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Abstract: With the increasing integration of renewable energy into the power grid, there is a growing
demand for converters that not only provide stable power, but also support auxiliary functions such
as grid-voltage regulation. Consequently, grid-forming strategies have attracted significant attention.
However, due to the complexities of analyzing nonlinear coupling systems, a comprehensive transient
stability analysis of grid-forming converters is still being explored. Conventional analysis methods
rely on a simplified quasi-steady-state model for grid-forming voltage source converters (VSCs) and
focus on analyzing the transient instability phenomenon caused by the outer power loop. However,
this oversimplified model may yield incorrect conclusions. To address this limitation, this paper
develops a full-order model that includes quadratic nonlinear terms to accurately represent the
system’s nonlinear characteristics. The developed model is then decoupled into multiple low-order
modes using a nonlinear decoupling method. These low-order modes can be analyzed using the
mature inversing trajectory method, indirectly reflecting the transient stability of grid-forming VSCs
under large disturbances. Through varying the inner and outer parameters, the transient stability
of grid-forming VSCs is analyzed in detail. Furthermore, the analysis results are verified through
hardware-in-loop (HIL) experiments.

Keywords: grid-forming VSC; transient stability; nonlinear decoupling; coupling factor; virtual
synchronous generator (VSG)

1. Introduction

Energy independence and sustainability are two major challenges in energy decision-
making models. Prosumer development and sustainable community models are considered
driving factors for achieving ecological transformation [1]. By establishing a foundation
rooted in the utilization of renewable and efficient energy, these communities actively
promote resource recycling and environmental conservation [2]. Their primary objective is
to attain sustainable development across social, economic, and environmental dimensions.
The effective utilization of renewable energy is a crucial step in promoting energy reform
and alleviating environmental pressures. Various renewable energy systems are used
to save energy expenses and reduce dependence on grid energy [3–8]. However, unlike
conventional synchronous generators (SGs), distributed resources are commonly integrated
into the power utility through power electronic devices, such as voltage source converters
(VSCs). This has a direct impact on the power system architecture.

Numerous well-established control strategies have been developed for VSCs, de-
pending on the desired objectives [9,10]. Through simulating the physical mechanisms
of conventional SGs, various grid-forming control strategies have been proposed and are
receiving increasing attention [11]. Although the specific details may vary, these control
strategies share two essential characteristics: (1) operating as controlled voltage sources
rather than controlled current sources, and (2) achieving synchronization with the power
grid through output power regulation. These features ensure that the converter can estab-
lish and maintain satisfactory voltage, even in islanded operation scenarios [12–15].
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The widespread adoption of power electronics has brought attention to new potential
stability challenges that may arise in power systems. Small-signal stability (steady-state
stability) analysis involves linearizing the system model around the operating point and
assessing the convergence of the linear modes based on their eigenvalues. However, it has
limitations in capturing the stability of the system during large disturbances or changes
in operating points. Additionally, there is currently no comprehensive analysis theory
for high-order nonlinear models, which poses a significant limitation in the transient
stability analysis of power systems with a high proportion of power electronic devices.
In recent years, a new nonlinear decoupling method has been proposed which separates
high-order nonlinear systems into a series of low-order modes. Although this method
indirectly reflects the stability of the original system, it is only applicable to DC systems [16].
Therefore, further research is necessary to explore transient stability analysis in three-phase
AC systems.

In a recent study conducted by Wang, the current research status of synchronous
stability for converter-based distributed energy resources (DERs) was thoroughly inves-
tigated [17]. For analyzing the small-signal stability of VSC-based resources, researchers
commonly utilize time-domain methods, such as the eigenvalue method [18], as well
as frequency-domain methods, such as the impedance method [19,20]. Moreover, the
nonlinear characteristics introduced by PLL are primarily analyzed for grid-following
VSCs [21,22]. In terms of transient stability analysis, the use of the equal area criterion
(EAC) may overlook system damping, and conclusions drawn from the Lyapunov method
tend to be relatively conservative. Consequently, an improved equal area criterion (IEAC)
has been proposed to further enhance the accuracy of transient stability analysis [23].

In a study conducted by [24], a systematic exploration and comparison of four com-
monly used control strategies for grid-forming VSCs was provided. The findings reveal
that grid-forming strategies can be classified into non-inertial and inertial strategies. In
the study by [25], Lyapunov’s direct method was proposed for analyzing the transient
angle stability of virtual synchronous generators (VSGs). The study indicates that the inner
current loop impacts the transient stability of the system by influencing the equivalent
impedance of the system, although further research is needed to determine the specific
influence. One study [26] demonstrated that virtual resistance has different impacts on
transient stability compared with real grid resistance. Furthermore, a modified VSG control
model was developed, and a method using virtual resistance was proposed to enhance
both small-signal stability and transient stability [27]. Another study [28] suggests that the
currently used models for transient stability in the existing literature are oversimplified,
employing fifth-order models for numerical fitting and describing the transient boundary
using the critical clearing angle (CCA) and critical clearing time (CCT).

Based on the comprehensive research status, most of the transient stability research
on grid-forming VSCs involves establishing quasi-steady-state models based on the outer
power loop and using the phase plane method to analyze system stability under different
parameters. However, conducting transient stability analysis for high-order nonlinear cou-
pling systems presents significant challenges, and the commonly adopted oversimplified
models ignore the impact of the inner loop on transient stability, leading to potentially
inaccurate conclusions. In response to the aforementioned challenges, this paper makes the
following main contributions:

(1) The development of a comprehensive full-order large-signal model for grid-forming
VSCs, including a truncated model that captures the quadratic nonlinear terms
through Taylor expansion, thereby fully representing the nonlinear characteristics
of VSCs.

(2) The implementation of a nonlinear decoupling method utilizing coupling factors to
decouple the high-order nonlinear model into multiple low-order modes. Through
the adjustment of the inner and outer control parameters, a thorough analysis of
the transient stability of grid-forming VSCs is conducted under the influence of
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significant disturbances. Additionally, the analysis conclusions are validated through
HIL experiments.

2. Principle of Nonlinear Decoupling Method

The nonlinear decoupling method, proposed by our team in the previous work [16],
is an extension of the normal form method and aims to decouple a high-order nonlinear
system model into multiple low-order modes. The nonlinear decoupling method utilized in
this paper is currently only applied to transient stability analysis of DC systems, which can
be referenced in [16]. This section provides an exploration and summary of the principles
and derivations underlying the nonlinear decoupling method.

2.1. Model Representation of High-Order Systems

State-space models are commonly developed for power systems, which can be ex-
pressed in the following form:

.
X = F(X). (1)

Here, X = [x1, x2, · · · , xN ]
T represents the system’s state vector, with N denoting the

system’s order. Additionally, F(X) = [ f1(X), f2(X), · · · , fN(X)]T corresponds to the vector
of state equations concerning X. For linear systems, only primary terms are considered,
while high-order terms are retained for non-linear systems. Power electronic devices and
control strategies exemplify multivariable strong-coupling nonlinear systems, presenting
significant challenges in transient stability analyses.

In general, retaining a greater number of nonlinear terms in the system model enhances
the accuracy of stability analysis results. However, this also leads to an exponential
increase in computational complexity. For power systems primarily driven by power
electronic devices, a nonlinear model considering only quadratic terms can effectively
capture the dominant nonlinear characteristics. Therefore, the original nonlinear model
can be approximated by truncating it to the quadratic terms using Taylor expansion. This
truncated model can be represented as follows:

.
X = AX + H(X), (2)

where A represents the Jacobian matrix of F(X), H(X) =
[
XTH1X, XTH2X, · · · , XTHNX

]T
represents the quadratic terms of nonlinear systems, and XTHiX = ∑N

p=1 ∑N
q=1 Hi,pqxpxq,

i ∈ {1, 2, · · · , N}.

2.2. Linear Decoupling of Nonlinear System Model

The small-signal stability analysis of the system relies on calculating the eigenvalues
of the Jacobian matrix. These eigenvalues provide information about the system’s ability to
converge in the presence of small disturbances, determined by the signs of the eigenvalues.
The eigenvalue matrix can be obtained through a similarity transformation, which can be
seen as a linear decoupling process. In this analysis, P is defined as the right eigenmatrix
and the linear decoupling process can be expressed as follows:

X = PX[1], (3)

.
X[1] = ΛX[1] + D

(
X[1]

)
. (4)

In the linear decoupling process, the state-space variable vector after decoupling is de-

noted as X[1] =
[

x[1],1, x[1],2, · · · , x[1],N
]T

. The transformed quadratic terms are represented

by D
(

X[1]

)
=
[
X[1]

TD1X[1], X[1]
TD2X[1], · · · , X[1]

TDNX[1]

]T
. The elements in the matrix

Di ( i ∈ {1, 2, · · · , N}) can be computed as Di,pq = ∑N
j=1

[
P−1

i,j

(
∑N

m=1 ∑N
l=1 Hj,pqPm,pPl,q

)]
.
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Through this similarity transformation, the system achieves the decoupling of the primary
terms. This means that, in terms of the primary terms, the trend of each variable is solely de-
pendent on itself. However, the system remains strongly coupled concerning the quadratic
terms, necessitating nonlinear transformations to achieve decoupling.

In small-signal stability analysis, if all the eigenvalues in the matrix Λ are negative,
it indicates that the system can maintain small-signal stability near the operational point.
This condition is also a prerequisite for the transient stability of the system.

2.3. Nonlinear Decoupling Process

The goal of the nonlinear decoupling method is to apply a nonlinear transformation
that achieves decoupling of the system with respect to quadratic terms. This nonlinear
decoupling transformation can be expressed as follows:

X[1] = X[2] + T
(

X[2]

)
, (5)

where X[2] =
[

x[2],1, x[2],2, · · · , x[2],N
]T

represents the state variable vector after the nonlin-
ear decoupling process.

Nonlinear transformation T
(

X[2]

)
=
[
X[2]

TT1X[2], X[2]
TT2X[2], · · · , X[2]

TTNX[2]

]T
are

quadratic terms related to the state vector X[2]. The desired decoupled model can then be
expressed as:

.
X[2] = ΛX[2] + K

(
X[2]

)
+ O

(
X[2]

)
, (6)

where K
(

X[2]

)
=
[
X[2]

TK1X[2], X[2]
TK2X[2], · · · , X[2]

TKNX[2]

]T
represents quadratic terms

in the decoupled system model. O
(

X[2]

)
represents the higher-order terms related to

X[2] and can be disregarded.
After applying the nonlinear decoupling method, the state variables can be categorized

as isolated variables and coupling variables. In cases where the coupling effect between
two variables cannot be ignored, they can be classified as coupling pairs. The decoupled
state equations for the coupling variables x[2],i and x[2],j can be expressed as follows:

.
x[2],i = λix[2],i + Ki,ii

(
x[2],i

)2
+
(
Ki,ij + Ki,ji

)
x[2],ix[2],j + Ki,jj

(
x[2],j

)2

.
x[2],j = λjx[2],j + Kj,ii

(
x[2],i

)2
+
(
Kj,ij + Kj,ji

)
x[2],ix[2],j + Kj,jj

(
x[2],j

)2, (7)

where λi and λj represent the i-th and the j-th eigenvalues. Ki,ii, Ki,ij, Ki,ji, and Ki,jj are
coefficients of the matrix Ki, and Kj,ii, Kj,ij, Kj,ji, and Kj,jj are coefficients of the matrix Kj.

When there is a weak coupling between x[2],i and other variables, and its change trend
is mainly influenced by itself, the state variable can be considered as an isolated variable.
The decoupled state equations for the isolated variable x[2],i can be expressed as:

.
x[2],i = λix[2],i + Ki,ii

(
x[2],i

)2
, (8)

where Ki,ii is the coefficient of the matrix Ki.
It is widely accepted that there is a strong correlation between the state variables

corresponding to complex conjugate eigenvalues; therefore, these variables were directly
identified as coupling pairs. The degree of correlation between the state variables corre-
sponding to negative real eigenvalues can be quantified using coupling factors, which can
be calculated as:

coui,j =

∣∣Di,ij + Di,ji
∣∣+ ∣∣Di,jj

∣∣
|λi|

+

∣∣Dj,ij + Dj,ji
∣∣+ ∣∣Dj,jj

∣∣∣∣λj
∣∣ . (9)



Sustainability 2023, 15, 11981 5 of 21

Variables with large coupling factors were considered to have significant coupling
correlations and were classified as coupling pairs. If the coupling factor between a state
variable and other variables is small, it can be concluded that the influence of other variables
on the state variable is negligible, and, therefore, it can be classified as an isolated variable.
As a result, the state variables corresponding to negative real eigenvalues can be classified
by calculating the coupling factors pairwise.

To preserve as much system information as possible, the quadratic matrix T
(

X[2]

)
used for nonlinear transformation should contain as many zero elements as possible. As a
result, the coefficients of coupling variables and isolated variables before the transformation
should be retained, which can be expressed as follows:{

Ki,ii = Di,ii
Ki,pq = 0 i f p 6= i or q 6= i for isolated variable x[2],i, (10)


Ki,ii = Di,ii, Ki,ji = Di,ji, Ki,ij = Di,ij, Ki,jj = Di,jj
Kj,ii = Dj,ii, Kj,ji = Dj,ji, Kj,ij = Dj,ij, Kj,jj = Dj,jj
Km,pq = 0 i f m 6= i , j or p 6= i , j or q 6= i , j

for coupling pair x[2],i, x[2],j. (11)

To derive the required nonlinear transformation quadratic matrix T
(

X[2]

)
, combing

(4) and (5), it can be deduced that(
X[2] +

.
T
(

X[2]

))
= Λ

(
X[2] + T

(
X[2]

))
+ D

(
X[2] + T

(
X[2]

))
. (12)

Thus,

.
X[2] +

∂T
(

X[2]

)
∂X[2]

.
X[2] = Λ

(
X[2] + T

(
X[2]

))
+ D

(
X[2] + T

(
X[2]

))
. (13)

Combing (13) and (6), it can be deduced thatI +
∂T
(

X[2]

)
∂X[2]

(ΛX[2] + K
(

X[2]

)
+ O

(
X[2]

))
= Λ

(
X[2] + T

(
X[2]

))
+ D

(
X[2] + T

(
X[2]

))
. (14)

For the quadratic terms in the i-th equation, as stated in Equation (14), it can be
deduced that

∑N
p=1 ∑N

q=1 Ki,pqx[2],px[2],q + ∑N
p=1

[
λpx[2],p ∑N

q=1
(
Ti,pq + Ti,qp

)
x[2],q

]
=

λi ∑N
p=1 ∑N

q=1 Ti,pqx[2],px[2],q + ∑N
p=1 ∑N

q=1 Di,pqx[2],px[2],q.
(15)

Thus, the nonlinear transformation can be deduced as:

Ti,pq =
Ki,pq −Di,pq

λi − λp − λq
. (16)

2.4. Transient Stability Analysis

Unlike small-signal stability, which depends on eigenvalues, transient stability is
determined by whether the initial points are within the Region of Attraction (ROA). The
original truncated quadratic model can be decomposed into multiple low-order modes
using the nonlinear transformation shown in Equations (5) and (16), as described in
Equations (7) and (8). The ROA of each mode can then be determined using established in-
verse trajectory methods. The inversing trajectory method refers to the fact that the system’s
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ROA can be obtained through several backward integrations and forward integrations. The
method is extensively described in [29].

Apart from calculating the ROA for the state variables undergoing nonlinear decou-
pling, the initial point needs to be converted and calculated. The initial point can be
obtained by solving for

.
X = 0 in Equation (2). By applying a similarity transformation

as shown in Equation (3) and incorporating the derived nonlinear transformation from
Equation (5), the initial points for the state variables undergoing nonlinear decoupling

can be calculated. This can be expressed as X[2] =
[

x[2]0,1, x[2]0,2, · · · , x[2]0,N

]T
. By combin-

ing the initial points with the calculated ROAs, the transient stability of the system can
be determined.

Currently, the transient stability analysis of electronic-based power systems is still in
the exploratory stage. In this paper, a brief comparison of the equal area criterion, Lyapunov
method, normal form method, and the nonlinear decoupling method are adopted and
presented, as shown in Table 1.

Table 1. Comparison of transient stability methods.

Method Description Application Advantages Disadvantages

Equal area criterion
(EAC) [23]

Evaluates stability by
comparing the areas of

transient
response curves

Analyzes transient
stability of

second-order models

Intuitive and easy
to apply

Only applicable to
systems with simplified

second-order models

Lyapunov method [25]

Constructs Lyapunov
function to

demonstrate
asymptotic and
local stability

Analyzes stability of
high-order

nonlinear systems

Provides mathematical
proof of

system stability

Constructing the
Lyapunov function is
challenging, and the

results tend to be
conservative

Normal form
method [30]

Transforms system to
linear decoupled form

Analyzes stability of
high-order

nonlinear systems

Stability analysis of the
transformed system

can be conducted with
linear theory

Only the combination
of linear modes can be

considered, and the
information about the
system’s ROA cannot

be obtained

The nonlinear
decoupling method

adopted in this paper

Transforms system to
low-order modes to

reflect
transient stability

Analyzes stability of
high-order

nonlinear systems

Applicable to various
high-order models

Computational
complexity increases,

and truncation
error exists

3. Transient Stability for Grid-Forming VSCs

As the proportion of renewable energy in the power system gradually increases, the
role of these sources has evolved from merely transferring power to actively participating
in the support and management of grid voltage. Hence, VSCs with grid-forming control
strategies, acting as controlled voltage sources, have been widely adopted. These VSCs
play a crucial role in maintaining the stability and reliability of the power grid, especially
in the presence of high levels of renewable energy generation.

Grid-forming VSCs are classified into four typical types [24]: basic droop control strat-
egy, power-synchronous control, droop strategy with a low-pass filter, and VSG control. It
is noted in the paper that the first three control strategies can be viewed as special cases
of the fourth control strategy. Therefore, a unified model can be utilized to express the
characteristics of grid-forming VSCs. This approach provides a more comprehensive and
unified understanding of the different types of grid-forming VSCs and their control strate-
gies. Furthermore, the VSG control strategy, in contrast to the droop control strategy, which
only mimics primary frequency modulation characteristics, also incorporates the inertia
characteristics of SGs, thus enhancing the performance of the control strategy. Considering
these reasons, this section takes grid-forming VSCs with the VSG control strategy as an
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example and utilizes the nonlinear decoupling method to analyze the transient stability
of the system. This approach enables a more accurate and comprehensive analysis of the
transient stability of VSGs.

3.1. Principle of VSG Control

The VSG control strategy aims to replicate the inertia and droop characteristics ob-
served in the active power loop of SGs, as well as the voltage-amplitude droop characteristic
present in the reactive power loop of SGs. To achieve this, an output voltage reference value
was provided, and the inner loop was employed for voltage construction and tracking.
The inner loop control methods for VSG control can be classified into three categories:
direct duty cycle control, voltage single-loop control, and voltage-current double loop
control methods. The first method, direct duty cycle control, is essentially an open-loop
control method and is limited in practical applications. The single-loop control method,
although effective in voltage control, fails to achieve current limitations during faults. In
this paper, the voltage-current double-loop control method was adopted for the inner
loop. This method has been proven to be effective and reliable in practical applications,
as it addresses the limitations of the other control methods and ensures both voltage and
current regulation.

As shown in Figure 1, the VSC output was filtered through an LC filter and then
connected to the grid through grid inductance. The VSG control strategy aims to simulate
the droop and inertia characteristics of the active power loop in SGs, as well as the voltage
droop characteristics in the reactive power loop. Therefore, in the VSG control strategy, the
outer active power loop generates the phase-angle reference value, the reactive power loop
generates the voltage-magnitude reference value, and then the voltage and current double
inner loops are adopted for voltage tracking and construction [28].
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For a VSC with grid-forming control to assist in generating AC voltage, it requires
a front-end converter or a stable energy system, or a large capacitor on the DC side to
provide voltage and power support. As a result, the DC voltage, denoted as Vdc, can be
assumed to remain constant. The Insulated Gate Bipolar Transistor (IGBT) is extensively
utilized in diverse power electronic devices and serves as a common switch transistor in
grid-connected equipment due to its excellent performance in various applications. Thus,
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the switch tubes of the VSC in this paper were based with the commonly used IGBT as an
example, which are represented by S1–S6. The output side of the VSC was connected to
an LC filter, where the inductance is denoted as L1 and the capacitance as C. Additionally,
there was an impedance in the grid, represented by Lg, which was located between the
VSC output terminal and the grid. The grid voltage is represented as vs, with an amplitude
of Vs and an angle of θs. The voltage on the capacitor is denoted as vc, with an amplitude
of Vc and an angle of θc. The current on the VSC side is denoted as i1, while the current
on the grid side is represented as i2. The voltage across the capacitor is denoted as vC.
Pre f and Qre f are the reference values for active and reactive power for the outer power
loop. Jp and Dp represent the inertia and damping coefficients of the VSG control strategy.
Furthermore, kq is used for voltage-amplitude development. The rated angular frequency
is ω0 = 2π·50 rad/s. The angle θg, obtained from the active power loop, was used for
Park transformation and inverse Park transformation. vdre f and vqre f represent the voltage
amplitudes in the d-axis and q-axis, respectively. vdre f is determined by the reactive voltage
amplitude loop, while vqre f was set to zero. Since the control was implemented on the
dq-axis, subscripts d and q were used to differentiate the variables. dd and dq represent the
duty cycle in the d and q axis, respectively. V0 is the voltage-amplitude reference value
used in the reactive power control loop. kvp and kvi are the proportional parameter and the
integrator parameter of the voltage control loop, and kip is the proportional parameter of the
current control loop. i1dre f and i1qre f represent the reference value of the inner current loop.

3.2. Model of the VSG Control Strategy

The grid voltage rotates at a constant angular frequency, and the power outer loop
dynamically adjusts the reference angular frequency ω based on the detected power value.
In the steady state, ω equals ω0, but there may be differences between the two angular
frequencies during transient processes. The axis system used for positioning the grid
voltage is referred to as the s-system, while the axis system generated by the power outer
loop’s phase angle is referred to as the c-system. The relative positions of these two systems
remain constant in the steady state, but may deviate from each other during transient
processes. The relative schematic diagram is illustrated in Figure 2. The power angle δ is
defined as the angle between the s-system and the c-system, where δ = θg − θs.
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The transformation of the state variable expressions from the c-system to the s-system
can be derived as follows, where the state variables projected onto the c-system and s-
system are represented, respectively, with superscripts c and s:

xc
d,q = ej−δxs

d,q = (cosδ− jsinδ)·
(

xs
d + jxs

q

)
. (17)

Thus, it can be deduced that:{
xc

d = cosδxs
d + sinδxs

q
xc

q = cosδxs
q − sinδxs

d
, (18)
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{
xc

d = cosδxs
d + sinδxs

q
xc

q = cosδxs
q − sinδxs

d
. (19)

The state-space model for the circuit part can be derived as follows:

L1
dis1d
dt = ds

dVdc − vs
cd + ω0L1is

1q

L1
dis1q
dt = ds

qVdc − vs
cq −ω0L1is

1d

C dvs
cd

dt = is
1d − is

2d + ω0Cvs
cq

C
dvs

cq
dt = is

1q − is
2q −ω0Cvs

cd

Lg
dis2d
dt = vs

cd − vs
sd + ω0Lgis

2q

Lg
dis2q
dt = vs

cq − vs
sq −ω0Lgis

2d

. (20)

For power calculation, it can be modeled as

p = 1.5
(

vc
cdic

2d + vc
cqic

2q

)
, (21)

q = 1.5
(

vc
cqic

2d − vc
cdic

2q

)
. (22)

As illustrated in Figure 1, the active power control part can be deduced as follows:

dω

dt
=

1
Jp

[
Pre f − p− Dp(ω−ω0)

]
. (23)

The angle reference can be obtained by integrating the frequency, which can be ex-
pressed as:

θg =
∫

ωdt =
∫
(ω0 + ∆ω)dt. (24)

The voltage-amplitude reference of VSG can be modeled as:

vdre f = V0 +
(
1/kq

)(
Qre f − q

)
. (25)

The inner control loop, depicted in Figure 1, can be modeled as:

dxc
vd

dt = kvi

(
vdre f − vc

cd

)
dxc

vq
dt = kvi

(
vqre f − vc

cq

)
ic
1dre f = xc

vd + kvp

(
vdre f − vc

cd

)
ic
1qre f = xc

vq + kvp

(
vqre f − vc

cq

)
dc

d = kip

(
ic
1dre f − ic

1d

)
dc

q = kip

(
ic
1qre f − ic

1q

)
, (26)

where xc
vd and xc

vq are the state variables introduced by the integrators of the voltage PI
controllers. Combing (17)–(26), the full-order model of the VSG was developed.
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3.3. Transient Stability Analysis for Grid-Forming VSCs

The state variables can be separated into steady-state values and dynamic values. For
example, δ = θg − θs = δ∗ + ∆δ = Θg + ∆θg − Θs − ∆θs = δ∗ + ∆θg − ∆θs = δ∗ + ∆θg,
where δ∗ represents the steady-state value of the power angle and ∆δ represents the
dynamic value. Since the grid voltage rotates at a constant angular frequency, ∆θs = 0.

In the transient stability analysis of nonlinear systems, the stable operating point is
often defined as the origin, which is used to determine if the initial point falls within the
ROA. When dealing with trigonometric functions in the nonlinear model, Taylor series
expansion can be utilized to approximate them. This enables expressing them as follows:

cosδ = cos(δ∗)− sin(δ∗)∆δ− 1
2

cos(δ∗)(∆δ)2 + . . . , (27)

sinδ = sin(δ∗) + cos(δ∗)∆δ− 1
2

sin(δ∗)(∆δ)2 − 1
3!

cos(δ∗)(∆δ)3 + . . . . (28)

By combining Equations (17)–(28), a truncated model of a grid-forming VSC can
be obtained, which represents a more concrete version of (2). Therefore, the nonlinear
decoupling method can be employed to analyze the transient stability of the system.

3.4. Typical Cases for Transient Stability Analysis

In the study of transient stability, the impact of various typical parameters in grid-
forming converters was examined. This analysis aims to provide guidelines for designing
parameters that prioritize transient stability. Table 2 presents the parameters considered for
the VSG, excluding any parameters specifically noted as varying in the different cases. The
parameter-design problem of VSCs is a comprehensive and difficult issue. There have been
numerous studies on this topic in the existing literature [31,32]. However, it is not the main
focus of this paper and, therefore, will not be discussed in detail.

Table 2. Parameters of VSGs.

Symbol Parameters Value

Pre f , Qre f Reference of active and reactive power 40 kW, 0 kVar
Jp Virtual inertia 200 kg·m2

Dp Damping coefficient 800 (N·m·s)/rad
kq Reactive-voltage droop coefficient 800 Var/V

Vdc The voltage of the DC side 1000 V
L1, C, Lg Inductance and capacitance 5 mH, 200 uF, 4 mH

Kvp, Kvi, Kip Proportional and integral parameters 1, 100, 0.005

Case I: System transient stability under varying voltage-amplitude drops
This paper focuses on studying the transient stability of the system when experiencing

sudden drops in grid voltage amplitude, which represents a significant disturbance that
the system may encounter. By utilizing the developed model and the nonlinear decoupling
method, the transient stability of the original system was analyzed by combining the
decoupled modes and their corresponding initial points. This analysis was conducted for
different degrees of voltage-amplitude drop in the power grid. Due to space constraints,
this paper presents only the ROAs and initial points corresponding to the critical modes.

According to Figure 3, as the voltage-amplitude drop intensifies, the ROA for the
critical mode significantly decreases, and the initial operating points move toward the
outer limits. In the event of a sudden drop in the system voltage amplitude to half of
its steady-state value, the initial point falls outside the ROA, suggesting an imminent
system instability.
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Case II: Influence of parameters in the active power control loop on transient stability
During large disturbances, such as voltage-amplitude drops, the transient behavior

of systems with varying inertia and damping coefficients will differ. Figure 4a,b illustrate
the critical modes and initial points for different inertia and damping parameters in the
extreme scenario where the voltage amplitude decreases to half.
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the active power control loop. (a) Transient stability with different damping coefficients, where the
inertia parameter is Jp = 200 kg·m2. (b) Transient stability with different inertia coefficients, where
the damping parameter is Dp = 800 (N·m·s)/rad.

According to Figure 4, the behavior of the system is influenced by the damping and
inertia parameters. As the damping and inertia parameters increase, the initial operation
points of the system exhibit minimal changes, but the size of the ROAs displays the opposite
trend. The ROA of the system expands continuously with increasing damping parameters.
Once the damping parameter reaches a value of 1200 (N·m·s)/rad, the initial points fall
within the ROA, indicating that increasing damping can enhance the transient stability of
the system. On the other hand, when the inertia parameters increase, although the initial
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point tends to approach the origin, the ROAs shrink at a faster rate. Therefore, a higher
inertia coefficient negatively impacts the transient stability of the system.

In practical applications, it is common to employ large inertia parameters to mitigate
frequency fluctuations in a system during disturbances. This approach aims to enhance
system frequency stability and prevent the system operation frequencies from exceeding the
predetermined threshold. However, it is important to strike a balance between frequency
stability and transient stability when designing the inertia parameters.

Case III: Influence of parameters in reactive power control loops on transient stability
The study of transient stability has predominantly focused on the influence of the

outer active power loop. Nevertheless, it is worth noting that the parameters associated
with the reactive power control loop can also have an impact on the transient stability of
the system. This paper addresses this aspect by examining the ROAs and initial points for
various voltage-droop coefficients and reactive power reference values.

Based on the analysis of Figure 5a, it can be observed that as the voltage-droop
coefficients increase, the ROAs expand significantly, and the position of the initial point
moves inward. These findings indicate that increasing this parameter is beneficial for
enhancing the transient stability of the system. Furthermore, Figure 5b demonstrates that
as the reference values of the reactive power gradually increase, the position of the initial
points almost remains unchanged, while the ROAs gradually expand. This observation
suggests that appropriately increasing the VSC’s reactive power transfer can effectively
maintain the transient stability of the system, particularly during large disturbances.
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reactive power control loop. (a) Transient stability with different voltage droop coefficients, where the
reactive power reference value is Qre f = 0 kVar. (b) Transient stability with different reactive power
reference values, with the voltage droop parameter is kq = 800 Var/V, and the inertia parameter is
Jp = 300 kg·m2.

Case IV: Influence of inner loop parameters on transient stability
The existing literature predominantly utilizes quasi-steady-state models for grid-

forming VSGs to analyze transient stability, disregarding the impact of the complete inner
loop. Consequently, the transient stability of the system can only be examined with
different outer loop parameters. This paper addresses this limitation by developing a
comprehensive and full-order model of grid-forming VSCs. The nonlinear decoupling
method was employed to separate the high-order model into multiple low-order modes,
enabling an analysis of the influence of internal loop parameters on transient stability.

Based on the analysis of the ROAs and corresponding initial points displayed in
Figure 6, it is evident that when the parameters of the inner loop are altered, the ROAs
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and initial points of the system can undergo substantial variations, ultimately leading to
different levels of transient stability. In contrast, the adoption of the quasi-steady-state
model and stability analysis method described in [28] allows the system to sustain transient
stability under a particular set of outer loop parameters. However, this approach fails to
provide insights into the specific impacts of inner loop parameters on stability.
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4. Discussions

The conventional analysis process for high-order nonlinear systems is limited by the
available transient stability analysis tools. Therefore, a corresponding quasi-steady-state
model is commonly developed for grid-forming VSCs, and the phase diagram of the system
operation trajectory is utilized to evaluate the transient dynamics of low-order systems [28].
For comparison, the commonly used quasi-steady-state model was established and derived
to illustrate its limitations in the modeling process.

Considering (23) and (24), the active power control loop can be modeled as:

d2δ

dt2 =
1
Jp

[
Pre f − p− Dp

dδ

dt

]
(29)

The model of the reactive power outer loop is the same as (25). The grid voltage
is denoted as vs, and the voltage on the capacitor side is represented as vC. The grid
impedance, Xg = ωLg, is located between the capacitor and the grid. The active and the
reactive power transferred between the VSC and the grid can be calculated as:

p =
3VsVC
2Xg

sin(δ) (30)

q =
3VC(VC −Vscos(δ))

2Xg
(31)

In conventional transient stability analysis for grid-forming VSCs, to simplify the
analysis, it was assumed that the inner control loop was fast enough to neglect the influence
of its dynamics. Thus, it was assumed that VC = Vdre f . Therefore, substituting (31) into (25),
it can be obtained as:

Vdre f =

(
1
2

Vscos(δ)− 1
3

kqXg

)
+

√(
1
2

Vscos(δ)− 1
3

kqXg

)2
+

2
3

XgQre f +
2
3

XgkqV0 (32)
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Combining (32), (29), and (30), the two-order model for the power angle can be
derived as:

d2δ
dt2 = 1

Jp

{
Pre f − 3Vs

2Xg
sin(δ)

[(
1
2 Vscos(δ)− 1

3 kqXg

)
+

√(
1
2 Vscos(δ)− 1

3 kqXg

)2
+ 2

3 XgQre f +
2
3 XgkqV0

]
− Dp

dδ
dt

}
(33)

Therefore, the current analysis method mainly focuses on deriving a second-order
quasi-steady-state model for grid-forming VSCs, as shown in (33), and using phase plane
analysis to determine the transient stability of the system under different parameters.
Clearly, this model neglects the influence of inner loop control and the converter circuit on
transient stability, which may result in deviations in the analysis results.

Under the same set of parameters, the system trajectory obtained based on the quasi-
steady-state model is shown in Figure 7.
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According to Figure 7, by utilizing the quasi-steady-state model under the same set
of parameters, the phase diagram track of the power angle was plotted. It is evident
that the system eventually converges to a new stable operating point after undergoing
multiple oscillations. However, due to the neglect of the inner control loop in this modeling
approach, variations in inner loop parameters do not affect the analysis results. Therefore,
in comparison, the full-order model and the nonlinear decoupling method can accurately
analyze the transient instability phenomenon that the system may experience.

This section analyzes the impact of different parameters on transient stability through
multiple case studies, as summarized in Table 3.

Table 3. Impact of parameters on transient stability.

Parameters Impact on Transient Stability

Voltage-amplitude sag The greater the voltage magnitude drop, the more likely the system is to experience
transient instability.

Active power control loop parameters Increasing the damping coefficient contributes to transient stability in the system,
while increasing the inertia coefficient may lead to transient instability in the system.

Reactive power control loop parameters Increasing the voltage-reactive power droop coefficient and reactive power reference
value helps to improve the transient stability of the system.

Inner loop control parameters
The control parameters of the current inner loop result in significant changes to the
stability region of the system, and excessively small control parameters of the current
inner loop may lead to transient instability in the system.
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5. HIL Experiment Verification

To validate the conclusions of the transient stability analysis of grid-forming VSCs,
HIL experiments were conducted to verify the analysis cases. The experimental facilities are
shown in Figure 8, including the real-time simulator RTLAB, the TMS320F28377 DSP, and
the oscilloscope. The primary section of the VSC was simulated in real-time using RTLAB,
while the control algorithm was implemented in the DSP controller. The development
board integrated A/D and D/A conversion modules for electrical signal sampling and sent
PWM signals back to RTLAB to control the switching devices of the VSC. An oscilloscope
was used to record the signals that needed to be observed.
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frequency; (i) active and reactive power output when the grid voltage amplitude suddenly drops to 
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power angle, frequency, and output power become more pronounced. When the voltage 
amplitude reaches 0.5 pu, both the power angle and frequency continue to increase, 
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of the capacitor, system power angle; (b) three-phase current waveforms and frequency; (c) active
and reactive power output when the grid voltage amplitude suddenly drops to 0.8 pu (d) Voltage
waveforms of the capacitor, system power angle; (e) three-phase current waveforms and frequency;
(f) active and reactive power output when the grid voltage amplitude suddenly drops to 0.6 pu
(g) Voltage waveforms of the capacitor, system power angle; (h) three-phase current waveforms and
frequency; (i) active and reactive power output when the grid voltage amplitude suddenly drops to
0.5 pu.

According to Figure 9, when the voltage amplitude of the power grid experiences a
minor decrease, the system can easily return to the steady-state operation point following
a brief period of oscillation. This indicates that the system is capable of maintaining
transient stability. However, as the voltage amplitude drops further, the fluctuations in
power angle, frequency, and output power become more pronounced. When the voltage
amplitude reaches 0.5 pu, both the power angle and frequency continue to increase, leading
to sustained oscillations within the system. This observation suggests that the VSG is
no longer synchronized with the power grid, resulting in transient instability within
the system.

Case II: Influence of parameters in the active power control loop on transient stability
In line with the analysis conducted in Section 3, it was observed that the damping

and inertia parameters within the active power control loop significantly influenced the
transient stability of the VSG. This influence is depicted in the experimental waveforms
presented in Figure 10.

Based on the information provided by Figure 10, it is evident that enhancing the
damping parameter of the system improves the transient stability compared with the
system with a smaller damping parameter shown in Figure 9g–i. Furthermore, as the
damping parameter increases, the maximum overshoot of the system power angle and
frequency progressively decreases.

By combining Figures 9g–i and 11, it was observed that increasing the inertia parameter
of the system led to transient instability, as indicated by the divergence of power angle
rates. While a higher inertia parameter can help mitigate frequency fluctuations during
disturbances, it is not conducive to maintaining the transient stability of the system.



Sustainability 2023, 15, 11981 17 of 21Sustainability 2023, 15, 11981 17 of 22 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 10. Experimental waveforms for different damping parameters. (a) Voltage waveforms of the 
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Figure 10. Experimental waveforms for different damping parameters. (a) Voltage waveforms of
the capacitor, system power angle; (b) three-phase current waveforms and frequency; (c) active and
reactive power output with Dp = 1000 (N·m·s)/rad. (d) Voltage waveforms of the capacitor, system
power angle; (e) three-phase current waveforms and frequency; (f) active and reactive power output
with Dp = 1200 (N·m·s)/rad.
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capacitor, system power angle; (b) three-phase current waveforms and frequency; (c) active and 
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Case III: Influence of parameters in reactive power control loop on transient 
stability 

The transient performance of the system was influenced by the parameters of the 
reactive power loop, as the active and reactive power loops were coupled in the control of 
the VSG. Figures 12 and 13 display waveforms captured under various reactive power 
loop configurations. 
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Figure 12. Experimental waveforms for different voltage droop parameters. (a) Voltage waveforms 
of the capacitor, system power angle; (b) three-phase current waveforms and frequency; (c) active 
and reactive power output with 𝑘 = 600 Var/V. (d) Voltage waveforms of the capacitor, system 

Figure 11. Experimental waveforms for different inertia parameters. (a) Voltage waveforms of the
capacitor, system power angle; (b) three-phase current waveforms and frequency; (c) active and
reactive power output with Jp = 100 kg·m2. (d) Voltage waveforms of the capacitor, system power
angle; (e) three-phase current waveforms and frequency; (f) active and reactive power output with
Jp = 300 kg·m2.

Case III: Influence of parameters in reactive power control loop on transient stability
The transient performance of the system was influenced by the parameters of the

reactive power loop, as the active and reactive power loops were coupled in the control
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of the VSG. Figures 12 and 13 display waveforms captured under various reactive power
loop configurations.
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Figure 12. Experimental waveforms for different voltage droop parameters. (a) Voltage waveforms
of the capacitor, system power angle; (b) three-phase current waveforms and frequency; (c) active
and reactive power output with kq = 600 Var/V. (d) Voltage waveforms of the capacitor, system
power angle; (e) three-phase current waveforms and frequency; (f) active and reactive power output
with kq = 1000 Var/V.
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the steady-state operation point. Consequently, appropriately manipulating reactive 
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Figure 13. Experimental waveforms for different reactive reference values. (a) Voltage waveforms of
the capacitor, system power angle; (b) three-phase current waveforms and frequency; (c) active and
reactive power output with Qre f = 4 kVar, and the inertia parameter is Jp = 300 kg·m2. (d) Voltage
waveforms of the capacitor, system power angle; (e) three-phase current waveforms and frequency;
(f) active and reactive power output with Qre f = 10 kVar, and the inertia parameter is Jp = 300 kg·m2.

By combining Figures 9g–i and 12, it was observed that when the voltage droop co-
efficient was small, the voltage reference values decreased significantly under the same
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disturbance. Consequently, the power angle was unable to recover to the steady-state
operation point. As a result, the system experienced continuous oscillation and lost tran-
sient stability.

Combining Figures 11d–f and 13, it is evident that, with the other parameters held
constant, increasing the reactive power reference value facilitates the system returning to
the steady-state operation point. Consequently, appropriately manipulating reactive power
transfer can enhance the system’s resilience against significant disturbances.

Case IV: Influence of inner loop parameters on transient stability
Conventional analysis methods often simplify the inner control loop of high-order

systems by considering it as a unit gain, thereby disregarding the influence of the inner
loop on transient stability. However, experiments demonstrate that the transient stability of
the system is indeed affected by various inner loop parameters, as depicted in Figure 14.
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Figure 14. Experimental waveforms for different inner loop parameters. (a) Voltage waveforms of 
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of the capacitor, system power angle; (e) three-phase current waveforms and frequency; (f) active 
and reactive power output with 𝐾 = 1 ∗ 0.05, 𝐾 = 100 ∗ 0.05, 𝐾 = 0.005 ∗ 0.05. 
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(1) The transient stability of grid-forming inverters diminishes with increasing voltage-

amplitude drop in the grid. In essence, a larger magnitude of voltage drop in the grid 
corresponds to a higher likelihood of transient instability occurring in the system. 

(2) The analysis demonstrates that the damping parameters and inertia parameters 
within the active power loop exert varying influences on the transient stability of 
grid-forming VSCs. A larger damping parameter effectively mitigates power-angle 
fluctuations, facilitating the restoration of steady-state operation points. Conversely, 
a higher inertia parameter narrows the ROA of the critical mode, thereby diminishing 
the system’s transient stability. 

(3) Furthermore, the impact of parameters in the reactive power loop on transient 
stability was also examined. An increased voltage-drop coefficient and reactive 
power reference value are shown to enhance transient stability. 

(4) In the existing literature, the transient stability analysis of grid-forming VSCs relies 
on establishing a quasi-steady-state model that exclusively focuses on the outer 

Figure 14. Experimental waveforms for different inner loop parameters. (a) Voltage waveforms of
the capacitor, system power angle; (b) three-phase current waveforms and frequency; (c) active and
reactive power output with Kvp = 1 ∗ 0.1, Kvi = 100 ∗ 0.1, Kip = 0.005 ∗ 0.1. (d) Voltage waveforms
of the capacitor, system power angle; (e) three-phase current waveforms and frequency; (f) active
and reactive power output with Kvp = 1 ∗ 0.05, Kvi = 100 ∗ 0.05, Kip = 0.005 ∗ 0.05.

Based on Figure 14, it was observed that relying solely on the oversimplified model
focusing on the outer power control loop may lead to the incorrect conclusion that the
system can maintain transient stability during voltage-amplitude drops. However, when
the inner control parameters are modified while keeping the outer loop parameters con-
stant, transient instability arises. This transient instability phenomenon exhibited in the
experiments aligns with the analysis results presented in Figure 6.

6. Conclusions

This paper presents the development of a full-order large signal model for grid-
forming VSCs and applies a nonlinear decoupling method to decompose the high-order
system into multiple low-order modes. The transient stability of the original system was
indirectly assessed by employing the inverse trajectory method for the low-order modes.
HIL experiments were conducted to validate the theoretical analysis findings. The main
conclusions of the transient stability analysis for grid-forming inverters are as follows:
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(1) The transient stability of grid-forming inverters diminishes with increasing voltage-
amplitude drop in the grid. In essence, a larger magnitude of voltage drop in the grid
corresponds to a higher likelihood of transient instability occurring in the system.

(2) The analysis demonstrates that the damping parameters and inertia parameters
within the active power loop exert varying influences on the transient stability of
grid-forming VSCs. A larger damping parameter effectively mitigates power-angle
fluctuations, facilitating the restoration of steady-state operation points. Conversely, a
higher inertia parameter narrows the ROA of the critical mode, thereby diminishing
the system’s transient stability.

(3) Furthermore, the impact of parameters in the reactive power loop on transient sta-
bility was also examined. An increased voltage-drop coefficient and reactive power
reference value are shown to enhance transient stability.

(4) In the existing literature, the transient stability analysis of grid-forming VSCs relies on
establishing a quasi-steady-state model that exclusively focuses on the outer control
loop. This approach is relatively accurate when there is a significant difference in
bandwidth between the inner and outer loops. However, current methods completely
disregard the impact of the inner control loop, rendering them unable to analyze the
transient stability of the system when the inner loop parameters change. In this paper,
the method for developing the quasi-steady-state model based on the existing litera-
ture is presented. Subsequently, the existing method is used to analyze the transient
stability with the same parameters, and the obtained results are compared with the
stability analysis results of the full-order model adopted in this paper. The compar-
ison indicates that the proposed method offers a more comprehensive approach to
transient analysis for grid-forming VSC systems.
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