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Abstract: This study presents a multi-objective optimal framework for deploying traffic monitoring
cameras at road networks. Compared with previous studies that focused on addressing single traffic
problem such as OD estimation, link flow observation, path flow reconstruction, and travel time
estimation, this study aims to address a comprehensive traffic management problem, including
crash prevention, traffic violation governance, and traffic efficiency improvement. First, a potential
principle for selecting the location of traffic monitoring deployment is determined, taking into account
the key signalized intersections, areas prone to traffic congestion, crash-prone spots, and areas prone
to traffic violations. Then, a multi-objective optimal model is developed to minimize the ATFM
(i.e., average traffic volume of each five minutes), TCF (i.e., traffic crash frequency), and TVF (i.e.,
traffic violation frequency) while adhering to cost constraints. Finally, RVEA and NSGA-II algorithms
are used to solve the multi-objective optimal model, respectively, and a comprehensive metric is
proposed to evaluate the deployment schemes. The case study results demonstrate that the solutions
obtained by the RVEA algorithm outperform those of the NSGA-II algorithm, and the best traffic
monitoring deployment rate is 62.79%, under cost constraints. In addition, the comparison using
the FAHP method also illustrates that the RVEA scheme is superior to the NSGA-II scheme. The
above research results could potentially be used to optimize the locations of traffic cameras in road
networks, which help to improve traffic management.

Keywords: multi-objective optimal design; traffic monitoring cameras; RVEA method; NSGA-II
method; deployment rate

1. Introduction

With the rapid development of socio-economic and urban motorization, traditional
traffic management methods cannot meet the increasing demand for precise traffic gover-
nance. As an automatic traffic management method, an electronic traffic monitoring facility
can assist in monitoring the public security and traffic operation of an urban region, thus
improving traffic management efficiency. Generally, the front-end equipment of a traffic
monitoring facility includes ancillary products such as image acquisition and processing
equipment, shooting equipment, auxiliary light sources, and stanchions. Traffic monitoring
cameras are important sensor equipment in the Internet of Things, and they can record rich
space–time information with the advantages of being all-weather, having high coverage,
and having real-time characteristics, which highly improves urban traffic congestion and
ensures traffic safety. Although traffic monitoring cameras are normally installed in limited
locations, they provide crucial information for estimating traffic conditions and vehicle
safety. Reasonable deployment and design of traffic monitoring facilities could promote
their validity and utilization, thus maximizing the monitoring benefits. However, current
traffic monitoring devices are not equipped with unified standards, and the monitoring
points are numerous. There is still a challenging question as to how traffic monitoring
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cameras should be installed at proper locations to maximize the overall road network
surveillance benefits.

In view of the arbitrariness of traffic monitoring settings, this study aims to propose
an optimized deployment scheme for traffic monitoring cameras, taking costs into con-
sideration. One issue with deploying traffic monitoring cameras is that cameras must be
arranged in appropriate locations to maximize monitoring efficiency while taking into
account certain constraints [1]. To make full use of construction funds, the benefits of
monitoring crashes, traffic violations, and congestion are comprehensively considered
when implementing traffic monitoring cameras. The proposed traffic monitoring camera
deployment method is of great significance for optimizing the current road traffic resource
layout, and further supporting the precise management and control of road traffic.

Previous studies have been conducted to study the optimal deployment of different
traffic sensors for various purposes [2–6]. The related sensors include inductive loop
detectors, radar detectors, traffic video surveillance, etc. There are several types of data
that can be observed with various types of traffic sensor equipment, and the simplest
and most commonly used sensor is the loop detector, which can capture real-time traffic
flow data. Numerous studies have explored the problem of loop-detector deployment on
urban roads and highways. Chen et al. [7] determined the optimal quantity and locations
of loop detectors based on the principle of maximizing link- and route-flow coverage
information. A method for the sequential identification of detectors and iterative algorithms
was designed to solve this deployment problem. Numerical examples demonstrated
that the proposed deployment model could determine the optimal scheme of detectors.
An et al. [8] presented an optimal method for loop-detector layout based on network
centrality. They built a traffic network centrality model (TNCM) that considers travel time
and origin–destination (OD) demand. The experiments showed that the TNCM could
reduce the deployment cost of traffic detectors, and improve the monitoring benefits of
the traffic network. Contreras et al. [9] analyzed the observability problem in terms of
sensor placement, and presented a lumped-parameter-based ODE model for comparing the
deployment of various sensors along a highway. Morrison and Martonosi [10] provided
a new necessary condition on the location of traffic sensors to enable the traffic flow
throughout the network to be computed.

Apart from loop detectors, point-to-point sensors such as vehicle identification (AVI)
readers installed at the roadside can also obtain instantaneous traffic data. In terms of the
location placement of AVI readers, a potential game of AVI sensors was developed to find
their optimal locations using an incremental-search method, while considering costs [11].
A case in Shanghai showed that the proposed method was superior to other algorithms. Li
et al. [12] introduced a deployment score indicator to present the deployment priorities of
AVI sensors for a better reconstruction of vehicles’ paths. Then, a random work method was
developed to simulate massive path data, and a path-level bi-level programming model
(P-BPM) was constructed to find the optimal layout of the AVI sensors for each simulated
path.

With the development of information sensing technology, traffic data detection meth-
ods have become increasingly varied. Roadside LiDAR and portable Bluetooth have also
been used to capture real-time traffic data. Various studies have been conducted regarding
the deployment of these traffic sensors [13–15]. Lin et al. [13] investigated the deployment
location of mobile LiDAR based on its built-in characteristics and mechanical structure,
forming an optimization model to be solved with an elitist-preservation genetic algorithm
(EGA). The results showed that the optimal installation height of the mobile LiDAR was
0.5 m, and the rotation angles in the urban road and highway scenarios were 128.4 degrees
and 148.0 degrees, respectively. Given the limited coverage of a single roadside LiDAR
sensor, Wu et al. [14] investigated the deployment of multiple roadside LiDAR sensors
based on a point-aggregation-based partial iterative closest point algorithm (PA-PICP).
The results showed that the effectiveness and accuracy of PA-PICP was greatly improved
compared with previous methods. Considering the system errors of the fixed traffic sensors
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such as loop detectors, AVI, and LiDAR, Park and Haghani [15] deployed the portable
Bluetooth sensors based on a two-stage stochastic formulation. The first stage determined
the optimal number of Bluetooth sensors, and the second stage evaluated the specific sensor
arrangements in different scenarios.

With respect to the optimization method of deployment for road traffic surveillance,
Zhao [16] proposed a binary integer programming method to analyze the deployment
of a traffic monitoring camera within a small area. Then, a visibility model that aims to
minimize the number of traffic monitoring cameras and maximize monitoring visibility
was presented. Ma et al. [17] explored the connection between the deployment of traffic
monitoring cameras and vehicles. The optimal deployment for traffic cameras under
different conditions was finally obtained. A new optimization method that considers the
constraining relationships between the traffic cameras and the geographic environment
was proposed by Wang et al. [18]. The optimal objective was to minimize the number of
the traffic camera settings, so an optimization model that included the graph structure, cost
function, and heuristic function for the algorithm was developed. The results illustrated that
the camera pose, setting location, and size of the target area were important contributing
factors to the efficiency of traffic monitoring. Xie et al. [19] studied the traffic monitoring
layout problem of video surveillance systems in railway passenger transport hubs, and
they utilized a heuristic algorithm to solve the deployment model. The results indicated
that the model and the algorithm could effectively solve the problem of video surveillance
placement in railway passenger hubs.

Although large numbers of studies have attempted to optimize the locations of traffic
sensor settings or the number of deployments, the sensors mentioned in the above literature
are subject to performance disruptions due to various system errors and sensor failure
problems, which has an influence on the quality of information obtained from the traffic
sensor network. Given the potential failure of different traffic sensor systems, some studies
have incorporated the sensor failure problem into the optimal deployment models. Li
and Ouyang [20,21] proposed a reliable facility location model to optimize the benefits of
traffic surveillance from synthesized sensor pairs, using customized greedy and Lagrangian
relaxation algorithms to solve the problem of traffic surveillance failures. Then, the man-
agerial insights on how optimal sensor deployment and surveillance benefits vary with
surveillance objective were discussed. According to the different surveillance purposes
and failure scenarios of traffic monitoring cameras. Zhu et al. [22] incorporated the traffic
sensor failure into the optimal sensor placement model, and the results showed that the
consideration of the failure problem could improve the sensor placement pattern. Salari
et al. [4] proposed a sensor setting location model that minimizes the effect of sensor failure
on the inference of link flow for unobserved links. Danczyk et al. [23] built a probabilistic
sensor location model for point sensors along freeway corridors, and then they considered
the probability of sensor failures and sought an optimal configuration that minimized the
expectation of performance errors.

Considering the low coverage of traffic sensor and the single data source detection
in previous studies. Zhan et al. [24] proposed a genetic algorithm to solve the objective
optimization model of the multi-type traffic sensors deployment. The results indicated
that the developed method was efficient in allocating multi-type sensors to improve the
accuracy of travel time estimation.

Overall, prior studies have developed many models to solve the allocation problem of
traffic sensors, most of which are primarily focused on limited road sections or expressways
and solve single traffic problem such as OD estimation, link-flow observation, path-flow
reconstruction, and travel time estimation. Unfortunately, little research in the context of
traffic sensor deployment has addressed the comprehensive traffic optimization problem
from a systematic perspective that integrates traffic safety, traffic efficiency, and traffic order.
Specifically, the current multi-objective optimal deployment of traffic monitoring systems
at the intersections of urban road networks is still scarce. In addition, the deployment
locations and the relevant data in most studies were primarily available in simulated
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scenarios. The exploration of deployment for traffic monitoring cameras on actual road
networks using large-scale empirical data is still limited. To fill these knowledge gaps, this
study is conducted from the following perspectives.

(i) A multi-objective optimization model for the deployment of road traffic monitoring
cameras at urban intersections is developed, taking into account the current traffic
camera locations, locations prone to congestion, locations prone to crashes, and loca-
tions prone to traffic violations. The optimization objective is to minimize the ATFM
(i.e., average traffic volume of each five minutes), TCF (i.e., traffic crash frequency),
and TVF (traffic violation frequency), and the penalty function is used to deal with the
constraints. The value of the penalty function is determined as the maximum value
between the cost difference and the cost of the constraint and 0.

(ii) To boost the efficiency of the model solution, we use a RVEA algorithm to solve the
developed multi-objective optimization model for road traffic monitoring deployment.
The proposed RVEA algorithm could adjust the reference vector based on the range of
the objective values (e.g., ATFM, TCF, and TVF), from which the uniformly distributed
solutions are obtained.

(iii) A comprehensive evaluation index system that considers both the coverage rate
and matching rate is built to validate the rationality of the deployment schemes of
the traffic monitoring cameras. Then, the FAHP approach is used to evaluate the
final deployment schemes. Such a comprehensive evaluation and a comparison of
deployment schemes have never been explored in previous studies to ensure the
engineering availability of the traffic monitoring cameras’ deployment.

This paper is organized as follows. In Section 2, the method is studied, which con-
tains the multi-objective optimization model, algorithm, and model evaluation metrics. In
Section 3, a case study from the Wujiang District of Suzhou, China, is selected to demon-
strate the deployment schemes of the traffic monitoring cameras. In Section 4, a brief
discussion and future direction are proposed. The workflow is shown in Figure 1.
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2. Method
2.1. Deployment Principle and Optimization Objective

Traffic monitoring is carried out by front-end cameras that aim to obtain real-time road
conditions and various traffic data. The demands of traffic monitoring cameras are several:
(1) obtain traffic flow data and judge road congestion; (2) trace the occurrence of crashes;
and (3) identify traffic violations. This study aims to optimize the deployment scheme of
traffic monitoring cameras, taking financial constraints into consideration, to ensure that
the monitoring system obtains enough traffic information and maintains a high regional
coverage. Generally, surveillance cameras are installed at crash-prone sections, violation-
prone sections, traffic congestion sections, and key intersections. This study proposes
several principle settings for traffic monitoring cameras: at a main intersection, with a
signal control; in a congestion-prone location and an area with high saturation; at locations
where crashes are inclined to occur; and at locations where traffic violations frequently
occur. Based on the four setting principles, key intersections, traffic congestion-prone spots,
crash-prone spots, and traffic violation-prone spots will be taken into consideration.

The objective of the traffic monitoring cameras’ deployment is to optimize the surveil-
lance efficiency of the cameras. We assume the matrix formed by all potential traffic camera
deployment points is V = {v1, v2, . . . , vi, . . . , vn}. Then, the relationship of traffic volume,
crashes, and traffic violations to traffic monitoring camera settings is analyzed below.

(1) Traffic volume analysis

In this study, the traffic volume of each potential deployment point is counted for a
total of 3–4 days. In order to conveniently count and determine the relative traffic volume at
each potential deployment location, an average traffic volume of each five minutes (ATFM)
is determined.

AFTMi =
∑ M

Ni
(1)

where AFTMi is the average traffic volume of the ith potential deployment point; ∑ M is
the sum of statistical traffic volume of all the potential deployment point; and Ni is the
statistical frequency of traffic volume for every 5 min at the ith potential deployment point.

According to Equation (1), we count the traffic volume of all the potential deployment
points. Since the traffic volume, frequency of crashes, and frequency of traffic violations
present a dimensional difference, it is necessary to normalize them first. The optimization
goal is to increase the traffic detection ability. However, as the objective of the following
optimization model is to minimize the function, the traffic volume needs to be processed
with a reversed manner. The reversed processing of traffic volume is carried out as follows:

ai =
AFTMMax − AFTMi

AFTMMax − AFTMMin
(2)

where AFTMMax and AFTMMin are the maximum and minimum traffic volume of all
the potential deployment points within 5 min; ai is the traffic volume attribute of the ith
potential deployment point after reverse-processing.

(2) Crash analysis

The number of crashes refers to the total frequency of historical motor vehicle crashes
occurred at the potential deployment points. The spatial connection tool of ArcGIS is used
to count the historical traffic crash frequency (i.e., TCF) within a 60-m range of the potential
deployment points, and TCF reflects the traffic safety attributes of the potential deployment
points. In this section, the optimization goal is to increase the crash detection ability, but
the objective function is the minimization. It is necessary to process the crash frequency in
reverse, as shown:

bi =
TCFmax − TCFi

TCFmax − TCFmin

(3)
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where TCFmax is the maximum crash frequency of all the potential deployment points for
one year; TCFmin is the minimum crash frequency of all the potential deployment points
for one year; and bi is the crash attribute of the ith potential point after reverse-processing.

(3) Traffic violation analysis

The number of traffic violations refers to the total frequency of historical motor vehicle
violations that have occurred at the potential deployment points. The spatial connection
tool is used to count the historical traffic violation frequency (TVF) within 60 m of the
potential points. The optimization goal is to increase the traffic violation detection ability,
while the objective function is the minimization value. It is necessary to process the traffic
violation frequency in reverse, as shown:

ci =
TVFmax − TVFi

TVFmax − TVFmin

(4)

where TVFmax is the maximum traffic violation frequency of all the potential deployment
points for one year; TVFmin is the minimum traffic violation frequency of all the potential
deployment points for one year; and ci is the traffic violation attribute of the ith potential
deployment point after reverse-processing.

2.2. Multi-Objective Optimization Model

After determining the optimization objectives, this section analyzes the optimization
modeling process of the traffic monitoring cameras’ deployment. The traffic monitoring
cameras’ deployment is transformed into a multi-objective optimization problem with
constraints. Specifically, the ATFM, TCF, and TVF are the optimization objectives, then the
deployment cost is the constraint. In the optimization process, the dominance relations
among the optimization objectives for all the potential deployment points are compared,
respectively, in order to find the solution that minimizes each objective.

The multi-objective optimization with cost constraints may be expressed as follows:

minF(X) = [ f1(x), f2(x), . . . , fn(x)]T (5)

where X =
{

x1, x2, . . . , xp
}

is the decision vector whose dimension is p (the number of
the potential deployment points), and 0–1 integer programming is used to represent the
selection status of the potential deployment points: xi ∈ {0, 1}, i ∈ {0, 1, . . . , p}; xi = 0,
means that this potential deployment point is not selected as the setting location of the
traffic cameras, and xi = 1 means that this point is selected as the setting location.

F(x) is an objective function formed by mapping the three objective components (e.g.,
ATFM, TCF, TVF) from decision space to objective space. The calculation of each objective
component is expressed as follows.

fk(X) =
p

∑
i=1

ek
i xi (6)

k ∈ {1, 2, . . . , n} denotes the kth objective function, p is the total number of the
deployment location, ek

i represents the traffic attribute value (i.e., the normalized ATFM,
TCF, and TVF represented by ai, bi, ci) of the ith setting point of the traffic monitoring
cameras.

f1(X), f2(X), . . . , fn(X) represent the functional value of each related component. As
mentioned above, the components include the number of traffic violations, the number
of crashes, and traffic volume. Therefore, the optimization objective function for each
component can be obtained as follows:

min f1(X) =
p

∑
i=1

e1
i xi (7)
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min f2(X) =
p

∑
i=1

e2
i xi (8)

min f3(X) =
p

∑
i=1

e3
i xi (9)

where min f1(X) denotes the sub-objective function that is used to optimize the number of
traffic violations, min f2(X) represents the sub-objective function that is used to optimize
the number of crashes, and min f3(X) denotes the sub-objective function that used to
optimize traffic volume. e1

i , e2
i , e3

i denote the values of traffic violation attribute (ai), crash
attribute (bi), and traffic volume attribute (ci) of the ith deployment point of the traffic
monitoring cameras. xi is the 0–1 variable, “1” represents that there is a traffic monitoring
camera at the ith traffic monitoring camera point, and “0” denotes that there is no traffic
monitoring camera.

Large or moderate-sized urban networks are required to deploy a great number of
traffic monitoring cameras, which incurs substantial costs [25,26]. However, the budget for
road traffic cameras is limited, and it is impossible to cover all the potential deployment
points. Thus, there is a need to address the problem of optimal traffic camera locations
within a limited budget. In this study, the setting cost of the traffic monitoring camera is
taken as the constraint condition. The cost constraint is shown as follows:

C ≤∑ C(x, x = 1) = ∑ Pi × Ci (10)

where C is the total budget available to set the traffic monitoring cameras, C(x) is the cost
of installing and maintaining the camera, Ci is the installation and maintenance cost at
the ith deployment location, and Pi is the number of traffic cameras deployed at the ith
location.

For convenience of calculation, the constraints need to be transformed into the form
of equality. The penalty function is used to deal with the constraints. The value of the
penalty function is determined as the maximum value between the cost difference (i.e.,
the difference between the final deployment cost and the total budget) and 0. The penalty
function is shown as follows:

ρ(x) =
p

∑
i=1

max

{
0,

p

∑
i=1

Pi × Ci × xi − C

}
(11)

Based on the analyses above, a multi-objective optimization model of traffic cameras
is shown as follows:

min f1(X) =
p
∑

i=1

(
AFMTmax−AFMTi

AFMTmax−AFMTmin

)
× xi

min f2(X) =
p
∑

i=1

(
TCFmax−TCFi

TCFmax−TCFmin

)
× xi

min f3(X) =
p
∑

i=1

(
TVFmax−TVFi

TVFmax−TVFmin

)
× xi

St.
p
∑

i=1
Pi × Ci × xi ≤ C

xi ∈ {0, 1}, i = 1, 2, . . . , p

(12)

The solution of the model is a string with length p, X = x1, x2, . . . xp; xi = 1 denotes that
the current potential deployment point is selected as the traffic camera location, and xi = 0
represents that the potential deployment point is not the traffic camera location.

Since the budget of the traffic camera deployment is limited and cannot cover all
the potential points, the cost is taken as the constraint condition. The constraint function
determines the feasible region of the decision vector. In our study, the total number
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of potential deployment points is 43 (see the corresponding description of Section 3.1).
Considering the budget limitation, the total cost constraint is set as 30 c in the process of
calculation (c is the total cost of the traffic camera operation and maintenance at a single
potential deployment point). Then, the inequality constraints in the above optimization
model are transformed into the following penalty functions:

ρ(x) =
p

∑
i=1

max

{
0,

p

∑
i=1

Pi × Ci × xi − 30× c

}
(13)

The value of the penalty function could help to judge whether the solution x satisfies
the constraint. If the solution satisfies the constraint, ρ(x) = 0, Otherwise, ρ(x) > 0.

The objective function is regarded as the fitness judgment reference, and the penalty
function is used to judge whether the solution is feasible. In the calculation, no matter
whether the solution satisfies the constraint, if it satisfies the domination relation or the
probability requirement, it can be added to the pareto solution set. Notably, during the
calculation, the solution set containing feasible solutions can be updated at any time.

2.3. RVEA Algorithm

The reference vector-guided evolutionary algorithm (RVEA) is used to solve the
multi-objective optimization model. The RVEA algorithm can transform a multi-objective
optimization into several single-objective optimization problems, and regards the preferred
subset of the Pareto as the objective. The RVEA algorithm adjusts the reference vector by
dealing with an objective function that is not well normalized through an adaptive strategy.
The adaptive strategy adjusts the distribution of the reference vectors based on the range
of different objective functions, which ensures that the candidate solutions are uniformly
distributed in the objective space, even if the objective function is not well normalized. This
strategy is mainly used to obtain uniformly distributed Pareto optimal subsets [27]. The
workflow of the RVEA algorithm is shown as follows.

(1) Algorithm preparation–generation of reference vectors

Without loss of generality, all reference vectors used in this study are unit vectors in
the first quadrant whose origin is the starting point. In general, this unit vector can be
generated through dividing any vector by its norm. However, the uniformly distributed
unit reference vectors are required for uniformly distributed coverage of the target space.
To generate the uniformly distributed reference vectors, a set of uniformly distributed
points is generated first on the element hyperplane using the canonical simplex lattice
design method. {→

µ i =
(
µ1

i , µ2
i , . . . , µM

i
)

{
µ

j
i ∈

(
0
H , 1

H , . . . , H
H

)
,

M
∑

j=1
µ

j
i = 1

(14)

where i = 1, 2, . . ., N, N is the number of uniformly distributed points, M is the target
number, and H is the positive integer of the simplex lattice design. Then, the corresponding
unit reference vector

→
v i may be obtained through transformation.

→
v i =

→
µ i∥∥∥→µ i

∥∥∥ (15)

We can map the reference point from a hyperplane to a hypersphere. According to the
properties of the simplex lattice design, given H and M, the total number is N = (H + M − 1,
M − 1) uniformly distributed reference vectors.
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Given two vectors v1 and v2, the cosine of the acute angle θ between the two vectors
could measure the spatial relationship between them. The calculation formula is as follows:

cos θ =
v1.v2

‖v1‖‖v2‖
(16)

where ‖‖.‖‖ is the norm that denotes the vector length.

(2) The framework of RVEA

(1) Progeny generation

- An offspring population is created by simulating the binomial crossover (SBX) and
polynomial mutation.

- Cross-selection is carried out without determined strategy, and each of the N individ-
uals has the same probability of participating in the reproduction process.

- The reference vector selection strategy effectively manages the objective space conver-
gence and diversity, ensuring each individual within the subspace can make the same
contribution to the total population.

(2) Reference vector guidance selection
The reference vector guide selection consists of the four steps:
Step 1: Objective conversion
The starting point of the reference vector is always the origin of coordinates. The

objective function (i.e., F(t) =
{

f (t1), f (t2), . . . , f (t|p|)
}

) in the population is converted

into F′(t).
f ′t,i = ft,i − zmin

t (17)

where zmin
t = (zmin

(t,1), zmin
(t,2), . . . , zmin

(t,m)) represents the minimum objective calculated through
F(t).

The function of the conversion operation is to ensure that the converted objectives are
in the first quadrant, where the poles of each objective function are on the corresponding
coordinate axes. This covers the reference vector to the greatest extent.

Step 2: Population division
The population Pt is divided into N subpopulations by linking each individual with

its nearest reference vector, and the spatial relationship of two vectors is measured by the
acute angle between the two vectors.

The cosine between the objective vector and reference vector can be calculated as
follows:

cos θt,i,j =
f ′t,i.vt,j∥∥∥ f ′t,i

∥∥∥ (18)

The subpopulation is divided using the following equation:

_
P =

{
It,i|k = argmax cos θt,i,j

j ∈ {1, . . . , N}

}
(19)

Step 3: APD distance
Once the population Pt is divided into N subspecies Pt1, Pt2, . . . , PtN , an elite from each

subpopulation can be selected to create Pt+1 for the next generation. Since our motivation
is to find a solution at each reference vector closest to the ideal point, the selection criteria
include two sub-conditions: convergence criteria and diversity criteria. The convergence
criterion is measured using ‖ f ′‖ and the diversity criterion is measured using θ. To balance
the relationship between the convergence criterion and diversity criterion, the APD distance
is defined as follows, where P is a penalty function related to θ.

dt,i,j = (1 + P(θt,i,j)).
∥∥ f ′t,i

∥∥ (20)
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P(θt,i,j) = M.
(

t
tmax

)α

.
θt,i,j

λvt,j

(21)

λvi,j = min
i∈{1,...,N},i 6=j

〈
vt,i, vt,j

〉
(22)

α is a user-defined parameter, and λ and vt,j form the angle of the other reference
vector that forms the smallest angle.

Generally, the multi-objective optimization emphasizes convergence in the early stage
and diversity in the final stage. The penalty function is designed based on this problem.
In the early stage, t ≤ tmax, so P ≈ 0 means d ≈ ‖ f ′‖, ‖ f ′‖ emphasizes convergence. In
the later stage, t gradually increases, and so does the influence of P. The angle λ is used to
normalize the angle in the subspace specified by vt,j. This angle normalization process is
of particular interest when the distribution of some reference vectors is too dense (or too
sparse), resulting in very small (or large) angles between the candidate solution and the
reference vector.

Compared with other method (such as NSGA-II method), the normalized angle pro-
posed in RVEA will not change the actual position of the target. Angle normalization
performed independently within each subspace does not affect the distribution of candi-
date solutions in the other subspaces. In addition, since the sparsity of the distribution of
candidate solutions is directly related to the dimension of the target space (i.e., the value of
M), the penalty function P is also related to M, which adaptively adjusts the range of the
penalty function value.

Step 4: Reference vector adaptation
A set of uniform distributed reference vectors is given when all the objectives are

normalized to the same range (such as the range of [0, 1]). However, the objective in
real situation could be converted to different ranges. Then, if the uniformly distributed
reference vector is still considered, the inhomogeneous solution will be prompted. With the
reference vector adaptation strategy [27], RVEA will obtain uniformly distributed solutions,
even if the objective functions are not normalized to the same range.

RVEA adjusts the reference vector based on the range of the objective values, shown
as follows.

vt+1,i =
v0,i.(zmax

t+1 − zmin
t+1)∥∥v0,i.(zmax

t+1 − zmin
t+1)

∥∥ (23)

where z is the objective, which represents the difference between the extreme values under
a certain target.

2.4. Evaluation Metrics

When evaluating the deployment scheme of a road traffic monitoring camera, it is
necessary to design effective evaluation metrics. Two kinds of metrics are proposed to
evaluate the optimal deployment scheme of traffic monitoring cameras: the coverage rate
and matching rate.

2.4.1. Coverage Rate

(1) Coverage rate of mileage road network

Coverage rate of mileage road network (CRMN) is the ratio between the length of road
segments that can be monitored by all traffic monitoring cameras (repetitive road sections
are not included) and the total mileage of the road network in the study area, shown as
follows:

Ch =
Mh
Mth
× 100% (24)

where Mh represents the road segment length that could be monitored by all road monitor-
ing cameras, and Mth represents the total road network mileage.
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(2) Coverage rate of traffic violation hotspots

The coverage rate of traffic violation hotspots (CRTV) is the ratio of the number of
traffic violation hotspots that can be observed by traffic monitoring cameras to the total
number of traffic violation hotspots.

Cw =
Mw

Mtw
× 100% (25)

where Mw represents the number of traffic violation hotspots that can be monitored by all
road traffic monitoring cameras, and Mtw represents the total traffic violation hotspot.

(3) Coverage rate of crash hotspots

The coverage rate of traffic crash hotspots (CRTC) refers to the ratio between the
number of crash hotspots that can be observed by traffic monitoring cameras and the total
crash hotspots. The calculation of coverage of crash hotspots is shown as follows:

Cs =
Ms

Mts
× 100% (26)

where Ms represents the number of crash hotspots that can be monitored by all road
monitoring facilities, and Mts represents the number of all crash hotspots.

2.4.2. Matching Rate

(1) Matching rate of traffic flow monitoring

The matching rate of traffic flow monitoring (MRTFM) refers to the ratio between
the number of road sections of traffic flow monitoring that can be observed by traffic
monitoring cameras and the total road sections of traffic flow monitoring.

Cl =
Nl
Ntl
× 100% (27)

where Nl represents the number of road sections of traffic flow monitoring that could be
observed by road monitoring cameras, and Ntl represents the number of total road sections.

(2) Matching rate of important signalized intersections

The matching rate of important signal intersections (MRISI) refers to the ratio between
the number of signal control intersections that can be observed by road monitoring cameras
and the number of all signal control intersections. The calculation is as follows:

Cj =
Nj

Ntj
× 100% (28)

where Nj represents the number of the important signalized intersections that could be
monitored by all road monitoring cameras, and Ntj represents the number of total important
signalized intersections.

The above metrics are evaluated based on the National Development and Reform
Commission of China [28], which requires that the traffic video surveillance coverage and
the new and rebuilt HD camera ratio in key public areas and key industries should be
up to 100%. Thereby, the metric evaluation criterion of road traffic monitoring camera
deployment is obtained (see Table 1).
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Table 1. Metric evaluation criterion of road monitoring implementation.

Evaluation Metric Description Calculation Method Level of Evaluation

Coverage rate
CRMN Ch = Mh

Mth
× 100%

Metric ≥ 90%, Very good
75% ≤ Metric < 90%, Good

60% ≤ Metric < 75%, Moderate
Metric < 60% : Poor

CRTV Cw = Mw
Mtw
× 100%

CRTC Cs =
Ms
Mts
× 100%

Matching rate MRTFM Cl =
Nl
Ntl
× 100%

MRISI Cj =
Nj
Ntj
× 100%

3. Case Study
3.1. Study Area and Data Preparation

The Wujiang District of Suzhou, China, was selected as the study area. The specific
ranges of the selected area are the rectangular region enclosed by Ludang Road, Tiyu Road,
Songling Avenue, and Taihu Street. We collected one year’s historical crash data, traffic
violation data, and traffic volume data from the study area. Then, the traffic violation
hotspots and crash hotspots could be identified using these historical data. The locations of
the current traffic monitoring cameras, traffic violation hotspots [29], crash hotspots [29,30],
and the main intersections of the study area were determined and mapped onto the road
network (see Figure 2a). Then, the potential deployment points used to optimize the road
monitoring camera settings were determined according to the setting principle of the road
monitoring camera. These potential points consist of two parts: the original monitoring
points, and the additional monitoring points. The original traffic monitoring points are
primarily the current traffic monitoring camera locations, and the additional monitoring
points contain the key intersections that feature a high traffic volume, frequent traffic
violations, and frequent crashes. A total of 43 potential traffic monitoring points were
determined in this study (see Figure 2b, wherein the numbers denote the deployment
location ID).

The 43 potential traffic monitoring camera deployment points, and the locations of
key intersections, crash hotspots, and traffic violation hotspots for the year of 2019 were
imported into ArcGIS. Among these, the potential traffic monitoring camera deployment
points are the major reference points, and the key intersection locations, crash hotspot
locations, and traffic violation hotspot locations are the traffic attribute points. The ATFM,
TCF, and TVF within a 60-m range of the potential traffic monitoring points are selected as
the monitoring indicators. Then, an attribute connection through ArcGIS is conducted to
link the potential traffic monitoring locations and the corresponding ATFM, TCF, and TVF.
Finally, the statistical results of the potential traffic attributes at the monitoring locations
are obtained, which will be used as the optimization set for the potential deployment of
traffic monitoring cameras. In terms of the limited budget for setting up traffic monitoring
cameras, it is impossible to cover all potential traffic monitoring points, so cost is taken as a
constraint condition. Although there are 43 potential traffic monitoring points, the total
cost constraint is set at 30c.
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Figure 2. Study area and traffic monitoring locations. (a) Monitoring camera and event locations.
(b) Potential traffic monitoring locations.

3.2. Results
3.2.1. Traffic Attributes and the Distribution of the Potential Traffic Monitoring Points

We counted the ATFM, TCF, TVF of the total 43 potential traffic monitoring points for
the year 2019, as shown in Figure 3.
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Figure 3. Traffic attributes and the distribution of potential traffic monitoring points. (a) TCF
distribution. (b) TVF distribution. (c) ATFM distribution.

The traffic volume, crash frequency, and violation frequency of each potential de-
ployment point can be identified. Different deployment locations for traffic monitoring
cameras present significant differences for the ATFM, TCF, and TVF, respectively. Specif-
ically, the traffic monitoring camera at location ID 16 (i.e., the intersection of Suzhouhe
Road-Taihu Street) showed the most significant crash situation, with 62 crashes occurring in
one year, while no crash occurrences have been reported at location ID 18 (the intersection
of Suzhouhe Road–Gaoxin Road). Likewise, the locations of the highest and lowest fre-
quency of traffic violations among the 43 potential traffic monitoring camera deployment
points are location ID 24 (i.e., the intersection of 230 Provincial Road–Taihu Street, where
6278 traffic violations occurred in one year) and location ID 11 (i.e., the intersection of
230 Provincial Road–Tiyu Road, where 12 traffic violations occurred in one year). The
location with the highest traffic volume is the location ID 8 (i.e., the intersection of Songling
Avenue–Pangyang Road, where the ATFM is 137 veh/5 min) and the location with the
lowest traffic volume is location ID 22 (i.e., the intersection of Shuixiu Street–Taihu Street,
where the ATFM is 8.5 veh/5 min).

The values of ATFM, TCF, TVF present dimensional differences, making it difficult to
analyze their impacts on the deployment location of traffic monitoring cameras. Accord-
ingly, we normalized them into the range of [0, 1], as shown in Figure 4.
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Figure 4. Normalized traffic attributes of potential traffic monitoring camera deployment points.

3.2.2. Multi-Objective Optimization Results

To compare the performance of different algorithms, we used our proposed method,
RVEA, and another multi-objective optimization algorithm, NSGA-II, to solve the multi-
objective optimization model, respectively. In the process of solving the NSGA-II method,
the number of optimization objectives is M = 3 (minimizing the ATFM, TCF, and TVF), the
initial population is N = 100, and the maximum number of iterations is maxFE = 1000. The
0–1 integer programming method is used to determine whether the potential deployment
point should be chosen as the monitoring setting location. Since there are 43 potential
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deployment points, there are 43 problem variables. With regard to the RVEA method, the
initial population, the optimization objective, and the maximum number of iterations are
the same as those of the NSGA-II method. Then, the self-defined parameter is a = 2, fr = 0.1.
The spatial iterations of the three objective functions (e.g., f1, f2, f3) using NSGA-II and
RVEA are shown in Figure 5a,b, respectively.
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Among the 100 schemes of traffic monitoring camera deployment obtained in Figure 5,
the Z-value sorting method was selected to screen out the good solutions. The specific
formula of Z-value is shown as follows:

Z = f1 + f2 + f3 (29)

The solutions are numbered according to their Z-value, with a smaller Z-value indicat-
ing a better traffic monitoring camera deployment scheme. The deployment rate is then
used to describe the ratio of the actual deployment number of traffic monitoring cameras
through the optimization scheme to the potential number of traffic monitoring points.

Rd =
Dr

Da
(30)

where Rd is the deployment rate of traffic monitoring camera, Dr is the actual deployment
number of traffic monitoring cameras, and Da is the total number of the potential traffic
monitoring deployment points.

The deployment rate represents the efficiency of the optimization scheme in deploying
traffic monitoring cameras within the constraint of cost. The top ten solutions found by
NSGA-II and RVEA are shown in Table 2.

Table 2. Top ten solutions of the NSGA-II and RVEA methods.

Solutions
f 1 f 2 f 3 Deployment Rate Z-Value

NSGA-II RVEA NSGA-II RVEA NSGA-II RVEA NSGA-II RVEA NSGA-II RVEA

1 13.80 19.38 24.15 17.62 18.15 17.80 62.79% 48.83% 56.11 54.81
2 19.95 20.41 19.21 23.09 16.98 12.50 39.53% 62.79% 56.15 56.01
3 17.06 20.70 22.19 16.90 17.27 19.35 51.16% 62.79% 56.53 56.97
4 20.54 18.53 18.94 19.18 18.17 19.40 46.51% 62.79% 57.67 57.11
5 21.25 18.87 20.73 22.26 15.82 16.08 44.18% 72.09% 57.82 57.22
6 21.16 16.37 22.42 22.56 14.54 18.31 39.53% 55.81% 58.12 57.24
7 18.38 21.17 22.68 21.66 17.19 14.47 53.48% 58.13% 58.27 57.31
8 23.74 18.75 20.17 23.81 14.376 15.12 44.18% 53.49% 58.29 57.69
9 21.27 19.31 19.82 21.50 17.38 18.15 41.86% 65.11% 58.48 58.97

10 19.72 24.95 21.54 17.73 17.21 16.66 46.51% 59.13% 58.48 59.34



Sustainability 2023, 15, 12011 16 of 20

With respect to the solutions solved by NSGA-II, Solution 1 corresponds to the low-
est Z-value and the highest deployment rate of traffic monitoring cameras. Therefore,
Solution 1 is the optimal solution, and the corresponding deployment scheme of traffic
monitoring cameras under cost constraints is the best. Among the solutions solved by
RVEA, solution 1 shows the lowest Z-value, but the corresponding deployment rate of the
traffic monitoring cameras is low (i.e., it presents insufficient practicality). Although the
Z-value of solution 2 is slightly larger than that of solution 1 among RVEA solutions, the
deployment rate of traffic monitoring camera implementation for solution 2 is high. Con-
sidering both the Z-value and the deployment rate of traffic monitoring cameras, Solution
2 corresponds to the optimal solution of RVEA and the best deployment scheme for traffic
monitoring cameras.

In the model results (see Figure 6), “1” represents that the current point is selected as
the location for traffic monitoring camera setting, “0” denotes that the current point is not
the deployment location for traffic monitoring cameras. The results of the optimization
of the traffic monitoring cameras’ deployment among the total 43 potential points were
then obtained. Figure 7 shows the final deployment scheme of the NSGA-II and RVEA
methods. From the results, it can be seen that cameras are deployed at only 27 locations
among the 43 potential setting points. This can be attributed to the cost constraint, since it
is impossible to set a traffic monitoring camera at every location. Working with a limited
budget, we should preferentially deploy the traffic monitoring cameras at the most urgent
locations, such as intersections with a high traffic volume, frequent crashes, and traffic
violations. This is why the highest deployment rate of traffic monitoring cameras, as shown
in Table 2, is 62.79%.
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Figure 6. Traffic monitoring camera deployment scheme of NSGA-II and RVEA.

We further imported the final solutions (i.e., optimized traffic monitoring camera
deployment schemes) of the two methods into ArcGIS, and matched the deployment
locations with the map of road network. Figure 7 shows the 27 deployment locations of
traffic monitoring cameras (i.e., the deployment rate is 62.79%) obtained by NSGA-II and
RVEA.
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3.2.3. Traffic Monitoring Camera Deployment Scheme Evaluation

The total road mileage, the number of traffic violation hotspots, the number of crash
hotspots, the number of road sections with detectors, and the number of signal intersections
were considered when evaluating the final traffic monitoring camera setting schemes of
NSGA-II and RVEA. We calculated the CRMN, CRTV, CRTC, MRTFM, and MRISI of the
two methods, respectively (See Table 3).

Table 3. Evaluation metric comparison between the schemes of NSGA-II and RVEA.

Schemes CRMN CRTV CRTC MRTFM MRISI

NSGA-II scheme 75.6%, good 84.5%, good 81.3%, good 75.3%, good 62.8%, moderate
RVEA scheme 75.5%, good 86.5%, good 82.4%, good 78.8%, good 62.8%, moderate

The CRMN and MRISI of the two schemes resulting from NSGA-II and RVEA are
almost the same, and they show good values. However, the metric values of CRTV, CRTC,
and MRTFM of the RVEA are larger than those of the NSGA-II. This means the traffic
monitoring camera optimization deployment scheme produced by RVEA outperforms that
of the NSGA-II. To further validate the performance of the two methods, a fuzzy analytic
hierarchy process (FAHP) was used to evaluate the traffic monitoring camera optimization
deployment schemes of the two methods. We built a fuzzy consistent judgment matrix to
compare the importance of the metrics (e.g., CRMN, CRTV, CRTC, MRTFM, MRISI). Then,
the weight calculation and the test of consistency were performed. Finally, the evaluation
result of FAHP for the NSGA-II scheme and RVEA scheme were obtained, as shown in
Table 4.

Table 4. FAHP evaluation between the schemes of NSGA-II and RVEA.

Scheme FAHP Evaluation Value (P)

NSGA-II scheme 0.865
RVEA scheme 0.874
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As can be seen from the FAHP evaluation results, the p-value of the RVEA scheme
is slightly higher than that of the NSGA-II scheme, indicating that the RVEA scheme is
better than the NSGA-II scheme. In addition, we also compare the sub-objective functions
(e.g., f1, f2, f3) of the optimization setting model, as well as the Z-value of NSGA-II and
RVEA. The comparisons illustrate the f1 value of the best optimization scheme solved by
the RVEA is higher than that of the NSGA-II, but the f2, f3, and Z-values of the RVEA are
all lower than those of the NSGA-II (see Table 5). Lower objective functions and Z-values
indicate a better deployment scheme for traffic monitoring cameras. Overall, the RVEA
method outperformed the NSGA-II method in optimizing a scheme for the deployment of
traffic monitoring cameras.

Table 5. Objective function evaluation of NSGA-II and RVEA.

Method f 1 f 2 f 3 Z-Value

NSGA-II 13.80 24.15 18.15 56.11
RVEA 20.41 23.09 12.50 56.01

4. Discussion

The optimal deployment result obtained by NSGA-II is Solution 1 (see Table 2), fea-
turing a deployment rate of 62.79% and a Z-value of 56.11. By contrast, the optimal
deployment result obtained by the RVEA approach is Solution 2, corresponding to a 62.79%
deployment rate and a Z-value of 56.01. Under the same rate of deploying traffic moni-
toring cameras (i.e., a 62.79% deployment rate), the RVEA presents a lower Z-value than
NSGA-II. Furthermore, the optimized sub-objective functions of the NSGA-II are f 1 = 13.80,
f 2 = 24.15, f 3 = 18.15, of which the f1 of NSGA-II is lower than that of the RVEA, and the
f2, f3 of NSGA-II are larger than those of the RVEA. This suggests the traffic monitoring
camera deployment scheme obtained by NSGA-II could monitor more traffic violations
more effectively than that of the RVEA scheme, but could monitor fewer crashes and a
smaller volume of traffic than the RVEA scheme. Overall, the traffic monitoring camera
deployment scheme optimized by RVEA is better than that of NSGA-II. For example,
the NSGA-II scheme tends to set the camera at Location 3 (which is consistent with the
locations of Figures 2–4), while the RVEA scheme placed the traffic camera at Location
4. Compared to Location 3, at which there were three crashes and 2383 traffic violations,
with an average traffic volume of 56.11 vehicles per 5 min, Location 4 had nine crashes and
4642 traffic violations, with an average traffic volume of 103.58 vehicles per 5 min, suggest-
ing a higher requirement for the deployment of traffic monitoring cameras. Therefore, the
RVEA scheme was proven better than the NSGA-II scheme. Furthermore, Location 5 has
a crash frequency of 46 and a traffic violation frequency of 1158, with an average traffic
volume of 108.96 per 5 min, and Location 6 shows lower frequencies of crashes and traffic
violations than Location 5. Interestingly, the RVEA scheme selected Location 5 as the traffic
camera deployment location, while NSGA-II selected Location 6 as the final deployment
location. This example suggests that the NSGA-II scheme outperforms the RVEA scheme.
To summarize, the deployment scheme produced by RVEA at the 43 intersections was able
to cover 361 crashes, 37,642 traffic violations, and 1717.72 vehicles per 5 min. The NSGA-II
scheme was able to cover 308 crashes, 38,931 traffic violations, and a traffic volume of
1452.66.

To further validate the superiority of RVEA in optimizing the deployment locations of
traffic monitoring cameras, several metrics (e.g., CRMN, CRTV, CRTC, MRTFM, MRISI)
are proposed to evaluate the optimized deployment schemes of NSGA-II and RVEA. The
comparison results demonstrate the CRMN and MRISI values in the RVEA scheme and
NSGA-II scheme are the same. Under the same CRMN and MRISI conditions, the RVEA
scheme presents a better CRTV, CRTC, and MRTFM, illustrating that the traffic monitoring
efficiency of the traffic violation hotspots, crash hotspots, and the traffic volume within
the RVEA scheme was better than that of the NSGA-II scheme. Additionally, the FAHP
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method was used to evaluate the two methods, and the results show that the RVEA method
performed better than the NSGA-II method.

5. Conclusions

In this study, we explored the optimization problem of traffic monitoring deployment.
The potential deployment point set is established based on the principles of traffic camera
setting. To maximize the benefits of traffic monitoring camera settings, the ATFM, TVF,
and TCF are considered as optimization objective functions. Considering the dimensional
differences in ATFM, TVF, and TCF, we normalized the values of ATFM, TVF, and TCF
within the range of [0, 1]. Then, three sub-objective optimization models were developed
to minimize the traffic volume, frequency of traffic violations, and frequency of crashes,
while considering cost constraints. The NSGA-II and RVEA methods are proposed to
solve the multi-objective optimization model, respectively. The solutions that minimize
each of the sub-objectives are determined by comparing the dominance relationships of
the potential traffic monitoring camera deployment points. The finding indicates the
optimal traffic monitoring deployment scheme from the RVEA method is superior to that
of other methods. In addition, the assessment of the performance of this traffic monitoring
deployment scheme using CRMN, CRTV, CRTC, MRTFM, and MRISI also illustrated the
feasibility of the proposed RVEA method.

These research results will be useful for practical applications within comprehensive
traffic management. Since the costs of producing and deploying high-definition road moni-
toring schemes are quite high, the current numbers and locations of the road monitoring
facilities have some irrationality and blind spots. Setting traffic monitoring cameras reason-
ably could maximize the value of road monitoring facilities working with limited budgets,
especially maximizing the effects of supervising vehicle flow, crashes, and traffic violations.
Notably, the potential deployment points of traffic monitoring cameras in this study need
to be connected to specific optimization objectives and concerns, such as traffic volume, the
number of traffic violations, and the number of crashes. Considering the efficiency of traffic
monitoring, a subjective range of 60 m was been selected to connect these traffic attributes
with the locations at which traffic monitoring cameras were deployed. Thereby, the results
may show a certain degree of subjectivity. Future work needs to explore more detailed
analyses of the spatial range of traffic monitoring camera implementation.

Author Contributions: Conceptualization, Y.L.; Methodology, Z.C.; Software, Z.K.; Formal analysis,
X.Y.; Investigation, Z.W.; Resources, M.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This paper was funded by the Open Project of the Shandong Key Laboratory of Smart
Transportation (Preparation) (No. 2021SDKLST010) and the National Natural Science Foundation of
China (No. 52202411).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Some or all data, models, or codes that support the findings of this
study are available from the corresponding author upon reasonable request.

Acknowledgments: This work was supported by the Open Project of the Shandong Key Laboratory
of Smart Transportation (Preparation) (No. 2021SDKLST010) and the National Natural Science
Foundation of China (No. 52202411). The authors thank the editor and the anonymous reviewers for
their constructive comments and valuable suggestions for improving the quality of the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fu, Y.G.; Zhou, J.; Deng, L. Surveillance of a 2D plane area with 3D deployed cameras. Sensors 2014, 14, 1988–2011.
2. Hu, S.R.; Liou, H.T. A generalized sensor location model for the estimation of network origin-destination matrices. Transp. Res.

Part C Emerg. Technol. 2014, 40, 93–110.



Sustainability 2023, 15, 12011 20 of 20

3. Fu, C.; Zhu, N.; Ma, S. A stochastic program approach for path reconstruction oriented sensor location model. Transp. Res. Part B
Methodol. 2017, 102, 210–237.

4. Salari, M.; Kattan, L.; Lam, W.H.; Lo, H.P.; Esfeh, M.A. Optimization of traffic sensor location for complete link flow observability
in traffic network considering sensor failure. Transp. Res. Part B Methodol. 2019, 121, 216–251.

5. Bafghi, R.D.; Ahmadi, M. Reliable traffic sensor deployment considering disruptions using floating search method. Iran. J. Sci.
Technol.-Trans. Civ. Eng. 2022, 46, 1541–1552.

6. Cao, Q.; Bai, Q.; Li, Z.; Li, H.; Ma, Y. Optimal deployment of sensors along freeway corridors for traffic accident detection. J.
Transp. Eng. Part A Syst. 2023, 149, 04023042.

7. Chen, H.; Chu, Z.; Sun, C. Sensor deployment strategy and traffic demand estimation with multisource data. Sustainability 2021,
13, 13057.

8. An, S.; Ma, L.; Wang, J. Optimization of traffic detector layout based on complex network theory. Sustainability 2020, 12, 2048.
9. Contreras, S.; Kachroo, P.; Agarwal, S. Observability and sensor placement problem on highway segments: A traffic dynamics-

based approach. IEEE Trans. Intell. Transp. Syst. 2016, 17, 848–858.
10. Morrison, D.R.; Martonosi, S.E. Characteristics of optimal solutions to the sensor location problem. Ann. Oper. Res. 2015, 226,

463–478.
11. Zhu, Y.; He, Z.; Zhang, X. Optimal number and locations of automatic vehicle identification sensors considering link travel time

estimation. IET Intell. Transp. Syst. 2023. ahead of print. [CrossRef]
12. Li, D.; Wang, W.; Zhao, D. A practical and sustainable approach to determining the deployment priorities of automatic vehicle

identification sensors. Sustainability 2022, 14, 9474. [CrossRef]
13. Lin, C.; Sun, G.; Tan, L.; Gong, B.; Wu, D. Mobile LiDAR deployment optimization: Towards application for pavement marking

stained and worn detection. IEEE Sens. J. 2022, 22, 3270–3280.
14. Wu, J.; Xu, H.; Liu, W. Points registration for roadside lidar sensors. Transp. Res. Rec. 2019, 2673, 627–639.
15. Park, H.; Haghani, A. Optimal number and location of Bluetooth sensors considering stochastic travel time prediction. Transp.

Res. Part C Emerg. Technol. 2015, 55, 203–216.
16. Zhao, J. Camera Planning and Fusion in a Heterogeneous Camera Network. Ph.D. Thesis, University of Kentucky, Lexington, KY,

USA, 2012.
17. Ma, X.; He, Y.; Luo, X.; Li, J.; Zhao, M.; An, B.; Guan, X. Camera placement based on vehicle traffic for better city security

surveillance. IEEE Intell. Syst. 2018, 33, 49–61.
18. Wang, Z.; Wang, M.; Liu, X.; Zhang, Y. Deployment optimization for camera network coupling with geographic environment.

Ann. GIS 2018, 24, 9–17.
19. Xie, Z.; Jia, L.; Qin, Y.; Wang, L.; Yu, G. Monitor point layout model of video surveillance in railway passenger transport hub. J.

Cent. South Univ. Sci. Technol. 2013, 44, 255–257.
20. Li, X.; Ouyang, Y. Reliable sensor deployment for network traffic surveillance. Transp. Res. Part B Methodol. 2011, 45, 218–231.
21. Li, X.; Ouyang, Y. Reliable traffic sensor deployment under probabilistic disruptions and generalized surveillance effectiveness

measures. Oper. Res. 2012, 60, 1183–1198.
22. Zhu, N.; Ma, S.; Zheng, L. Travel time estimation oriented freeway sensor placement problem considering sensor failure. J. Intell.

Transp. Syst. 2017, 21, 26–40.
23. Danczyk, A.; Di, X.; Liu, H.X. A probabilistic optimization model for allocating freeway sensors. Transp. Res. Part C Emerg.

Technol. 2016, 67, 378–398.
24. Zhan, F.; Zhang, J.; Wan, X.; Ran, B. Method for allocating multitype sensors on a freeway corridor with existing sensors. J. Transp.

Eng. Part A Syst. 2017, 143, 04017054.
25. Viti, F.; Rinaldi, M.; Corman, F.; Tampère, C.M. Assessing partial observability in network sensor location problems. Transp. Res.

Part B Methodol. 2014, 70, 65–89.
26. Xie, C.; Shao, M. Optimal time interval for investigating prior information in network sensor location problem. Transp. Res. Rec.

2021, 2675, 238–248.
27. Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A reference vector guided evolutionary algorithm for many-objective optimization.

IEEE Trans. Evol. Comput. 2016, 20, 773–791.
28. National Development and Reform Commission of China. Suggestions on Strengthening the Construction of Internet Application

of Video Surveillance for Public Safety. 2020. Available online: https://en.ndrc.gov.cn/ (accessed on 26 July 2023).
29. Cheng, Z.; Zhang, L.; Zhang, Y.; Wang, S.; Huang, W. A systematic approach for evaluating spatiotemporal characteristics of

traffic violations and crashes at road intersections: An empirical study. Transp. A Transp. Sci. 2022, 19, 1–23.
30. Cheng, Z.; Zu, Z.; Lu, J. Traffic crash evolution characteristic analysis and spatiotemporal hotspot identification of urban road

intersections. Sustainability 2018, 11, 160.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1049/itr2.12379
https://doi.org/10.3390/su14159474
https://en.ndrc.gov.cn/

	Introduction 
	Method 
	Deployment Principle and Optimization Objective 
	Multi-Objective Optimization Model 
	RVEA Algorithm 
	Evaluation Metrics 
	Coverage Rate 
	Matching Rate 


	Case Study 
	Study Area and Data Preparation 
	Results 
	Traffic Attributes and the Distribution of the Potential Traffic Monitoring Points 
	Multi-Objective Optimization Results 
	Traffic Monitoring Camera Deployment Scheme Evaluation 


	Discussion 
	Conclusions 
	References

