gathered
data were then subjected to statistical analysis, utilizing the F-test and Duncan’s multiple
range test (DMRT) at a 5% significance level [38].

3. Results and Discussion
3.1. Description of Soil Fertility in Post-Mining Bauxite Tailings

The post-mining bauxite tailings soil is predominantly composed of gravel with a
small amount of sand, and the upper layer is mostly gravel, making it challenging for
vegetation to thrive [28,39]. Vegetation that does manage to grow in such areas tends
to be sparse, dry, and stunted. To enhance the physical properties of the soil in former
bauxite tailings, it is recommended to plant fast-growing species with a high leaf count.
The decomposition of stems, branches, and dead leaves, which integrate with the soil, can
improve soil fertility and enhance its physical properties [40,41].

An effective method to increase soil pH and nutrient availability is through the ad-
dition of red mud. Red mud not only provides these benefits but also enhances several
physical properties of the soil due to its clay content of 36.58%. Table 1 presents some of
the chemical properties of red mud that contribute to these improvements.

Table 1. Chemical properties of the soil, red mud, and cow manure before treatment.

Chemical
Parameters

Post-Mining Bauxite
Tailings Soil Red Mud Cow Manure

Compost

Texture

Sand (%) 24.20 (%) 10.87 (%) -

Silt (%) 32.57 (%) 52.55 (%) -

Clay (%) 43.23 (%) 36.58 (%) -

pH 3.34 10.14 6.60

Organic-C 0.62 (%) 0.18 (%) 34.22 (%)

N-total 0.07 (%) 0.03 (%)

Available P 4.83 (ppm) 0.52 (ppm) 0.17 (%)

Exch. K 0.03 (cmol(+)kg−1) 0.13 (cmol(+)kg−1) 0.27 (%)

Exch. Ca 0.94 (cmol(+)kg−1) 4.22 (cmol(+)kg−1) 0.59 (%)

Exch. Mg 0.52 (cmol(+)kg−1) 0.18 (cmol(+)kg−1) 0.25 (%)

Exch. Na 0.03 (cmol(+)kg−1) 0.67 (cmol(+)kg−1) -

CEC 42.33 (cmol(+)kg−1) 5.37 (cmol(+)kg−1) -

Base Saturated 3.59 (%) 96.83 (%) -
Source: analysis results.
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Table 1 presents the pH values of red mud from PT. ICA, which can be used in various
types of soil. Red mud not only serves as a nutrient source but also helps maintain a
balanced nutrient profile in the soil. Its application is expected to enhance soil pH and base
saturation in post-bauxite mining land, promoting the growth of Albizia falcata.

3.2. Soil Nutrient Availability

Table 2 provides the results of soil nutrient availability analysis for N, P, K, Ca, Mg,
and Na due to the influence of red mud and cow manure treatments.

Table 2. Soil pH and nutrient availability of N, P, K, Ca, Mg, and Na after incubation with red mud
and cow manure treatments.

Treatment
Soil Analysis Results

pH Organic-
C

N-
Total

Available
P

Exch.
K

Exch.
Ca

Exch.
Mg

Exch.
Na CEC BS

R0 4.26 g 0.22 f 0.03 f 13.49 g 1.10 d 0.6 e 0.24 e 2.25 e 8.98 e 46.66 e

R1 7.53 d 2.43 e 1.28 d 22.83 f 1.17 d 4.81 d 2.65 d 5.21 d 10.43 d 132.69 d

R2 8.03 c 2.77 d 1.27 d 32.39 e 1.59 c 12.45 c 3.20 c 5.86 c 12.26 c 188.42 c

R3 8.26 b 2.99 c 1.37 c 39.03 d 1.71 bc 17.82 b 3.43 bc 7.91 b 12.51 bc 246.76 b

R4 8.35 b 2.98 c 1.51 b 41.32 c 2.07 ab 19.98 b 3.50 bc 8.15 ab 12.79 ab 263.49 b

R5 8.42 a 3.69 a 1.82 a 44.28 b 2.38 a 25.55 a 3.64 bc 8.22 ab 13.54 a 293.87 a

R6 7.25 e 3.17 b 1.28 d 43.93 b 1.81 bc 19.25 b 3.98 a 8.30 ab 13.03 a 255.87 b

R7 7.13 f 3.21 b 0.76 e 46.29 a 1.61 bc 17.21 b 3.91 a 8.01 ab 13.07 a 235.20 b

Remarks: The mean followed by the same letter indicates no significant difference in the same row. Source:
analysis results.

3.2.1. Reaction (pH) in Soil after Incubation

Table 2 demonstrates that treatment R5 (combination of 70% Ultisol soil + 10% red
mud + 20% cow manure) significantly influenced soil pH after incubation compared to
other treatments. However, treatment R7 (a combination of 60% Ultisol soil + 15% red
mud + 25% cow manure) resulted in a decrease in soil pH. This decrease can be attributed to
the higher amount of red mud and cow manure added in treatment R7. The decomposition
of cow manure releases organic acids, contributing H+ ions to the soil and leading to a
decrease in pH [42,43].

Increasing the amounts of red mud and cow manure can raise soil pH after incubation.
Red mud has a pH H2O of 10.14, and cow manure has a pH H2O of 6.6. Therefore,
increasing the amount of red mud to 10% and cow manure to 20% added to the soil can
significantly increase the pH of Ultisol soil. Moreover, red mud contains base cations, which
can increase the percentage of base saturated (BS) in the colloidal complex, directly causing
an increase in soil pH. Figure 1 illustrates the effect of the combination of red mud and cow
manure on soil pH.

3.2.2. Organic Carbon in Soil after Incubation

Table 2 indicates that increasing the amount of cow manure added up to treatment
R7 (combination of 60% Ultisol soil + 15% red mud + 25% cow manure) can enhance
soil organic carbon (C-organic) compared to the control without the addition of red mud
and cow manure. Although red mud has low levels of C-organic, when combined with
cow manure, which has a high C-organic content of 34.22%, it can increase soil organic
carbon. Figure 2 presents the effect of the combination of red mud and cow manure on soil
organic carbon.
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Figure 1. Soil pH after incubation with red mud and cow manure treatments.
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Figure 2. Soil organic carbon after incubation with red mud and cow manure treatments.

3.2.3. Total Nitrogen in Soil after Incubation

Table 2 reveals that the addition of red mud and cow manure can increase total soil
nitrogen compared to the control soil, which had a nitrogen content of 0.03%. Treatment
R5 (combination of 70% Ultisol soil + 10% red mud + 20% cow manure) resulted in the
highest increase in total soil nitrogen after incubation compared to other treatments. How-
ever, increasing the amount of red mud and cow manure in treatment R6 (70% Ultisol
soil + 15% red mud + 15% cow manure) and treatment R7 (60% Ultisol soil + 15% red
mud + 25% cow manure) led to a decrease in total soil nitrogen.

The decrease in total soil nitrogen due to increasing amounts of red mud and cow
manure is likely caused by a decrease in soil organic carbon, which slows down the
mineralization processes. Nitrogen (N) is mainly derived from the decomposition of
organic matter, and its contribution depends on the quality and quantity of the organic
matter [44]. Decomposition rates are affected by soil pH, and an increase in pH can
decrease nitrogen availability [45–47]. The contribution of nitrogen from air fixation in the
soil is relatively low, around 117 kg/ha/year [48]. Organic fertilizers undergo hydrolysis,
mineralization, and nitrification processes, reaching maximum accumulation of N-NO3-
after 14 days of incubation [49–51]. Figure 3 depicts the effect of the combination of red
mud and cow manure on total soil nitrogen.
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Figure 3. Total soil nitrogen after incubation with the combination of red mud and cow manure
treatments.

3.2.4. Phosphorus in Soil after Incubation

Table 2 demonstrates that the addition of red mud and cow manure can increase
available phosphorus in the soil compared to the control soil, which had an available
phosphorus content of 13.49 ppm. The addition of increasing amounts of red mud and cow
manure in treatment R7 (60% Ultisol soil + 15% red mud + 25% cow manure) resulted in
the highest increase in available phosphorus (46.29 ppm) compared to other treatments.

The decrease in available phosphorus in other treatments may be due to an increase in
soil pH, which enhances the solubility of base cations, particularly calcium (Ca) ions. This
can result in the binding of phosphate ions to calcium ions, leading to reduced phosphorus
availability [52,53]. Additionally, high levels of organic matter from cow manure can
promote phosphorus fixation and reduce its availability [54]. Figure 4 illustrates the effect
of the combination of red mud and cow manure on available phosphorus.
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cow manure treatments.

3.2.5. Potassium in Soil after Incubation

Table 2 shows that the application of red mud and cow manure fertilizer can increase
the exch. K in the soil compared to the untreated soil. The exch. K content in the untreated
soil was 1.10 cmol kg (+) kg−1, while the exch. K content after treatment ranged from
1.17 cmol kg (+) kg−1 to 2.34 cmol kg (+) kg−1. The application of red mud and cow
manure fertilizer gradually increased up to the R5 treatment (combination of 70% Ultisol
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soil + 10% red mud + 20% cow manure fertilizer), which showed the highest exch. K in
the soil. However, it was not significantly different from the R4 treatment (80% Ultisol
soil + 10% red mud + 10% cow manure fertilizer). This is because red mud and cow manure
fertilizer contain K, which increases the exch. K in the soil upon addition [55,56]. Moreover,
the high proportion of clay minerals in the added red mud (36.58%) provides a significant
potential for the exch. K in the soil.

In addition to being a source of K nutrients, the high proportion of clay minerals in red
mud added to the soil provides great potential for exch. K. The effect of the combination
of red mud and cow manure fertilizer treatments on the exch. K in the soil is shown
in Figure 5.
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Figure 5. Displays the exch. K in the soil after incubation with the combination of red mud and cow
manure treatments.

3.2.6. Calcium in Soil after Incubation

Table 2 shows that the application of red mud and cow manure fertilizer can increase
the exch. Ca in the soil compared to the untreated soil. The exch. Ca content in the
untreated soil was 0.24 cmol kg (+) kg−1, while the exch. Ca content after treatment ranged
from 4.81 cmol kg (+) kg−1 to 25.55 cmol kg (+) kg−1. The R5 treatment (combination of
70% Ultisol soil + 10% red mud + 20% cow manure fertilizer) showed the highest exch.
Ca in the soil. However, it was not significantly different from the R3 treatment (85%
Ultisol soil + 5% red mud + 10% cow manure fertilizer) and the R4 treatment (80% Ultisol
soil + 10% red mud + 10% cow manure fertilizer). This is because red mud contains
4.22 cmol (+) kg−1 of Ca, which is higher than the content of other base cations (K, Mg, and
Na), making it a potential source of Ca. Additionally, pH and CEC of the soil are essential
factors in determining the exch. Ca in the soil [57,58]. The effect of the combination of red
mud and cow manure fertilizer treatments on the exch. Ca in the soil is shown in Figure 6.

3.2.7. Magnesium in Soil after Incubation

Table 2 shows that the application of red mud and cow manure fertilizer can increase
the exch. Mg in the soil compared to the untreated soil [59,60]. The exch. Mg content in
the untreated soil was 0.04 cmol kg (+) kg−1, while the exch. Mg content after treatment
ranged from 2.65 cmol kg (+) kg−1 to 4.07 cmol kg (+) kg−1. The R3 treatment (85%
Ultisol soil + 5% red mud + 10% cow manure fertilizer) did not differ significantly from
the R4 treatment (80% Ultisol soil + 10% red mud + 10% cow manure fertilizer) and the
R5 treatment (70% Ultisol soil + 10% red mud + 20% cow manure fertilizer) in terms of
exch. Mg in the soil. However, the highest exch. Mg was observed in the R7 treatment
(60% Ultisol soil + 15% red mud + 25% cow manure fertilizer), although it did not differ
significantly from the R6 treatment (70% Ultisol soil + 15% red mud + 15% cow manure
fertilizer). The exch. Mg in the soil increased with the increasing application of red mud and
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cow manure fertilizer. This is because red mud contains Mg, which can serve as a source of
Mg. The effect of the combination of red mud and cow manure fertilizer treatments on the
exch. Mg in the soil is shown in Figure 7.
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Figure 6. Displays the exch. Ca in the soil after incubation with the combination of red mud and cow
manure treatments.
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Figure 7. Displays the exch. Mg in the soil after incubation with the combination of red mud and
cow manure treatments.

3.2.8. Sodium in Soil after Incubation

Table 2 shows that the application of red mud and cow manure fertilizer can increase
the exch. Na in the soil compared to the untreated soil [61]. The exch. Na content in
the untreated soil was 2.25 cmol kg (+) kg−1, while the exch. Na content after treatment
ranged from 5.20 cmol kg (+) kg−1 to 8.41 cmol kg (+) kg−1. The R4 treatment (80% Ultisol
soil + 10% red mud + 10% cow manure fertilizer) did not differ significantly from the R5
treatment (70% Ultisol soil + 10% red mud + 20% cow manure fertilizer), R6 treatment (70%
Ultisol soil + 15% red mud + 15% cow manure fertilizer), and R7 treatment (60% Ultisol
soil + 15% red mud + 25% cow manure fertilizer) after incubation. The exch. Na in the
soil increased with the increasing application of red mud and cow manure fertilizer up to
15% and 25%. This is because red mud and cow manure fertilizer contain Na, which can
serve as a source of exch. Na in the soil. However, Na is weakly retained by organic or
mineral matter [62,63]. The effect of the combination of red mud and cow manure fertilizer
treatments on the exch. Na in the soil is shown in Figure 8.
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Figure 8. Displays the exch. Na in the soil after incubation with the combination of red mud and cow
manure fertilizer treatments.

3.2.9. Cation Exchange Capacity (CEC) in Soil after Incubation

Table 2 shows that the application of red mud and cow manure fertilizer can increase
the cation exchange capacity (CEC) of the soil compared to the untreated soil [64]. The
CEC content in the untreated soil was 6.78 cmol kg (+) kg−1, while the CEC content after
treatment ranged from 10.43 cmol kg (+) kg−1 to 13.28 cmol kg (+) kg−1. The R2 treatment
(95% Ultisol soil + 5% red mud) increased the CEC of the soil after incubation compared to
without the addition of red mud. However, the R7 treatment (60% Ultisol soil + 15% red
mud + 25% cow manure fertilizer) significantly decreased the CEC of the soil. The highest
CEC value was observed in the R5 treatment (10% red mud + 20% cow manure fertilizer),
although it did not differ significantly from the R4 treatment (10% red mud + 10% cow
manure fertilizer) and R6 treatment (70% Ultisol soil + 15% red mud + 15% cow manure
fertilizer) [65]. The increase in CEC of the soil was due to the increasing application of cow
manure fertilizer, which has a high organic carbon content (34.22%) that can increase the
organic carbon in the soil. The CEC value of the soil is directly related to the amount of
organic matter in the soil [65]. One source of negative charge in the soil is organic matter,
which comes from the dissociation of functional groups of organic acids. The CEC of humus
can reach 150–300 cmol (+) kg−1 [66]. The effect of the combination of red mud and cow
manure fertilizer treatments on the CEC of the soil is shown in Figure 9.
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Figure 9. Illustrates the cation exchange capacity (CEC) of soil after incubation with a combination of
red mud and cow manure.
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3.2.10. Base Saturated (BS) Soil after Incubation

Table 2 shows that the application of red mud and cow manure fertilizers can signifi-
cantly increase the soil’s base saturated (BS) compared to the untreated soil. The BS value
of the untreated soil was 46.65 cmol kg (+) kg−1, which increased to a range of 132.67 cmol
kg (+) kg−1 to 293.83 cmol kg (+) kg−1 after treatment. Treatment R2 (95% Ultisol soil + 5%
red mud) was found to increase the soil’s BS after incubation compared to the untreated
soil. However, significant increases in BS were observed with the addition of red mud
up to 15% and cow manure fertilizer at 25% kg (treatment R7). This can be attributed to
the presence of basic cations such as K, Ca, Mg, and Na in red mud, which contributes to
its high BS value of 96.83%, compared to the untreated Ultisol soil BS of approximately
3.7%. Base saturation (BS) is a measure of the percentage of total cation exchange capacity
occupied by basic cations such as K, Ca, Mg, and Na [67,68]. The results suggest that red
mud and cow manure fertilizers can be used as effective soil amendments to improve soil
fertility and productivity by increasing the soil’s BS value (Figure 10).
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Figure 10. Shows the base saturated (BS) of the soil after incubation with a combination of red mud
and cow manure fertilizers.

3.3. Growth Parameters of Albizia falcata Trees
3.3.1. Plant Height Increment of Albizia falcata at Week 10 after Planting

The growth parameters, including plant height and stem diameter (average of six
Albizia falcata seedlings per treatment), are measurements of the increase in height and stem
diameter compared to the initial measurements of the Albizia falcata seedlings used (height
of 62 cm and diameter of 0.40 cm). This study evaluates the impact of red mud and cow
manure fertilizers on the height and stem diameter of Albizia falcata trees. The research
findings are presented in Table 3.

Table 3 shows that treatment R1 (95% Ultisol soil + 5% red mud) increased the height
of Albizia falcata trees compared to the control, although there was no significant difference
with treatment R2 (90% Ultisol soil + 5% red mud + 5% cow manure fertilizer). Treatment
R5 (70% Ultisol soil + 10% red mud + 20% cow manure fertilizer) resulted in the highest
height increment, as the N content in the Albizia falcata tree tissues was also highest in this
treatment. High nitrogen content can improve vegetative growth (height, stem diameter,
leaf number, leaf area, shoot number, root number, and root length) [69,70] because nitrogen
functions to increase leaf number and area [71]. In addition, the leaf surface area also affects
the photosynthesis process [70,72].

The application of red mud and cow manure fertilizers can increase the height of
Albizia falcata trees up to a certain dosage. There was a tendency for a decrease in tree height
with increasing doses of red mud and cow manure fertilizers as the macronutrient levels
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that play a role in plant growth also decreased. The effect of combined red mud and cow
manure fertilizer treatments on Albizia falcata tree height increment can be seen in Figure 11.

Table 3. Plant height and stem diameter increment due to the influence of red mud and cow manure
fertilizer treatment.

Treatment
Growth Performance Measurements of Albizia falcata Trees

Plant Height Increment
of Albizia falcata (cm)

Stem Diameter Increment
of Albizia falcata (cm)

R0 2.30 defg 0.40 gh

R1 3.17 gh 0.42 gh

R2 7.07 efg 0.57 gh

R3 11.47 cde 1.07 ef

R4 23.40 b 3.47 a

R5 32.00 a 3.63 a

R6 13.53 c 2.23 cd

R7 13.97 c 2.90 b
Remarks: The mean followed by the same letter indicates no significant difference in the same row. Source:
analysis results.
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Figure 11. Plant height increment of Albizia falcata at Week 10 after planting.

3.3.2. Stem Diameter Increment of Albizia falcata at Week 10 after Planting

Table 2 shows that treatment R1 (95% Ultisol soil + 5% Red Mud) increased the height
of Albizia falcata trees compared to the control, although there was no significant difference
with treatments R2 (90% Ultisol soil + 5% red mud + 5% cow manure fertilizer). The
present study investigated the effects of red mud and cow manure on the growth of plants,
specifically in terms of stem diameter. Results showed that the R5 treatment, consisting of
Ultisol soil (70%), red mud (10%), and cow manure fertilizer (20%), resulted in the highest
and significantly different increase in stem diameter compared to other treatments, except
for the R4 treatment (red mud 10% + cow manure 10%). The combination of red mud and
cow manure in the R5 treatment was found to promote stem diameter growth. However,
there was a decreasing trend in stem diameter growth with increasing amounts of red mud
and cow manure until the R7 treatment (red mud 15% + cow manure 25%). This could be
attributed to a reduction in macronutrient levels, which play a crucial role in plant growth.
Overall, the results suggest that the R5 treatment is the most effective in promoting stem
diameter growth in plants.
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Sufficient available nutrients in the soil can affect plant physiology and metabolism
processes better and improve plant growth [73,74]. Moreover, an increase in soluble nutri-
ents in the soil can increase the absorption of nutrients by plants for their growth [75,76].
The effect of combined red mud and cow manure fertilizer treatments on Albizia falcata tree
stem diameter increment can be seen in Figure 12.
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Figure 12. Stem diameter increment of Albizia falcata at Week 10 After planting.

4. Conclusions

Sustainable rehabilitation of post-bauxite mining land can be successfully executed
by employing site-specific amelioration technologies, which capitalize on red mud waste
and organic compounds such as cow manure fertilizer. This strategy serves as an efficient
tool for mitigating the adverse effects associated with bauxite mining and processing. By
mitigating land degradation and curbing the accumulation of red mud waste, this approach
simultaneously boosts nutrient availability and encourages the proliferation of Albizia
falcata plants.

The findings of this study show that an amalgamation of 10% red mud and 20%
cow manure fertilizer significantly amplified soil pH levels by over twice the initial value
(an increase of 97.65%). This intervention also resulted in improved availability of key
nutrients (N, P, K, Ca, Mg, and Na), with an observed increase ranging from 2 to 60 times
(an increment of 116.36% to 5966.67%). This led to a substantial improvement in the growth
of Albizia falcata plants by factors ranging from 8 to 13 times (an increase of 807.50% to
1291.30%) when compared to the control in post-bauxite mining land.

The focus of this study was exclusively on the rehabilitation of post-bauxite mining
land in PT Antam, Sanggau Regency, West Kalimantan. The study involved Albizia falcata
plants and used red mud and cow manure as the chosen ameliorants. Parameters observed
were confined to macro-nutrient availability and plant growth factors, including plant
height and stem diameter. The duration of the research was one year. Nevertheless,
it is recommended that future research expands the area of study, includes additional
plant species, examines treatments with different ameliorants, and broadens the scope
of observed variables. For a holistic understanding and to evaluate the sustainability
and economic potential of this rehabilitation method, a more exhaustive environmental
assessment, coupled with a cost-benefit analysis with respect to the government, the
industry, and the local community, is advised.
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