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Abstract: A reliable model for predicting crash frequency at roundabouts is an essential tool for
evaluating the safety measures of a roundabout. This study developed a hybrid PSO-ANN model
by optimizing the modeling parameters of the classical artificial neural network (ANN) model with
the particle swarm optimization algorithm (PSO). The performance accuracy of the models was
evaluated using the mean absolute error (MAE), root mean square error (RMSE), and determination
coefficients (DC). The PSO-ANN model predicted the crash frequency with very good accuracy at the
testing stage (DC = 0.7935). The hybrid model could improve the performance of the classical ANN
model by up to 23.3% in the training stage and 16.9% in the testing stage. In addition to the statistical
measures, graphical approaches (scatter and violin plots) were also used for evaluating the models’
accuracy. Both statistical and graphical evaluation techniques prove the reliability and accuracy of
the proposed hybrid model in predicting the crash frequency at roundabouts.

Keywords: roundabout; crash frequency; particle swarm optimization; input selection

1. Introduction

There is growing public health concern over traffic accidents, which have claimed the
lives of about 1.24 million people and resulted in 20–50 million nonfatal injuries. According
to the World Health Organization, road accidents accounted for more than 38 million
lost disability-adjusted life years (DALYs), or 2.6% of the worldwide burden of illness.
Globally, low- and middle-income countries account for 91.8% of DALYs lost due to road
traffic injuries [1]. For improved safety and traffic flow at intersections, roundabouts
were introduced as an alternative method of controlling intersections without requiring the
extension of the existing lanes [2]. The idea of employing roundabouts was first conceived in
the United Kingdom to overcome concerns with traffic circles. The effective implementation
of modern roundabouts was made possible by changes in driving legislation, such as the
need for entering vehicles to yield to circular traffic. Compared to the signalized intersection
with a roundabout, this has improved the roundabout’s safety and functionality [3].

Jordan has one of the highest rates of traffic accidents among Middle Eastern nations.
The traffic density in the city of Amman is high, with an annual increase of 5.5% in the
number of registered vehicles. The capital of Jordan, Amman, sees the bulk of the accidents
as it has the country’s largest population density, a congested street system, and a high
proportion of roundabouts [3]. In 2015, 9712 accidents occurred, resulting in 608 deaths
and 2021 major injuries. These accidents cost the region approximately USD 400 million in
the year 2010 alone. Traffic accidents increased by 75% between 2004–2007 as a result of the
increase in the number of registered vehicles [3].
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Road safety performance measures are indicators of the number of accidents and
causalities (fatalities and injuries), the response time, and the public perception of road
safety. The performance measures serve as decision-making tools during planning and
decision-making processes. Crash prediction models are used for evaluating the safety
performance at roundabouts. This is because crash prediction models are used for predict-
ing the number of accidents, fatalities, or injuries at roundabouts. Several studies have
developed various crash models at roundabouts; for example, [4] identified the causes of
accidents at roundabouts and developed several models for the prediction of accidents at
roundabouts. The study also created a crash modification factor for assessing the safety
performance of roundabouts in India. The negative binomial was discovered to be the
best empirical model for predicting accidents at roundabouts. Another study [5] analyzed
roundabout safety measures in Abu Dhabi by evaluating the operating speeds, round-
abouts, and a questionnaire survey. From the questionnaire survey, it was found that the
drivers preferred not to drive through roundabouts in the city because they perceived the
roundabouts to be unsafe. From the operating speed, it was also observed that the drivers
drove above the recommended speeds at roundabouts. Using ordinal regression models,
drivers below the age of 40 were found to have less understanding of the traffic rules at
roundabouts [6].

Although several safety performance measures at roundabouts were proposed in the
literature, differences in the traffic characteristics and road geometries between countries
make the generalization of the model impossible, especially in countries that have different
traffic characteristics. This leads to the application of various artificial intelligence-based
models in developing various road safety performance measures. For example, [7] em-
ployed a recurrent neural network to forecast the severity of traffic accidents in Malaysia
over a 6-year period. The recurrent neural network (RNN) model predicted the accident
severity with high accuracy compared to the traditional ANN models. A study used 3-year
traffic accident data to develop an ANN model that will serve as a decision-making tool for
the stakeholders responsible for infrastructure management in Swiss. The input parameters
for the model were the annual average daily traffic, average curve radius, percentage
of heavy vehicles, positive/negative mean slopes, speed limits, number of lanes in each
direction, road type indicator, surface adhesion, and longitudinal evenness rating of the
roads. In terms of the mean absolute error, the model proved reliable in predicting traffic
accidents [8]. Another work used the ANN model to predict traffic accidents in Jordan.
The predicted accident data generated using the ANN model was found to be close to the
actual data, demonstrating the accuracy and reliability of the constructed ANN model. The
model accepts the following input parameters: population, GDP, length of paved roads,
and number of registered automobiles [9].

Another study trained an ANN model using the Levenberg Marquardt training al-
gorithm and using the sigmoid activation function for modelling the severity of injury
accidents in Spain. The model predicted the severity of the accident with high accuracy, and
hence can serve as a useful tool for safety and researchers. The ANN model outperformed
the multivariate regression model, proving its higher prediction accuracy [10]. A study
used 57-year data of the gross domestic product per capita, population, total number of
accidents, number of registered vehicles for modelling injury, and fatality index in Nigeria.
The ANN models model the injury/fatality index with high accuracy and outperformed
the multilinear regression model for both models. The literature shows that the ANN
model has a strong ability to model the crash frequency and severity with high accuracy
compared with the regression and other empirical models [11].

Although ANN models have been shown to be effective in modeling traffic accidents
and their severity, they have shortcomings such as overfitting in forecasting, underes-
timation, low generalization ability, inability to provide uncertain forecasting, and the
requirement to use external data pre-/post-processing techniques outside the framework
of the model due to insufficient data samples for model validation. In recent years, nature-
inspired algorithms—such as genetic algorithms (GA), ant colony optimization (ACO),
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bacterial foraging optimization (BFO), artificial bee colony (ABC), and particle swarm
optimization (PSO)—have emerged to optimize the ANN parameters [12]. Several studies
have found that the PSO outperforms alternative nature-inspired algorithms [13]. As a
result, it is used in the current study to optimize the ANN model for crash frequency
prediction. Using local traffic data, the current study created a safety performance measure
at a roundabout in Amman, Jordan. The specific objectives of the current study include:

• Identifying the roundabout parameters that are most responsible for improved safety
at the roundabouts.

• Developing an optimized particle swarm optimized-ANN (PSO-ANN) model for the
prediction of crash frequency at roundabouts.

The model will provide an accurate and effective model for forecasting the collision
frequency at roundabouts after being calibrated with the data from the Jordan Traffic
Institute, Greater Amman Municipality, and Traffic Police Department. To the best of
the author’s knowledge, the hybrid ANN-PSO model proposed in this study for crash
frequency prediction is the first in the literature. Because of its robustness and efficacy in
handling severely constrained non-linear optimization problems, the PSO was chosen for
the optimization.

2. Materials and Methods

The proposed methodology involves two main stages; the first stage involves the
selection of the most dominant input parameters through feature removal sensitivity analy-
sis (FRSA), the maximum relevance minimum redundancy method, and the correlation
coefficient values. The ANN and the hybrid ANN-PSO models were developed in the
second stage using the dominant parameters. The schematic diagram of the methodology
is shown in Figure 1.
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2.1. Dataset

The study makes use of 112 datasets collected from 12 roundabouts (R1-12) in Amman,
Jordan. The roundabout parameters include the number of accidents, the average daily
traffic (ADT), the land use, the number of legs, the central island diameter (CID), the
circling width, the entry angle, the entry/exit width, the entry/exit distance, the free flow
speed (FFS), the capacity, the delay, the speed, the v/c, the queue length, and the location.
The data were gathered from the Jordan Traffic Institute, the Traffic Police Department,
and the Greater Amman Municipality. The descriptive data summary and correlation
matrix between the data are given in Tables 1 and 2, respectively. The maximum number
of accidents (327 cases) was recorded at R9, followed by 322 cases at R3. The land use at
R9 and R3 is business/office and commercial activities, respectively. The smallest number
of accidents (0) was recorded at R1 and R6. The land use at this location is commercial
for R1 and mixed use for R6. The highest and least number of accidents were recorded is
commercial centers. The Average daily traffic (ADT) in the two locations is different. The
ADT at R9 was 138,662 vehicles/day, while that of R1 is 7591 vehicles/day. Likewise, the
ADT at R3 was 130,110 vehicles/day, while that of R6 was 16,080 vehicles. This clearly
indicates that the ADT value has a significant effect on the number of accidents at the
roundabout. From Table 2, it can be seen that ADT has a coefficient value of 0.83, greater
than all the parameters. ADT is the most significant factor in estimating the crash frequency
around the globe, as seen in several studies, such as [14]. The full data can be found at [3].
Figure 2 presents the roundabout geometry.

Table 1. Statistical summary of the study data.

Variables Mean Std. Dev. Kurtosis Skewness Range Minimum Maximum

ADT 36,490 34,418.76 6.45 2.41 18,7176.0 681.00 187,857.0
No of Legs 4.29 0.45 −1.10 0.96 1.00 4.00 5.00

CID (m) 48.01 19.41 −0.54 −0.25 68.40 8.20 76.60
Circulating width 10.76 1.41 −0.77 −0.70 4.80 8.20 13.00

Entry angle 29.29 15.81 −0.74 0.03 64.00 0.00 64.00
Entry/Exit width 9.50 3.38 −0.27 −0.16 17.50 0.00 17.50
Entry/Exit width 35.82 16.58 −0.54 0.60 60.00 10.00 70.00

FFS 59.91 3.91 3.81 −0.08 20.00 50.00 70.00
Capacity 2835.44 714.99 0.47 −0.27 3672.00 1096.00 4768.00

Delay 43.17 19.96 −0.99 −0.11 73.00 7.00 80.00
speed 49.52 12.65 −1.14 −0.31 51.00 19.00 70.00
v/c 0.83 0.74 5.66 2.22 3.96 0.02 3.97

Que length 20.57 38.69 15.04 3.60 240.00 0.00 240.00
No. of Acc. 36.48 59.41 11.05 3.18 327.00 0.00 327.00

For a clear understanding of the data utilized for the study, a histogram distribution
was plotted for all 15 parameters (Figure 3). It can clearly be seen that some of the parame-
ters do not have a normal distribution (Number of accidents, ADT, CID etc.), while a few of
the parameters are normally distributed (que length and capacity). The data are good for
machine learning parameters as some of the parameters have a linear relationship with the
target and some have a nonlinear relationship with the data. This makes the data suitable
for the application of machine learning techniques. Shapiro-Wilk and Kolmogorov-Smirnov
tests were further used to check the data normality. Normality was rejected in both tests at
a 5% alpha value for all the parameters.
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Table 2. Correlation matrix.

Variables ADT Land
Use

No of
Legs CID (m) Circulating

Width
Entry
Angle

Entry/Exit
Width

Entry/Exit
Width FFS Capacity Delay Speed v/c Que

Length Location No. Acc

ADT 1.00
Land use −0.01 1.00

No of Legs −0.03 0.44 1.00
CID (m) 0.18 0.49 0.62 1.00

Circulating width −0.07 0.02 −0.01 0.04 1.00
Entry angle −0.28 0.23 0.43 0.07 0.38 1.00

Entry/Exit width 0.24 0.17 −0.19 0.33 −0.15 −0.37 1.00
Entry/Exit width −0.07 0.26 0.29 0.29 0.22 0.32 −0.29 1.00

FFS 0.06 −0.21 0.01 0.42 −0.12 −0.15 0.21 0.13 1.00
Capacity 0.21 0.30 0.20 0.65 −0.08 −0.09 0.65 0.05 0.44 1.00

Delay 0.43 −0.09 0.01 0.41 −0.41 −0.56 0.58 −0.39 0.24 0.45 1.00
speed −0.17 −0.13 −0.08 0.02 −0.26 −0.20 0.13 0.11 0.24 0.11 0.28 1.00
v/c 0.01 −0.22 −0.18 −0.08 −0.14 −0.21 0.08 −0.15 0.01 −0.04 0.18 −0.08 1.00

Que length 0.09 −0.42 −0.28 −0.37 −0.20 −0.32 −0.10 −0.36 −0.14 −0.31 0.21 0.07 0.17 1.00
Location 0.01 0.04 0.00 −0.01 0.00 0.01 −0.03 0.29 0.05 −0.02 0.13 0.67 −0.16 −0.13 1.00
No. Acc 0.83 0.10 0.03 0.24 0.02 −0.17 0.23 0.08 0.05 0.21 0.29 −0.16 0.02 −0.11 0.07 1.00
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2.2. Descriptive Statistics of Data

The correlation matrix between the variable parameters of the study was developed
using Ms. Excel 2016 for statistically viewing the interaction between the parameters. The
correlation matrix could serve as the first measure for selecting potential input parameters
to the model. It also serves as a filter for removing multicollinearity issues in the models,
hence choosing only one parameter between two parameters with high correlation values.
From the correlation matrix in Table 2, it can be seen that the ADT has a correlation value
of 0.83 with the number of accidents, thus making it one of the most influential parameters
in modelling the number of accidents. It can clearly be seen, according to the correlation
matrix, that 2 potential input parameters have a correlation value of 0.75, which was
considered a very good linear correlation. The parameters with a correlation value greater
than 0.5 are accident location and speed (0.67), entry/exit width and capacity (0.65), number
of legs and CID (0.62), entry/exit width and speed (0.58), entry angle and delay (−0.56).
However, these values are not so high that one of the parameters can replace the other
parameter in the models.
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2.3. Artificial Neural Network

The ANN is a computational model that, in terms of both structure and function,
mimics a biological neural network. In almost all engineering, research, and other fields,
the neural network model is more reliable and flexible [15]. Back-propagation (BP) neural
networks are the most widely used form of neural network due to their simplicity [16]. An
artificial neural network is made up of interconnected artificial neurons and has layers such
as an input layer, at least one hidden layer, and an output layer. The fundamental processing
units of a neural network are its nodes [15]. The inputs are multiplied by a modified weight
and then transmitted via a transfer function to create the output for the neurons. The most
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popular transfer function, the sigmoid function, is then utilized to transform the weighted
sum of the inputs from the neurons. The neural network establishes connections to the
input data by repeatedly altering the weights. Because it can learn from instances, the
neural network excels in circumstances where there is no clear link between the input
and output data [17]. The term “feed-forward network” refers to a system that spreads
information in a forward direction. As a second-order variation, Levenberg-Marquardt
was developed to solve the drawbacks of back-propagation algorithms. For training, it
frequently uses the gradient steepest descent method. In order to maximize the weights
during training, the Levenberg-Marquardt method combines the stability of the steepest
descent technique with the speed advantage of the Gauss-Newton algorithm. The optimal
number of hidden neurons is decided upon after a number of trials based on the number
of neurons with the highest determination coefficient and the lowest mean square error
between the observed and predicted data [15]. The structure of the ANN model is given in
Figure 4.
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2.4. Particle Swarm Optimization (PSO)

Numerous nature-inspired optimization techniques, such as genetic algorithms (GA) [12],
ant colony optimization (ACO) [18], bacterial foraging optimization (BFO) [19], artificial
bee colony (ABC) [20], and particle swarm optimization (PSO) [13] have emerged in recent
years. For resolving non-linear and non-convex optimization issues with tight constraints,
particle swarm optimization (PSO) is a particularly promising and successful optimization
technique [13]. PSO is a metaheuristic algorithm introduced by Kennedy and Eberhart [21].
It is based on the cooperative behavior exhibited by various animals, including fish schools
and bird flocks. Potential solutions to an optimization problem are represented by the
design space’s placements of points (or particles). At the end of each generation, each
particle updates its location based on both its own best position and the best position of
the entire swarm. PSO offers numerous advantages over other optimization approaches,
including possessing fewer parameters to alter several other computing approaches, and the
ability to integrate it with other methods to create hybrid tools. Another advantage of the
PSO method is its capacity to initiate iterations without relying on the original solution [22].
The PSO algorithm has been widely used in a wide range of technological applications
due to its ease of use and high searching speed [22,23]. The particle is represented by
the bird, and its flock is a potential result in the search space. Figure 5 shows that each
particle is generated at random and moves through space at a constant speed. The personal
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best (Pbest) and global best (Gbest) particles are saved and compared after each repeat. To
generate the latest generation, Equations (1) and (2) are used to modify the velocity and
position of each particle.

Vk+1
i,j = wVk

i,j + c1r1

(
Pk

best i,j − Xk
i,j

)
+ c2r2

(
Gk

best i,j − Xk
i,j

)
Vmin ≤ Vk

i,j ≤ Vmax
(1)

Xk+1
i,j = Xk

i,j + Vk+1
i,j (2)

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 17 
 

Numerous nature-inspired optimization techniques, such as genetic algorithms (GA) 
[12], ant colony optimization (ACO) [18], bacterial foraging optimization (BFO) [19], arti-
ficial bee colony (ABC) [20], and particle swarm optimization (PSO) [13] have emerged in 
recent years. For resolving non-linear and non-convex optimization issues with tight con-
straints, particle swarm optimization (PSO) is a particularly promising and successful op-
timization technique [13]. PSO is a metaheuristic algorithm introduced by Kennedy and 
Eberhart [21]. It is based on the cooperative behavior exhibited by various animals, in-
cluding fish schools and bird flocks. Potential solutions to an optimization problem are 
represented by the design space’s placements of points (or particles). At the end of each 
generation, each particle updates its location based on both its own best position and the 
best position of the entire swarm. PSO offers numerous advantages over other optimiza-
tion approaches, including possessing fewer parameters to alter several other computing 
approaches, and the ability to integrate it with other methods to create hybrid tools. An-
other advantage of the PSO method is its capacity to initiate iterations without relying on 
the original solution [22]. The PSO algorithm has been widely used in a wide range of 
technological applications due to its ease of use and high searching speed [22,23]. The 
particle is represented by the bird, and its flock is a potential result in the search space. 
Figure 5 shows that each particle is generated at random and moves through space at a 
constant speed. The personal best (Pbest) and global best (Gbest) particles are saved and 
compared after each repeat. To generate the latest generation, Equations (1) and (2) are 
used to modify the velocity and position of each particle. 

( ) ( )1
, , 1 1 best , , 2 2 best , ,

min , max

     

                                                                                           

k k k k k k
i j i j i j i j i j i j

k
i j

V wV c r P X c r G X

V V V

+ = + − + −

≤ ≤
 (1)

1 1
, , ,
k k k
i j i j i jX X V+ += +  (2)𝑃best ௜,௝௞ represents the ith individual’s personal best jth component, 𝐺best ௜,௝௞ represents 

the iteration k’s global best position, and k; Vki,j represents the particle (i,j) velocity at the 
kth iteration. C1 and C2 are predetermined coefficients; r1 and r2 are pseudo-random num-
bers (r1, r2 [0, 1]) that are set to keep a particle class. 

 

Initial position and velocities of Particles Randomly 
Evaluate the Fitness of each particles 
Fick up the particle best Pbest 
Get the Global best (Gbest)

Evaluate the particle velocity 
Stopping Criteria: 

Terminate? Best Solution YESNO

k+1
iXk

iX

k
iV

k + 1
iV

Pbest
iV

Gbest
iV

k
iPbest

k
iGbest

Figure 5. PSO flowchart.

Pk
best i,j represents the ith individual’s personal best jth component, Gk

best i,j represents

the iteration k’s global best position, and k; Vk
i,j represents the particle (i,j) velocity at

the kth iteration. c1 and c2 are predetermined coefficients; r1 and r2 are pseudo-random
numbers (r1, r2 [0, 1]) that are set to keep a particle class.

The structure of the PSO-ANN algorithms used in the study is described in Figure 6.
The Swarm size, velocity coefficients, inertia weight, and termination criteria are among the
PSO parameters that have been optimized. The damping ratio for the inertia weight is 1,
and its weight is = 0.729. Equation (10) was used to determine the lower and upper bound
velocities, which are −5 and 5, respectively. As there is not a clear method for figuring out
the swarm size in the literature, a trial-and-error approach was used with a size range of
50–200 and a 25-point increment. The maximum iteration of 300 epochs was also used in
the study. The optimum result was obtained using a swarm size of 200 at 300 epochs.



Sustainability 2023, 15, 11429 10 of 17

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 17 
 

Figure 5. PSO flowchart. 

The structure of the PSO-ANN algorithms used in the study is described in Figure 6. 
The Swarm size, velocity coefficients, inertia weight, and termination criteria are among 
the PSO parameters that have been optimized. The damping ratio for the inertia weight is 
1, and its weight is = 0.729. Equation (10) was used to determine the lower and upper 
bound velocities, which are −5 and 5, respectively. As there is not a clear method for fig-
uring out the swarm size in the literature, a trial-and-error approach was used with a size 
range of 50–200 and a 25-point increment. The maximum iteration of 300 epochs was also 
used in the study. The optimum result was obtained using a swarm size of 200 at 300 
epochs. 

START

Initialization, 
splitting and 

Normalization 

Split  data  (training 
and testing) 

Normalize data 
(training and testing) 

Build the Neural 
Network 

Establish 
configuration of 

parameters

Identify PSO 
Parameters

Initialize population 
of particles

Calculate the initial 
fitness values (MSE) 

of each particles 

Select Pbest and 
Gbest

Set a start iteration 
count  i =1

Update the velocity V 
and position of each 

particles 

Evaluate the fitness of 
best particle

Update Pbest and 
Gbest of Population 

i < Max. Iteration 

i=
i+

1

NO Output optimal 
solution as  Gbest 

Save optimal Network 
model

Simulate network 
(Testing)

De-normalize Output 

Performance 
Indicators 

Visualization of 
IEPANN model 

Plots

END

NO

YES

YES

If the Vi
k+1  and  Xi

k+1

exceed the 
set boundary range

Eliminate the inferior 
particles and 

supplement with new 

YES

NO

 
Figure 6. Flowchart for the ANN-PSO training algorithm. Figure 6. Flowchart for the ANN-PSO training algorithm.

2.5. Minimum Redundancy Maximum Relevance (mrMR)

In order to fully utilize the advantages of a rich feature store while overcoming the
associated problems and expenses, feature selection is a crucial stage in such large-scale
machine learning systems. One of the top filtering algorithms is the mRMR, developed
by [24]. The mRMR, which penalizes input variable duplication, was used to rate the
significance of the input variable sets. mRMR differs from have emerged in recent years [12]
previous relevant approaches due to its ability to choose just one relevant feature when two
or more relevant features contain the same information. This leads to faster computation
and a more accurate prediction. Finding the greatest mutual information-based dependence
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between the input variables Z and the intended outputs y was the main goal of mRMR.
The pursuit of traits that satisfied maximum significance involved:

max D(Z, y); D =
1
|z|∑zi∈Z I(Zi; y) (3)

A minimum redundancy requirement must be introduced as the maximum relevance
condition can result in significant redundancy when selecting input variables [25].

min R(Z, y); R =
1
|z|∑zi ,zj∈Z I

(
Zi; Zj

)
(4)

The mRMR criterion is obtained by combining the criteria D and R in Equations (4)
and (5) and then optimizing them. Furthermore, a greedy method can be used in practice,
where S is the set of input variables chosen.

maxzi@s
[

I(Zi; y)− 1
|S|∑zj∈s I

(
Zi; Zj

)]
(5)

2.6. Evaluation Criteria

Before modeling, the potential input and target variables were normalized between
0 and unity for increased model accuracy. Normalization reduces the complexity of the
model, data redundancy, and computational requirements, such as time and machine
specifications, to attain global minima [26]. It also converts the input and output variables to
dimensionless units. It also ensures that the input parameters contribute equally, avoiding
inputs with greater numeric values from overshadowing those with lower values. The
normalization was performed using Equation (6).

Xnorm =
X− Xmin

Xmax − Xmin
(6)

Nnorm is the normalized value, and N, Nmax, and Nmin are the observed, maximum,
and minimum values, respectively.

Utilizing the determination coefficient (DC), root mean square error (RMSE), and
mean absolute error (MAE), the models’ effectiveness was evaluated. The DC values range
between—and 1, showing how well the model fits the values that were observed. The
effectiveness of a model reduces when the NSE value varies from one, and vice versa, as a
perfect model has an NSE value of one [26]. According to the NSE values, the accuracy of
the model may be rated as excellent (0.75 NSE 1), good (0.65 NSE 0.75), satisfactory (0.50
NSE 0.65), and bad (NSE 0.50) [27]. Using RMSE, one of the best techniques for measuring
the model performance, the average error brought on by the models is calculated. The
RMSE ranged between 0 and +, and is zero in the best model [28]. MAE is also taken into
account in the study as it is less sensitive to extreme values in the forecast data than RMSE.
Equations (7)–(9) can be used to compute the aforementioned performance evaluations.

DC = 1− ∑n
i=1
(
Xobsi

− Xprei

)2

∑n
i=1
(
Xobsi

− Xobsi

)2 (7)

RMSE =

√
∑n

i=1
(
Xobsi

− Xprei

)2

n
(8)

MAE =
∑n

i=1 |Xobsi
− Xprei

|
n

(9)
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3. Results and Discussion
Dominant Input Selection

Relevant input selection is essential in obtaining reliable and accurate results in artifi-
cial intelligence-based models. For capturing both the linear and non-linear relevance of
the potential parameters, four input section techniques—namely feature removal sensitiv-
ity analysis (FRSA), mutual information (MI), correlation coefficient (CC), and minimum
redundancy maximum relevance—were used in the study. The result obtained in each of
the techniques was used to rank the importance of each of the 11 potential parameters.
The sensitivity analysis result is presented in Table 3, while the ranking result is presented
in Figure 7. On the other hand, the MI technique measures the dependence between two
random variables [29]. When the two random variables are independent, MI can measure
the non-linear statistical dependency between them, and it is zero otherwise [30]. FRSA is a
non-linear sensitivity analysis technique used to determine the relevance and importance of
potential input parameters. FRSA proved to be important in finding the non-linear relation-
ship between the input parameters and target parameters [31]. The correlation coefficient
is a measure of how linearly related two occurrences are; the value varies between −1 and
1. If two instances are uncorrelated, it is close to zero. X and Y are connected when it is
positive. The greater the association, the higher the value. If the value of rx,y is negative,
it means that X and Y are inversely correlated. In FRSA, 11 of the potential parameters
leaving one parameter were used to model the crash frequency at the roundabout. In
each model, the RMSE was computed. The procedure was repeated 12 times until each
parameter was removed and used in the modelling. The most relevant parameter gives the
highest RMSE once it is excluded in the modelling. A parameter with a rank less than or
equal to 5 in any of the techniques was considered relevant and was hence included in the
models. Based on the set criteria, eight parameters (ADT, delay, entry/exit width, capacity,
v/c ratio, speed, location and entry angle) were found to be relevant and were therefore
used to model the crash frequency at roundabouts, while the remaining four (entry/exit
distance, que length, FFS and circulating width) were considered irrelevant and hence not
included in the model. ADT was the most relevant parameter in all four of the selection
criteria, followed by delay, which was the second most relevant parameter, with a strong
linear relationship with the crash frequency ranked second by CC and third by MI and
MrMR. This is logical as it influences the behavior of drivers. Delays make drivers more
aggressive, which makes their driving decision irrational.

Table 3. Sensitivity analysis.

Parameter MI CC mrMR FRSA (RMSE)

ADT 2.1112 0.8273 0.1396 0.2056
Circulating width 0.4513 0.0178 0 0.1462

Entry angle 0.8755 −0.1725 0 0.1479
Entry/Exit width 0.7582 0.2278 0.047 0.1481
Entry/Exit width 0.8675 0.0847 0 0.1444

FFS 0.0978 0.0455 0 0.1462
Capacity 0.8811 0.2055 0 0.1400

Delay 0.8834 0.2925 0.0225 0.1421
speed 0.6932 −0.1556 0 0.1606
v/c 1.1242 0.0151 2.82 × 10−15 0.1490

Que length 0.6168 −0.1078 0 0.1476
Location 0.2012 0.0650 0 0.1843

No unit, the data are normalized.
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4. Modelling Result

MATLAB 2019 was used to develop three different data-driven models, namely ANN,
MLR, and a hybrid PSO-ANN model for traffic noise prediction using the dominant
input parameters (Delay, Entry/Exit width, Capacity, V/C, Speed, Location, and Entry
angle). The data were divided into two 70/30 for the calibration and testing of the models,
respectively. As the only definite way of determining the optimal structure for ANN models
is through the trial-and-error method, several ANN models were trained using different
training algorithms, activation functions (tansig, purelin, logistics), and hidden neurons
(5–20), and the optimal structure was selected. The optimal architecture was found to be
7-9-1 (s-input parameters, respectively), 8- hidden neurons and 1 output parameter) trained
with the Levenberg Marquardt algorithms using the tansig and purelin function in the
input and output layers.

When training an ANN, the number of hidden layer neurons is crucial. Because the
large number of neurons leads to overfitting the performance, the optimization technique is
used to determine the most useful values for the variables. The PSO is used to modify the
ANN model weight and bias to reduce overfitting. At the start of training the PSO-ANN
hybrid model, random particles are initialized, and their positions are then randomly
assigned to the ANN model’s weights and biases. The MSE between the observed and
estimated crash frequency was determined after training the model with the initialization
weights and biases. With each iteration, the accuracy of the models improves (MSE value
decreases) by modifying the position of the particles. In each cycle, the Pbest and Gbest are
utilized to compute and update the velocity. The MSE of the PSO-ANN model was lowered
by altering the particle solutions to the best solutions. This method was used to optimize
until the stop condition was satisfied. The maximum number of iterations was used as the
study’s stop criteria, and the epoch with the lowest MSE was identified as the optimum
epoch. The optimum architecture (7-9-1) obtained for the ANN model was applied for the
PSO-ANN model.

The PSO algorithms adjusted the weight and bias of the ANN models during the last
step of training the PSO-ANN model, eliminating overfitting problems by remembering
the parameters that govern how the model adapts to the new dataset. Figure 5 depicts the
PSO-ANN algorithm’s learning procedure. Swarm size, velocity coefficients, inertia weight,
and termination criteria are among the PSO parameters that have been optimized. The
damping ratio for the inertia weight is 1, and its weight is =0.729. Equation (1) was used
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to determine the lower and upper bound velocities, which are −5 and 5, respectively. As
there is not a clear method for figuring out the swarm size in the literature, a trial-and-error
approach was used with a size range of 50–200 and a 25-point increment. The maximum
iteration of 300 epochs was also used in the study. The optimum result was obtained using a
swarm size of 200 at 300 epochs. The modeling results were evaluated using four statistical
measures and are presented in Table 4.

Table 4. Modelling results.

Models
Training Testing

DC RMSE MAE DC RMSE MAE

PSO-ANN 0.9459 0.0468 0.0332 0.7935 0.0403 0.0322
ANN 0.7227 0.1060 0.0463 0.6244 0.0543 0.0243

The PSO-ANN model performed well in both the training and testing stages, with a
DC value greater than 0.75 for estimating the crash frequency at roundabouts. The hybrid
model has demonstrated a higher performance over the ANN model in both the training
and testing stages in terms of the model’s goodness of fit (DC) and error metric (RMSE
and MAE). However, the ANN model has also demonstrated good and satisfactory results
in the training and testing stages, with a DC value of 0.7227 and 0.6244, respectively. The
hybrid PSO-ANN model improved the performance of the classical model by 22.3% and
16.9%, respectively, in the training and testing stages. This indicates the reliability and
accuracy of the proposed hybrid method. The hybrid PSO-ANN achieves its improved
accuracy by systematically optimizing the ANN parameters (bias and weights) using the
particle swarm optimization algorithm and through altering the particles position. The
successful application and improved performance of PSO-ANN over the classical ANN
model can be found in several studies, such as [32]. Other studies affirming the efficiency of
machine learning approaches in the prediction of complex parameters include the studies
by [33,34].

The findings of the investigation were further examined utilizing three graphical
charts (scatter plots and violin plots). The scatter plots demonstrate how the observed and
anticipated data were compressed along the chart’s diagonal bisector. The denser the data
along the diagonal bisector, the more accurate the model, and vice versa. Figure 8 shows
that the data in Figure 8a (PSO-ANN) are more along the bisector than in Figure 8b (ANN).

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 17 
 

 
Figure 8. Scatter plots showing DC values for (a) PSO-ANN (b) ANN. 

 
Figure 9. Violin plots comparing number of observed accidents and the proposed models. 

5. Conclusions 
In this study, the crash frequency at urban roundabouts was predicted using an ANN 

model optimized with PSO. Prior to the development of the models, four different domi-
nant input selection techniques (FRSA, mrMR, MI and CC) were employed for reducing 
the number of input parameters in the models. In order of importance, the ADT, delay, 
entry/exit width, capacity, v/c ratio, speed, location, and entry angle were found to be 
most relevant parameters responsible for accidents prediction at roundabouts. The opti-
mized hybrid model, PSO-ANN, predicted the crash frequency with higher accuracy (DC 
= 0.7935) and less error (MAE = 0.0322, RMSE = 0.0403) compared with the classical ANN 

Figure 8. Scatter plots showing DC values for (a) PSO-ANN (b) ANN.

Finally, violin plots (Figure 9) were used to compare the models’ performances further.
Violin plots are used because of their advantage in combining distribution and box plots, in
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addition to the interquartile ranges, median, and spread of the observed data. The figure
shows that the violin form and box plot within the violin of the PSO-ANN model more
closely resemble the actual data than the other models. PSO-ANN can efficiently simulate
the data distribution, interquartile ranges, median, and data range, according to the results.
When the ANN parameters are adjusted using the PSO method, the overall assessment
of the models using statistical (DC, RMSE, MAE) and graphical measures (scatter plots,
violin plots) demonstrated higher prediction accuracy and error reduction in predicting
traffic noise.
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5. Conclusions

In this study, the crash frequency at urban roundabouts was predicted using an ANN
model optimized with PSO. Prior to the development of the models, four different dominant
input selection techniques (FRSA, mrMR, MI and CC) were employed for reducing the
number of input parameters in the models. In order of importance, the ADT, delay,
entry/exit width, capacity, v/c ratio, speed, location, and entry angle were found to
be most relevant parameters responsible for accidents prediction at roundabouts. The
optimized hybrid model, PSO-ANN, predicted the crash frequency with higher accuracy
(DC = 0.7935) and less error (MAE = 0.0322, RMSE = 0.0403) compared with the classical
ANN model. The statistical and graphical analysis used in the study proved the suitability
of the PSO-ANN model for the prediction of crash frequency with high accuracy. One of
the drawbacks of the proposed PSO-ANN approach is that it gives no clue on the most
influential variable. Further studies could determine the degree to which each of the
dominant parameters contributes to the safety of urban roundabouts.
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