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Abstract: In order to provide important assistance for the scientific and effective route selection of
future planned railways in the research area and to quickly and accurately identify the distribution
range of landslides, thereby proactively mitigating the impact of geological hazards on railways under
earthquake conditions, this study aims to shift the risk threshold for geological hazards and provide
a scientific basis for the accurate planning and route selection of railways in mountainous areas.
Jiuzhaigou was selected as the research area and postearthquake surface deformation information
in the study area was obtained through Sentinel-1 satellite radar data. Based on Sentinel-2 optical
remote sensing imagery, the changes in vegetation indices in the study area before and after the
earthquake were analyzed in depth. The concept of vegetation index difference was proposed as a
characteristic parameter for landslide information interpretation and a method combining surface
deformation information was developed for landslide information interpretation. According to this
method, the study area experienced a deformation subsidence of up to 14.93 cm under the influence
of the earthquake, with some areas experiencing an uplift of approximately 6.0 cm. The vegetation
index difference in the research area ranged from −1.83502 to 1.45366. The total number of landslides
extracted is 12.034 km2 and 164 landslide points are marked, with an overall recognition accuracy of
92.6% and a Kappa coefficient of 0.876. The research results provide new research ideas for landslide
information interpretation and can be used to assist in the decision-making of mountain railroad
alignment options.

Keywords: landslide information; vegetation index; earthquake zone; remote sensing

1. Introduction

With the rapid development of China’s railway industry, the construction of a de-
veloped and dense road network is urgent. However, the road network construction in
western regions is still relatively weak. In the coming years, the investment and construc-
tion of railways in the central and western regions will inevitably increase. The rapid
development of railways requires continuous improvement of survey and design levels,
and railway route selection work should be more efficient and scientifically reasonable.
Landslides can cause huge harm to railway construction and must be prevented from
occurring to reduce the disasters they bring.

Landslide geological hazards are sudden, especially those triggered by earthquakes
and mainly concentrated in mountainous areas. On 8 August 2017, a 7.0 magnitude
earthquake occurred in Jiuzhaigou County, Aba Prefecture, Sichuan Province, with a
depth of 20 km, triggering a large number of earthquake landslides accompanied by
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many secondary hazards. According to incomplete statistics from the China Earthquake
Administration [1], the earthquake caused serious casualties and property damage, with
25 people killed, over 170,000 people affected and over 70,000 houses damaged to varying
degrees by August 13. Therefore, it is necessary to investigate the spatial distribution
characteristics of landslides and interpret and analyze the landslide information after
the earthquake.

At present, the two main types of conventional landslide survey methods are manual
field surveys and interpretation based on optical remote sensing images [2]. Earthquake-
induced landslides are widespread and numerous and the mountainous terrain is complex
and extensive, making it time-consuming and labor-intensive to rely solely on conven-
tional manual field surveys. Remote sensing technology has the distinct advantages of
providing a macroscopic view, rapid data acquisition and wide coverage. This allows for
quick acquisition of remote sensing images in postearthquake disaster areas and facilitates
macroscopic analysis. In recent years, scholars both domestically and internationally have
proposed a series of semiautomatic rapid landslide identification methods based on optical
remote sensing images. Hu Wenmin et al. conducted landslide information extraction in
the Lei Jia Shan landslide disaster area of Panping Village, Nanzhen Town, Changde City,
Hunan Province, using the support vector machine (SVM) method based on the data from
the Gaofen-2 (GF-2) optical remote sensing satellite [3]. In their study, Fu Junlin et al. used
Landsat TM/OLI optical remote sensing satellite images to calculate the vegetation cover-
age values before and after the Qianjiangping landslide in Zigui County, Hubei Province.
They analyzed the data from nine different time periods and found that the area of high
vegetation coverage significantly decreased after a landslide, indicating a corresponding
decrease in vegetation coverage after a landslide occurred [4]. Li Chenhui et al. employed
high-resolution fusion images from the Gaofen-1 satellite and implemented a multiscale,
object-oriented technique based on a multicondition threshold classification to rapidly
interpret landslide information in the study area. This approach enabled the construction
of hierarchical recognition rules for landslide identification [5]. Shao F et al. considered the
introduction of the object-oriented conditional random field (CRF) optical remote sensing
satellite image classification method to achieve the identification and extraction of landslide
information in the study area [6]. Using Landsat series optical remote sensing satellite
data, Wen Guangchao et al. proposed a method for the rapid identification of landslides by
studying the spectral curve characteristics of landslides and other features in the target area,
effectively extracting complete landslide information [7]. With the gradual improvement in
the resolution of optical remote sensing image data, it has also found broader application
in the dynamic monitoring of landslides. However, due to the harsh weather conditions
in postearthquake areas, optical images are often hindered by cloudy weather and have
low timeliness.

On the one hand, SAR (synthetic aperture radar) satellite technology is not affected by
unfavorable factors such as rain, clouds and fog, and can image all day and in all weather,
breaking through the limitations of optical images and gradually becoming the mainstream
remote sensing technology means for earthquake emergency response and assessment.
The method of landslide identification based on SAR images has been explored by many
scholars: Nava L et al. and Mondini A C et al. interpreted landslides in SAR images
based on landslide body geomorphic features [8,9]. Zheng Z et al. utilized interferomet-
ric synthetic aperture radar (InSAR) technology to determine the surface deformation of
the study area and combined it with optical remote sensing imagery for manual inter-
pretation of landslide information. Field verification confirmed the high accuracy of the
InSAR monitoring results [10]. Yin W et al. proposed an adaptive identification method
for potential landslide hazards based on multisource data, which was further improved
and enhanced by incorporating InSAR technology to comprehensively identify potential
landslides [11]. With the development of SAR sensors, SAR has gradually evolved from its
original single mode of operation to a multiband, multipolarization, multiangle mode of
operation, providing flexibility for seismic landslide identification applications [12]. On
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the other hand, the normalized vegetation index (NVI) has been developed to provide a
more flexible way to identify landslides. On the other hand, the normalized vegetation
index has a high correlation with the leaf area index and biomass, which can reflect a
luxuriant degree of surface vegetation and to a certain extent can indicate a change in
surface vegetation cover [13]. The vegetation in Jiuzhaigou is well-developed and there
are noticeable differences in vegetation cover between the pre- and postearthquake areas,
particularly in regions with robust vegetation cover, which exhibit prominent variations.

Therefore, there are challenges in using optical remote sensing images due to the
limitations imposed by natural cloud cover and the C-band wavelength of Sentinel-1 data,
which makes it difficult to monitor and identify landslide hazards in densely vegetated
mountainous areas. In terms of feature application, there is a lack of research on exploring
vegetation activity changes, which prevents the full utilization of the rich information
provided by high-resolution images. As a result, the accuracy of landslide information
interpretation is not satisfactory and fails to meet practical application needs. In this paper,
Jiuzhaigou is selected as the study area. Sentinel-1 satellite radar data are used to monitor
postearthquake surface deformations in the research area. Combined with Sentinel-2 optical
remote sensing image data, surface deformation information is introduced as a feature
in the classification system. Furthermore, the changes in vegetation indices before and
after the earthquake in the research area are analyzed in depth. A method for landslide
information interpretation based on vegetation index difference using multisource data
is proposed. This method aims to interpret seismic landslide disaster information. On
the one hand, it provides new research ideas for landslide information interpretation. On
the other hand, the results of landslide interpretation based on this method can assist
in decision-making for railway route selection to a certain extent, allowing for proactive
prevention and improving the efficiency and reliability of route selection, which holds
great significance.

2. Study Area and Experimental Data
2.1. Study Area

Jiuzhaigou is located in the mountainous region of Southwest China, also known as
Nanping County, which is part of the Aba Tibetan and Qiang Autonomous Prefecture in
the northern part of Sichuan Province. With a total area of about 5300 square kilometers,
Jiuzhaigou County has an overall step change in terrain from high in the northwest to
low in the southeast, with an altitude drop of 3000 m and a humid plateau climate. In
addition, the region is prone to geological disasters such as landslides and mudslides due
to the constant development and frequent activity of fracture structures. Within 200 km
of the epicenter, 142 earthquakes of magnitude 3 or greater have occurred in the last five
years, with this one being the largest and most devastating. Jiuzhaigou has a humid
plateau climate, with snow on top of the mountains all year round. It is divided by altitude
into warm-temperate semi-arid, mid-temperate and cold-temperate monsoon climates;
the average annual temperature is 12.7 ◦C, the average annual precipitation is 550 mm,
the average annual sunshine is 1600 h and the average annual relative humidity is 65%.
The high mountain areas above 4000 m in altitude are covered with snow all year round,
with no vegetation cover, and the bedrock of the ridge is exposed. The external forces
of the landscape mainly come from the weathering and erosion of glaciers and alpine
freezing [14]. At lower elevations, mud flats and unstable slopes formed by landslides
and avalanches can be observed. These areas are often active, with slow sliding occurring
along the slopes over the years, posing a potential threat to the region. Below 3800 m in
altitude, the landscape is characterized by dense vegetation, gullies and a network of rivers.
The abundant vegetation primarily comprises forested slopes with high vegetation cover.
During fall, the vertical variation in natural vegetation is most prominent, resulting in a
picturesque scenery of overlapping greenery and golden layers of forest throughout the
entire Jiuzhaigou scenic area. Additionally, there are exposed slopes that remain devoid
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of vegetation due to natural factors such as faults and topography, including cliffs and
landslides caused by previous landslides or eroding hillsides.

Jiuzhaigou is situated in the transitional region between the Qinghai–Tibet Plateau
and the Sichuan Basin. It features a complex geological background characterized by the
widespread presence of carbonate rocks, extensive folding fractures, active neotectonic
movements and significant crustal uplift. The landscape is marked by the intersection of
multiple geological media, resulting in diverse landforms and the formation of large-scale
karst features, particularly calcium deposits. The region is located on the eastern edge of the
Qinghai–Tibet Plateau and encompasses deep valleys and intricate topographic changes. It
lies in the transition zone between the first and second steps of China’s three major terrain
steps, making it a frequent occurrence and regeneration area for various geological hazards,
including landslides, collapses and mudslides. The geological background of Jiuzhaigou
is highly intricate [15]. The boundary terrain of Jiuzhaigou is depicted in Figure 1, with
the main valley displaying a “Y” shape. Numerous lakes, waterfalls and streams with
calcareous beaches can be found within the valley.
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2.2. Data Acquisition
2.2.1. Optical Remote Sensing Data

The Sentinel-2 satellite system consists of high-resolution multispectral imaging satel-
lites that revisit the same area every 5 days. It consists of two identical satellites, which
are synchronized with each other in a sun-synchronous orbit at a phase separation of
180 degrees and an average altitude of 786 km. The position of each Sentinel-2 satellite in
its orbit is determined using a dual-frequency global navigation satellite system (GNSS)
receiver [16]. The satellites are equipped with a multispectral detection instrument (MSI)
that captures images in 13 spectral bands, with ground resolutions of 10 m, 20 m and
60 m. These bands provide rich data that can be applied to various practical applications.
Among optical remote sensing satellite data, Sentinel-2 data are unique in that they include
three bands in the range of 680 to 760 nm, which is particularly useful for monitoring
vegetation growth and health. The data acquired from Sentinel-2 are in Level-1C (L1C)
format, which means they have not been corrected for atmospheric radiation and various
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noises. In order to classify the data in remote sensing processing software and eliminate
errors, further processing is required to obtain Level-2A (L2A) products, which mainly
contain bottom-of-atmosphere corrected reflectance data. In this paper, the Level-1C prod-
uct is radiometrically calibrated and atmospherically corrected using the sen2cor plug-in
to obtain the Level-2A product. The specific parameters of the satellite are presented in
Table 1. Sentinel-2 is primarily used for monitoring changes in the land environment,
including vegetation growth and the extent of soil coverage. It can be applied to large-scale
agricultural monitoring as well as the monitoring of natural disasters such as landslides.

Table 1. Sentinel II satellite band profile.

Number of
Bands

Wave Name

Sentinel-2A Sentinel-2B

Resolution (m)Central
Wavelength (nm)

Bandwidth
(nm)

Central
Wavelength (nm)

Bandwidth
(nm)

1 Coastal aerosol 443.9 20 442.3 20 60

2 Blue 496.6 65 492.1 65 10

3 Green 560 35 559 35 10

4 Red 664.5 30 665 30 10

5 Vegetation Red Edge 703.9 15 703.8 15 20

6 Vegetation Red Edge 740.2 15 739.1 15 20

7 Vegetation Red Edge 782.5 20 779.7 20 20

8 NIR 835.1 115 833 115 10

9 Water vapour 945 20 943.2 20 60

10 SWIR–Cirrus 1374.1 30 1377.1 30 60

11 SWIR 1620.1 90 1609.9 90 20

12 SWIR 2201.9 180 2185.7 180 20

Two main types of optical remote sensing image data were used in this study: Sentinel-2
(Sentinel II) data and Landsat 8 satellite data. The Sentinel-2 data were acquired from the
European Space Agency’s (ESA) Sentinel-2A satellite. This satellite has a total of 13 spectral
bands, providing high-resolution imagery with an overall resolution of 10 m. The satellite
revisits the same area every 10 days and the individual sensors sweep stripes that are 290 km
wide. The specific band information for the Sentinel-2 data used in this study is presented in
Table 2. It includes a single band with a resolution of 15 m, covering the wavelength range
from 0.5 µm to approximately 0.75 µm. Additionally, the Sentinel-2 imagery has an overall
resolution of 30 m and the strip width swept by individual sensors is 185 km.

Table 2. Optical remote sensing image data information.

Data Type Data Name Resolution Number of Bands Date of Imaging

Landsat8 LC81300372017192LGN00 15 m 11 11 July 2017
Sentinel-2A L1C_T48SUB_A010969_20170729T035636 10 m 13 29 July 2017
Sentinel-2A L1C_T48SUB_A011541_20170907T035630 10 m 13 7 September 2017

2.2.2. Radar Image Data

The radar image data for the selected area were taken from the Sentinel I satellite, the
first radar SAR data satellite launched by ESA, which is widely used for surface deformation
monitoring, water system safety detection and mine subsidence [17]. The data consist
of two polar-orbiting satellites, A and B, carrying synthetic aperture radar (SAR) sensors
that are C-band and are active microwave remote sensing satellites. It consists of four
main modes of operation: strip mode, interferometric broadband mode, ultrabroadband
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mode and wave mode [18]. The Sentinel-1 satellite has two main advantageous features:
(1) ultrahigh radiometric resolution, which can effectively enhance the accuracy of radar
image parameter inversion; (2) higher revisit frequency and coverage performance, with a
revisit period of 12 days for the same area by one satellite.

The type of Sentinel I data used is phase information data in progressive scan mode
that can be used for interferometric processing, as shown in Table 3, for the resolution of
SLC-1 level products. In this paper, lift-track SAR data pairs were acquired for two different
time periods before and after the earthquake and the key information is shown in Table 4.

Table 3. Sentinel I satellite LOS directional resolution parameters.

Mode Resolution rg × az Pixel Spacing rg × az Number of
Looks ENL

SM 1.7 × 4.3 m to 3.6 × 4.9 m 1.5 × 3.6 m to 3.1 × 4.1 m 1 × 1 1
IW 2.7 × 22 m to 3.5 × 22 m 2.3 × 14.1 m 1 × 1 1
EW 7.9 × 43 m and 15 × 43 m 5.9 × 19.9 m 1 × 1 1
WV 2.0 × 4.8 m and 3.1 × 4.8 m 1.7 × 4.1 m and 2.7 × 4.1 m 1 × 1 1

Table 4. Radar satellite data parameters.

Orbital Direction Imaging Time
(Main)

Imaging Time
(Auxiliary)

Polarization
Method

Spatial
Baseline

Time
Baseline

Lift rail 30 July 2017 23 August 2017 VV 72.031 m 24 days
Lowering the track 6 August 2017 18 August 2017 VV 64.085 m 12 days

2.2.3. Digital Elevation Model Data

A digital elevation model, or DEM for short, digitally simulates the surface terrain by
using limited terrain elevation data to digitize the surface form of the terrain [19]. A DEM is a
digital terrain model (DTM) that digitally describes the surface elevation, slope, aspect and rate
of change of a slope and expresses the linear or nonlinear spatial combination of these factors.

ALOSDEM data were acquired for the study area, with ALOS data at 12.5 m surface
resolution. The data are shown in Figure 2. Through operations such as projection transfor-
mation, a projection coordinate system was selected that is identical to the one that comes
with the Sentinel II optical remote sensing image data itself: WGS_1984_UTM_Zone_48N
planar right-angle coordinate system. Finally, the slope and slope direction raster maps of
the study area were extracted, as shown in Figure 2. The maximum slope in the Jiuzhaigou
area reached 83.1868◦.

Sustainability 2023, 15, 11388 7 of 19 
 

  
(a) ALOS DEM (b) Slope 

Figure 2. DEM and slope data. 

2.3. Data Processing 
During the operation of optical remote sensing satellites, optical remote sensing im-

age data will inevitably be imaged by atmospheric radiation, spatial systems, time con-
versions and feature spectra, thus reducing the image quality to a certain extent and gen-
erating errors. Therefore, preprocessing is required to eliminate errors as far as possible. 
In this paper, the preprocessing of optical remote sensing image data mainly includes ra-
diation calibration and atmospheric correction, geometric correction, noise removal and 
image mosaic. 

Multispectral images have a high number of image bands and contain a wealth of 
spectral information. As the spectral data are closely related to each other, the correlation 
of image bands may lead to complex data redundancy to a certain extent. Therefore, in 
the processing of remote sensing images, redundant data can slow down the data pro-
cessing and thus reduce the efficiency, especially in sample selection, resulting in a redun-
dant number of useless samples. Studies have shown that when the number of image 
training samples is kept at a specific value, the image classification accuracy tends to in-
crease and then decrease in relation to the image band data. 

Therefore, it is not “better to have more than one”, but to consider the needs of the 
actual remote sensing image processing. For example, in this paper, we mainly used the 
vegetation information of the study area, so we chose the near-infrared band (B8), red 
band (B4), green band (B3) and blue band (B2) for image synthesis, which not only re-
duced the correlation interference of redundant data but also allowed the researchers to 
extract the feature information under the most ideal conditions. When selecting the bands, 
the following two main principles were considered: the information-rich band combina-
tion was chosen under the premise of correlation; the band combination was easier to 
identify the features. In summary, the statistical analysis of the image band data charac-
teristics, combined with the existing research results, shows that the standard deviation 
of the image data bands directly determines the richness of the band information and 
there is a positive correlation between the two trends [20]. The standard deviation of the 
image bands directly determines the richness of the band information and there is a posi-
tive correlation between the two. Therefore, the larger the standard deviation of the bands, 
the richer the information of the bands and the better the application value in landslide 
information classification. 

The B4 red band, B8 near-infrared band, B3 green band and B2 blue band of the Sen-
tinel II remote sensing image were selected for image composition, image mosaic cropping 
of the study area and a 2% linear stretching of the image to enhance the information of the 
features on the remote sensing image. The preprocessed optical remote sensing image 
data are shown in Figure 3. The main feature information within the images acquired in 
this paper includes residential areas, vegetation, roads, snow-capped mountains, rivers, 
exposed rocks and landslides. The landslide feature information appears after the 

Figure 2. DEM and slope data.

2.3. Data Processing

During the operation of optical remote sensing satellites, optical remote sensing image
data will inevitably be imaged by atmospheric radiation, spatial systems, time conversions
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and feature spectra, thus reducing the image quality to a certain extent and generating errors.
Therefore, preprocessing is required to eliminate errors as far as possible. In this paper, the
preprocessing of optical remote sensing image data mainly includes radiation calibration
and atmospheric correction, geometric correction, noise removal and image mosaic.

Multispectral images have a high number of image bands and contain a wealth of
spectral information. As the spectral data are closely related to each other, the correlation
of image bands may lead to complex data redundancy to a certain extent. Therefore, in the
processing of remote sensing images, redundant data can slow down the data processing
and thus reduce the efficiency, especially in sample selection, resulting in a redundant
number of useless samples. Studies have shown that when the number of image training
samples is kept at a specific value, the image classification accuracy tends to increase and
then decrease in relation to the image band data.

Therefore, it is not “better to have more than one”, but to consider the needs of the
actual remote sensing image processing. For example, in this paper, we mainly used the
vegetation information of the study area, so we chose the near-infrared band (B8), red band
(B4), green band (B3) and blue band (B2) for image synthesis, which not only reduced
the correlation interference of redundant data but also allowed the researchers to extract
the feature information under the most ideal conditions. When selecting the bands, the
following two main principles were considered: the information-rich band combination
was chosen under the premise of correlation; the band combination was easier to identify
the features. In summary, the statistical analysis of the image band data characteristics,
combined with the existing research results, shows that the standard deviation of the image
data bands directly determines the richness of the band information and there is a positive
correlation between the two trends [20]. The standard deviation of the image bands directly
determines the richness of the band information and there is a positive correlation between
the two. Therefore, the larger the standard deviation of the bands, the richer the information
of the bands and the better the application value in landslide information classification.

The B4 red band, B8 near-infrared band, B3 green band and B2 blue band of the Sentinel
II remote sensing image were selected for image composition, image mosaic cropping of the
study area and a 2% linear stretching of the image to enhance the information of the features
on the remote sensing image. The preprocessed optical remote sensing image data are
shown in Figure 3. The main feature information within the images acquired in this paper
includes residential areas, vegetation, roads, snow-capped mountains, rivers, exposed
rocks and landslides. The landslide feature information appears after the earthquake and is
accompanied by a partial reduction in vegetation. Therefore, the remote sensing images of
the study area showed significant changes before and after the earthquake.
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3. Results
3.1. Postearthquake Landslide Deformation Information Extraction

The Sentinel-1A satellite carries a right-viewing radar for deformation monitoring in
the Jiuzhaigou area using the two-orbit method, and the satellite’s orbit and line-of-sight
ground-range orientation are shown schematically in Figure 4.
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The Sentinel I radar image data before and after the earthquake were collected and
the surface deformation information of the study area was extracted using the two-track
differential interferometry technique. Firstly, the topographic phase difference images of the
radar images were removed from the DEM data; secondly, the Goldstein adaptive filtering
algorithm was used to eliminate the interference of atmospheric noise, body scattering
and thermal noise in consideration of the dense vegetation and obvious topographic relief
in the Jiuzhaigou area so as to effectively reduce the stacking mask during the imaging
process; finally, the surface deformation information of the Jiuzhaigou area in the ascending
and descending directions was obtained through phase decoupling and geocoding. The
area of deformation information obtained was approximately 2655 km2 and the results of
the surface displacement data (in m) along the satellite line of sight are shown in Figure 5.
From the figure, it can be seen that the maximum value of deformation is 0.0983336 m in
the ascending orbit direction and the minimum deformation value is −0.277434 m. In the
direction of lowering the satellite, the maximum value of deformation is 0.149176 m and
the minimum value of deformation is −0.149176 m.

In order to better express the deformation information and visualize the research
analysis, the classification result map was therefore reclassified in ArcGIS software and the
classification result map is shown in 6. The results of the surface deformation information
derived from the radar data in the ascending and descending orbital directions show some
variability. In the ascending direction of the satellite, the surface deformation along the
satellite line of sight in the study area mainly shows subsidence up to 28 cm, while at the
same time, there is some uplift in the study area, with a maximum uplift of 9.8 cm. In the
descending direction of the satellite, the surface deformation along the line of sight of the
satellite in the study area mainly shows uplift, with a maximum of 14.9 cm; at the same
time, there is a certain settlement in the study area and the maximum uplift is 11 cm.

Based on the research results, under the influence of uncertain natural factors, the
unstable slope will be slowly deformed, especially in the geotechnical composite slope, the
gap between the rock body becomes larger, the stress of the slope will increase, the original
equilibrium and stability state will be destroyed and then the landslide disaster with a
large area will be derived. Therefore, the large surface deformation information obtained
by the D-InSAR technique can reflect the safety of the geological structure of the target area
and the degree of damage under the influence of natural disasters to a certain extent and
there is a positive correlation between the surface deformation variables and the state of
existence of the mountain structure.



Sustainability 2023, 15, 11388 9 of 18

As the classification results of the lifting track deformation data differ to some extent,
the study analyzed the existing literature to describe the variability of different factors [21].
The results were calculated by weighting the raster data and the weighted deformation
results (m) are shown in Figure 5. The image reclassification was carried out on this
basis and the results are shown in Figure 6. From the figure, it is concluded that the
postearthquake deformation in the Jiuzhaigou area has a maximum settlement of 14.93 cm
and a maximum uplift of 6.0 cm.
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3.2. Image Segmentation

Image segmentation refers to the segmentation of optical remote sensing images into
different regions separated from each other according to the actual feature targets, which
facilitates the grouping of features with the same attributes together and also provides
a carrying platform for the subsequent refinement of image segmentation [22]. Karydas
has developed an optimal scale selection method for image segmentation, which has been
validated to show that it is successful and ensures the accuracy of image segmentation [23].
To summarize the current research status of image segmentation, the segmentation tech-
niques are mainly divided into two types [24]: One is the a priori knowledge method,
which is a top-down segmentation technique using a priori knowledge. This method is
based on the premise of clarifying the properties of the target feature and finding a more
consistent and reasonable segmentation model to extract the feature. The second is the data
model method, which is a bottom-up segmentation technique using the acquired image
data. This method is based on the spectral and spatial information of each feature of the
optical remote sensing image and the statistics of each parameter to segment the image.
This method is based on the premise that the target features of the image are not known
and that there is no need to set a predefined classification target, which is also known as
“generalised segmentation”.

This method is based on a specific segmentation scale, which converts the target
image elements of a feature on a high-resolution image into a small impact object that is
“homogeneous to the maximum and heterogeneous to the minimum” while ensuring that
the amount of information lost during image processing is small. The segmentation of the
target feature varies between different segmentation scales. The advantage of multiscale
segmentation is that the image elements of a feature target with different temporal and
spatial attributes can find their “own home” using a specific scale. In multiscale segmenta-
tion, the homogeneity factor of the same image is determined by the spectral and shape
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characteristics of the feature on the image, which depend on the smoothness and tightness
of the image. The homogeneity factor has a weight of 1 and follows the principle of “local
optimisation” in the segmentation process.

Multiscale segmentation generates attribute features of various feature objects that
all characterize various feature targets at the same level. The smaller the segmentation
scale, the more detailed and pure the generated object attributes are. However, when
the segmentation scale area is infinitely small, the definition between objects of different
feature classes becomes increasingly blurred. At the same time, when the segmentation
scale becomes smaller, the segmentation objects will tend to be infinite, especially for the
classification of remote sensing images of large areas, the segmentation results will be
fragmented, which will seriously increase the computational workload of the computing
equipment and reduce the extraction accuracy. Therefore, the segmentation scale should be
“small but moderate”.

At different scales, image information can be extended by image segmentation, thus
representing image information at multiple scales. Each mutually distinct feature has
different spectral characteristics of the feature, which correspond to their respective optimal
segmentation scales. Relatively speaking, the optimal segmentation scale for an image
is found without departing from the constraints based on a particular requirement. In
practice, the optimal segmentation scale for a specific feature may or may not be applicable
to other features, so a range of optimal scales needs to be determined for ease of use. In
this paper, the optimal segmentation scale is determined using the local variance of image
elements method, which is based on the eCognition software platform and is implemented
using a scale estimation tool. The main principle of this method is to determine the optimal
scale by calculating the local variance of each object on the image feature and the nonlinear
variation in the rate of change curve of the heterogeneity of the image elements for each
different feature. The optimal scale corresponds to the segmentation value when the mean
variance of each object peaks and the rate of change in heterogeneity starts to show a
decreasing trend. The implementation is shown in Equation (1).

ROC =

[
L − (L − 1)

L − 1

]
∗ 100 (1)

where L is the mean local variance value corresponding to the current segmentation scale
layer and L − 1 is the mean local variance value corresponding to the next segmentation
scale layer. The mean local variance and the homogeneity within the feature object show a
negative correlation. The segmentation scales are determined as shown in Figure 7.
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The vegetation index difference combines the vegetation cover change characteristics 
of the Jiuzhaigou area before and after the earthquake and the vegetation index character-
istics of the same image element at different times are differenced to obtain the vegetation 
cover change information in the postearthquake period. In this paper, combining the char-
acteristics of good vegetation cover in the Jiuzhaigou area, the optical remote sensing im-
age information of Sentinel II was selected for two time periods before and after the earth-
quake. The vegetation index information of the different periods was calculated and vis-
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The Sentinel II optical remote sensing image was segmented using the local variance
method and the final optimal segmentation scale range for this study area was obtained
[50, 70]. Among them, the weight value of spectral features is 0.6, the weight value of shape
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features is 0.4, the weight value of tightness features of the image is 0.2 and the weight
value of smoothness features of the image is 0.2.

3.3. Vegetation Index Difference Analysis

The vegetation in the remote sensing images shows that the plant leaves show strong
absorption in the red light band and strong reflectivity in the infrared light band. Based on
this rule, the NDVI (normalized difference vegetation index) extracts vegetation information
by combining the linear operations of the red band (B3) and the infrared band (B4) of
the image.

NDVI =
B4 − B3

B4 + B3
(2)

The vegetation index difference combines the vegetation cover change characteristics
of the Jiuzhaigou area before and after the earthquake and the vegetation index characteris-
tics of the same image element at different times are differenced to obtain the vegetation
cover change information in the postearthquake period. In this paper, combining the
characteristics of good vegetation cover in the Jiuzhaigou area, the optical remote sensing
image information of Sentinel II was selected for two time periods before and after the
earthquake. The vegetation index information of the different periods was calculated and
visualized using Equation (2) and the results are shown in Figure 8.
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The main features extracted from the acquired images include residential areas, vege-
tation, roads, snow-capped mountains, rivers, exposed rocks, landslides and so on. The
minimum threshold for vegetation index changes is −1, while the maximum threshold is
1. Therefore, when the vegetation index tends towards −1, it indicates that the objects in
that area exhibit weak absorption and strong reflection of visible light. The types of objects
in such areas may include water bodies, clouds or snow. When the vegetation index is
greater than 0 and tends towards 1, it indicates the presence of vegetation cover and there
is a positive correlation between the vegetation index and vegetation coverage. When the
vegetation index is 0, it suggests that the objects in that area are likely to be exposed rocks
or bare land. As shown in Figure 8, the areas displayed in deep blue represent locations
with good vegetation cover, indicating areas with vegetation coverage.

As the earthquake occurred during the last months of vegetation development, June to
September, there was a significant difference in the characteristics of the lush vegetation in
the region before and after the earthquake, which was also expressed in the optical remote
sensing images. Therefore, after comprehensive consideration of the high vegetation cover
characteristics of the Jiuzhaigou region, the vegetation index difference data feature was
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introduced to reflect the pre- and postearthquake vegetation changes in the region, thus
using this distinctive feature to achieve landslide information extraction.

The normalized difference vegetation index (NDVI) is an important activity indicator
reflecting the health and growth status of vegetation and is the most widely used indicator
in vegetation remote sensing applications. After considering the high vegetation cover
characteristics of the Jiuzhaigou area, the vegetation index difference data feature was
introduced to reflect the pre- and postearthquake vegetation changes in the area, so that
this obvious feature could be used to extract landslide information. The vegetation index
features are shown in Figure 9.
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Figure 9. Local comparison of remote sensing imagery and vegetation index differences.

From Figure 9, it can be observed that the vegetation index difference image primarily
consists of deep blue, green, yellow and red colors. The deep blue areas indicate a vegetation
index difference greater than 0, mainly reflecting the landslide information that occurred in
the area after the earthquake. The green and yellow areas primarily reflect the pre-existing
features in the study area. The red areas indicate a vegetation index difference of less than
0, representing the changes in the location of the pre-existing features in the study area
caused by the earthquake. These changes indicate a relative decrease in the target objects.

3.4. Landslide Information Interpretation
3.4.1. Classification of Affiliation

Most of the remote sensing images after multiscale segmentation are mixed images,
which cannot be discriminatively assigned to a feature class. In this paper, fuzzy classi-
fication is chosen to continue the classification of multiscale segmented images. Fuzzy
classification is performed by analyzing the affiliation relationship between the segmented
object features and the spectral and spatial features of the feature to be classified and
assigning a fuzzy value within the range. Fuzzy classification is also known as affiliation
classification [25]. Thus, fuzzy classification is the process of determining the affiliation
between the object to be segmented and the target feature to be extracted to determine the
object to be segmented and the need for the study by using a specific affiliation function
to calculate the affiliation value and then using the calculated value to fuzzy the feature
value and determine the uncertain spatial relationship between the features and the image
elements. The essence of the fuzzy rule is an “if-then” conditional execution statement.
For a particular segmented feature object, a segmentation threshold is determined and if
the affiliation is greater than this threshold, the object belongs to the class with the highest
affiliation; if it is less than this threshold, the object is excluded from the target feature. The
affiliation function mainly has a triangular affiliation function, trapezoidal affiliation func-
tion and affiliation function. Among them, the affiliation function means that the affiliation
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of all objects within the distribution range is 1, discarding objects that are not within the
range, thus greatly simplifying the number of fuzzy rules. The Gaussian affiliation function
performs well in terms of functional symmetry and smoothness and if the affiliation degree
is positive, the affiliation function can be approximated infinitely.

Considering the relevance and spatial and temporal characteristics of the features, this
paper selects an affiliation function classification function based on the spectral characteris-
tics of the features, establishes recognition rules and classifies them. As the characteristics
of the seismic landslide studied in this paper are very different from the shapes and spectral
features of other surrounding features, combined with the affiliation function classifier and
drawing on previous classification studies, the affiliation function is selected to achieve
the decoding of landslide information, which can effectively reduce the learning cost and
streamline the number of fuzzy rules.

3.4.2. Selection of Object Attribute Features

Optical remote sensing images are segmented at multiple scales, resulting in several
segmentation units that are different from traditional pixels and best to reflect the abstract
feature information. By analyzing the relationship between the target feature and the
segmented object, a variety of suitable feature characteristics are selected to characterize
the feature. Therefore, it is necessary to select suitable features to distinguish landslide
information from other information. Therefore, in image segmentation, feature recognition
is actually the analysis and recognition of various features of representative features. In
this paper, the reflection of the obtained surface deformation information on the seismic
landslide information is comprehensively analyzed and the surface deformation infor-
mation is considered as a feature value introduced into the establishment of recognition
rules combined with the overview of the Jiuzhaigou area and experimental data. Based on
the postearthquake Sentinel II image data, this paper introduces the slope and brightness
feature factors as well as the vegetation index difference and the deformation information
extracted from the study area using radar remote sensing images. In this paper, the con-
structed vegetation index difference data are introduced into the landslide information
classification system, which is selected to combine the postearthquake vegetation index,
slope and surface deformation of the study area, so as to establish the classification recog-
nition rules. The threshold range for each feature was derived through the feature value
interface of the econ software, as shown in Table 5.

Table 5. Landslide information extraction feature thresholds.

Object Feature Threshold Range

Landslide information

Vegetation index difference NDVIx > 0.22
Postearthquake images −1 < NDVI < 0.6

Slope (◦) >12
Surface deformation (m) < >0

Brightness <3000

3.5. Accuracy Evaluation Method

The confusion matrix method was applied to the accuracy evaluation method of
remote sensing image classification results [26,27]. This method checks all the image
elements in the classification sample area and counts the degree of confusion between
the categories in their classification maps and the actual categories, which can objectively
evaluate the degree to which the image elements in the classification results have been
correctly categorized, and its definition formula is as follows:

M =


m11 m12 · · · m1n
m21 m22 · · · m2n
· · · · · · · · · · · ·
mn1 m32 · · · mnn

 (3)
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In the confusion matrix, the elements on the diagonal are the number of correctly
categorized samples and the elements on the off-diagonal are the number of misclassified
samples. The evaluation metrics for the confusion matrix are the Kappa coefficient, which is
a metric used to determine the agreement or accuracy between two images by multiplying
the total number of all true reference pixels (N) by the sum of the diagonal of the confusion
matrix (XKK) and subtracting the product of the number of true reference pixels in a class
and the total number of classified pixels in that class, then dividing it by the square of the
total number of pixels subtracted by the square of the total number of pixels subtracted
by the square of the total number of pixels subtracted by the square of the total number
of pixels subtracted by the square of the total number of pixels in a class. The sum of the
product of the total number of true reference image elements in a category and the total
number of classified image elements in that category is summed over all categories. The
Kappa coefficient is calculated as follows [28]:

k =
N∑k xkk − ∑k XkΣxΣk

N2 − ∑k XkΣxΣk
(4)

The Kappa coefficient is defined as shown in Table 6.

Table 6. Defined range of Kappa factors.

Kappa Factor Precision

0.0~0.20 Very low consistency
0.21~0.40 General consistency
0.41~0.60 Medium consistency
0.61~0.80 Highly consistent

0.81~1 Almost identical

4. Discussion
4.1. Analysis of Results

Firstly, lift-track radar data along the line-of-sight direction of the Sentinel-1 satellite
before and after the earthquake in the Jiuzhaigou area were collected and the surface
deformation information of the study area after the earthquake was obtained using the
two-track method. The surface deformation results of the elevated and lowered tracks
were analyzed together and different weighting values were assigned to the data through
a weighting analysis to achieve a weighted superposition of the surface deformation in-
formation. The results show that the postearthquake deformation in the Jiuzhaigou area
is mainly subsidence, with a value of up to 14.93 cm and some areas with about 6.0 cm
of uplift. Under the influence of uncertain natural factors, unstable slopes exhibit slow
deformation, especially in geotechnical composite slopes where the voids between the rocks
become larger, increasing the stress on the slope and destroying the original equilibrium
and stability, which in turn leads to large landslide hazards. Therefore, significant surface
deformation information can reflect the safety of the geological structure of the target area
and the degree of damage under the influence of natural disasters to a certain extent, and
there is a positive correlation between surface deformation and the existence of the moun-
tain structure. This paper considers the introduction of surface deformation information
as a feature value to establish classification rules and, for the first time, combines radar
data and optical remote sensing data to achieve landslide information interpretation under
multiple sources of data. Secondly, the vegetation in the Jiuzhaigou area is well developed
and covers a wide range of areas, especially the areas below 3800 m in elevation where
the vegetation is luxuriant, the valleys are crisscrossed and the river network is dense.
Therefore, the vegetation cover changes and growth status of the study area before and
after the earthquake were combined to obtain a complete pre- and postearthquake vege-
tation index based on Sentinel II optical remote sensing images and the vegetation index
difference values were calculated for the time interval to accurately reflect the changes in
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vegetation activity. Therefore, the vegetation index difference data features are considered
to be introduced into the classification system to achieve landslide information interpreta-
tion and “tailor-made” landslide geological hazard interpretation for the Jiuzhaigou area.
Finally, the paper uses 60 as the best image segmentation scale, combined with the spectral
factor, shape factor, compactness and smoothness with a weight of 0.5, to extract and study
the postearthquake landslides in the Jiuzhaigou area using multiscale segmentation fuzzy
classification based on vegetation index difference and decodes the landslide distribution
information. More than 800 landslide records with an area of 12.034 km2 were deciphered
using ArcGIS software and manual visual interpretation. The results are consistent with
the findings of the Sichuan Earthquake Bureau [1]. The landslide extraction results are
shown in Figure 10. Based on more than 800 landslide records, the landslide distribution
map of the Jiuzhaigou area was obtained using ArcGIS software. The map displays a total
of 164 landslide points, as shown in Figure 11.
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4.2. Accuracy Evaluation

For the proposed classification method decoding results, 500 objects were randomly
selected as test data for analysis using ArcGIS software and the accuracy evaluation was
achieved by confusion matrix. The results are shown in Table 7, which shows that the
overall accuracy of the classification is 92.6% and the Kappa coefficient is 0.8763. The
Kappa coefficient usually falls between 0 and 1 and the Kappa coefficient is defined in
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Table 6, which shows that the Kappa coefficient of the classification is 0.8763, which
is between 0.81 and 1. The results of the experiments have excellent accuracy and are
“Almost identical”.

Table 7. Confusion matrix for classification results.

Reference Data

Actual Classification Data
Total

ReferenceVegetation Landslides Roads Residential
Locations

Vegetation 218 1 0 1 220

Landslides 12 89 7 7 115

Roads 0 3 71 3 77

Residential locations 0 7 2 79 88

Total classification 230 100 80 90 500

Overall accuracy 92.6%

Kappa factor 0.8763

From the confusion matrix of classification results, it can be obtained that out of the
100 selected landslide points, 3 points were misclassified into road information, while
7 points were misclassified into residential points. This is due to the blurred boundaries of
some landslides occurring near residential points as well as roads, which are manifested
in the optical remote sensing images, i.e., landslides occurring near residential points
and causing damage to roads and, thus, there are inevitable errors in the interpretation
of the landslide information of the image. Based on the results of this experiment, the
analysis concluded that the high-resolution remote sensing image interpretation based on
vegetation index difference proposed in this paper has good performance, the classification
accuracy reaches the expected standard and the classification effect is obvious. By using
radar satellite earth observation technology to obtain information on the large-scale surface
deformation of the study area, combined with information on the vegetation cover changes
in the study area, we can achieve feature classification and identification of the study area
as well as the postearthquake landslide information interpretation based on these two data
sources from different sources and different periods. On the one hand, the method is rich in
data sources and can ensure good experimental accuracy; on the other hand, the vegetation
in the Jiuzhaigou area is well developed, especially before and after the earthquake, the
vegetation cover in the area where the landslide occurred deteriorated and the difference in
vegetation index can reflect the change in vegetation activity during that period; thus, the
method can take advantage of this distinctive feature and make full use of optical remote
sensing image information to achieve a good combination of pre- and postearthquake data
sources. The complex topography of the Jiuzhaigou region, with its many layers, inevitably
results in blurred boundaries of the target features on the optical remote sensing imagery,
which can easily lead to misclassification or omission of feature information points. In
order to further improve the classification accuracy, it is necessary to conduct more detailed
studies on the spectral information, neighborhood, background, topography and geological
conditions of the images in the study area in order to obtain more effective results. The
sample selection method can also be improved so that more representative samples can be
selected more scientifically and effectively.

5. Conclusions

Using the Jiuzhaigou area as the study area, a substantial exploratory study of land-
slide geological hazards was conducted for the first time by analyzing the NDVI difference
before and after the earthquake and using radar imagery and optical remote sensing
imagery. The following main conclusions were drawn.
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(1) The surface deformation information of the study area was extracted using the D-
InSAR (differential synthetic aperture radar interferometry) technique along the as-
cending and descending orbits. Weighting analysis was performed to assign different
weight values to the data, enabling weighted superposition of the surface deforma-
tion information. The final results indicate that the maximum subsidence after the
earthquake in the Jiuzhaigou area was 14.93 cm, while the maximum uplift was 6.0 cm.

(2) By introducing the vegetation index difference data and surface deformation infor-
mation into the establishment of landslide identification rules and finally extracting
the landslide information of the study area using fuzzy classification, a total of about
12.034 km2 of the landslide area in the study area was obtained and 164 landslide
point distribution maps were obtained and the overall accuracy of this classification
was 92.6%, with a Kappa coefficient of 0.8763.

(3) The article proposes a landslide information interpretation method based on the
difference in the vegetation index under multisource data; the effective realization
of this method provides a new research idea for landslide information interpretation
on the one hand; on the other hand, the results of landslide interpretation based on
the method can provide a reference for the selection of railroad lines in mountainous
areas to a certain extent, such as for different scales of landslides, it can be taken to
bypass or effective engineering measures to ensure that the line will not be affected
by the landslides and ensure the safe operation of the railroad line.

The research methodology presented in this paper is most suitable for complex veg-
etated mountainous areas. However, it may be challenging to observe the impact of
vegetation index difference as a characteristic parameter in areas with low vegetation
coverage. The paper also lacks mutual validation between the measured data and InSAR
results. Additionally, the SAR data required for InSAR technology could be replaced with
ALOS PALSAR-2 data, which have stronger penetration capabilities, but these data are
relatively scarce in archives.
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