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Abstract: Doubly fed induction generators (DFIGs) are widely applied in wind energy conversion
systems, where the harsh service environment and long-lasting operation can bring about motor
parameter deviations, deteriorating the system performance. In this paper, an extended state observer
(ESO)-based deadbeat control strategy that enhances the system parameter robustness is proposed.
Firstly, the effects of motor parameter inaccuracy are analyzed to reflect the control errors and
degradation of the system performance. Secondly, a lumped disturbance represented by an additional
state extended from the system mathematical model is derived with the parameter inaccuracy taken
into consideration. Finally, the parameter robustness enhanced deadbeat control method with the
ESO-based disturbance estimation is developed to realize accurate prediction and control, even when
the inductance of DFIG deviates under various operation conditions. To verify the effectiveness of
the proposed method, simulations are carried out in MATLAB/Simulink for a 1.5 MW DFIG with a
30% stator and rotor inductance deviation. Compared to the conventional control method, smooth
and fast dynamic performance is maintained, and the current ripple for the proposed control strategy
can be reduced by approximately 40%, where the steady-state tracking performance and parameter
robustness of the system are significantly enhanced.

Keywords: doubly fed induction generator; wind energy conversion system; parameter deviation;
deadbeat control; parameter robustness

1. Introduction

With the optimization of energy infrastructure, and the proposal of energy conserva-
tion and emission reduction goals, available wind energy has become an indispensable
new energy source during the energy evolution due to its wide distribution and envi-
ronmentally friendly feature [1–3]. A doubly fed induction generator (DFIG) that has
the advantages of high efficiency and a low operation cost, as well as the characteristics
of variable-speed constant-frequency regulation, active and reactive power decoupling
control, and a small converter capacity, is applied widely in the power grid [4–6]. In a DFIG
wind turbine, a grid-side converter (GSC) is connected to the grid for keeping the DC-bus
voltage stable, and a rotor-side converter (RSC) is connected to the rotor of DFIG to control
the electromagnetic torque, and active and reactive power [7].

The traditional control strategies of DFIG mainly consist of vector control (VC), direct
torque control (DTC), and direct power control (DPC). For VC, the stator flux or grid voltage
orientation is applied for system control, and the decoupling of active and reactive power
is realized during this process [8–10]. Direct torque control (DTC) selects the best vector
to act on the converter according to the positions of the rotor, electromagnetic torque, and
flux linkage vector [11]. Compared with VC, DTC has a faster dynamic response, simpler
control structure, and lower dependence on circuit parameters, but the switching frequency
is not fixed, and there are large electromagnetic fluctuations [12]. A DTC method based on
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pulse-width modulation (PWM) is proposed to avoid the above-mentioned problems so
that the steady-state performance can be improved [13]. Additionally, a type of predictive
DTC scheme is proposed to deal with the parameter dependence issue [14]. Another kind
of control method with high dynamic performance is called DPC, which is carried out
based on the difference between active/reactive power and the corresponding reference
values [15,16]. For the DPC strategy, the optimal output is selected according to the vector
switching table through a hysteresis comparison, and the challenges of an unfixed switching
frequency and large electromagnetic fluctuations can be eliminated by applying the similar
methods proposed in refs. [13,14].

Different from the conventional field-oriented control strategies, model predictive
control (MPC) strategies are put forward so that the problems with multiple nonlinear
control objectives can be solved by simply defining a cost function [17–20]. In ref. [21],
an MPC strategy for DFIG is proposed, where a state equation between the power and
rotor voltage is deduced, and the power can be precisely tracked through the proposed
method without any error feedback, while the computational burden is high. Apart from
the MPC scheme based on a cost function, an additional observer is established for a
permanent magnet synchronous motor (PMSM) [22]. The current information is obtained
to replace the sampled information of the deadbeat predictive current control (DPCC) on
the dq-axes, which is effective for dealing with the inconsistency between the dq and the
inherent zero-sequence parameters.

The system parameter uncertainty issue is unavoidable for motor drive applications,
which results in control performance deterioration. A comprehensive review is presented
in ref. [23] that focuses on the tolerance analysis, reliability determination, and robustness
optimization of motors, drives, and power electronics, modeling uncertainty and optimiza-
tion based on reliability measures. A fault-tolerant control strategy is proposed in ref. [24]
by flexibly changing the winding configuration for the motor drive. In ref. [25], a nonlinear
robust jitter-free super-twisted fractional-order terminal sliding mode control (ST-FOTSMC)
strategy is proposed. In this case, the super-twisted sliding film control and fractional-order
terminal sliding mode control are combined, which eliminates the nonlinearity in the wind
energy conversion system. A data-driven predictive control method is proposed in ref. [26],
which improves the system performance regarding the stabilization time, voltage/current
overshoot, and total stator current harmonic distortion. In addition, a notch filter is applied
in the deadbeat control strategy in ref. [27] to extract the dq components of the negative-
sequence voltage in the three-phase voltages so that the issues caused by an unbalanced
load can be avoided. Moreover, various types of extended state observers (ESOs) are
developed for sensorless control and disturbance rejection for PMSM applications [28–30],
while the investigation of ESO-based control methods for DFIG is rare.

In ref. [31], a sensorless control method with an adaptive framework for DFIG is
proposed, which eliminates the dependence on sensors, and prior knowledge of system
parameters is no longer required. Moreover, a novel control system is proposed to enhance
the dynamic performance of DFIG, and a predictive voltage control (PVC) algorithm is
formulated to achieve a fast dynamic response [32]. In ref. [33], a robust predictive stator
current control (RPCC) method for DFIG is proposed, and the performance deterioration
caused by parameter variations is alleviated by applying the error between the measured
and predicted values in both the stator current prediction stage and rotor voltage vector
calculation process. Furthermore, a model-free deadbeat predictive control method for
DFIG is proposed in ref. [34], which has fast dynamic performance and a fixed switching
frequency. The ultralocal model is used to substitute the mathematical model of DFIG, and
all the compensation terms are treated as lumped disturbance, which is estimated using an
observer. However, a high bandwidth is required for the observer since the disturbances
to be estimated have high complexity, which may have negative impacts on the system
performance and stability.

In this paper, to enhance the parameter robustness of the MPC for a DFIG wind
energy conversion system, a novel ESO-based deadbeat control is put forward. First, the
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effects of inaccurate motor parameters are analyzed and deduced, which allows us to
determine the control errors and the degradation of the system performance. Then, the
parameter inaccuracy and other unmodeled parts are treated as the lumped disturbance.
An additional state is extended from the mathematical model to represent the lumped
disturbance, which is estimated using an ESO. Finally, the calculated reference voltage
after disturbance compensation realizes more accurate prediction and control, enhancing
the parameter robustness of the DFIG system. Compared to the conventional deadbeat
control method for DFIG [35], accurate control of the rotor current and strong robustness
can be achieved simultaneously, and stable operation and fast switching between various
conditions as the reference signals change are also obtained.

2. Modeling of DFIG

A doubly fed induction generator (DFIG) wind power system is a high-order, multi-
variable, nonlinear, strong-coupling, and time-varying system. Therefore, the power
decoupling control of DFIG needs to be realized through coordinate transformation, and a
mathematical model of DFIG is established to obtain the control target under traditional PI
regulation.

2.1. DFIG Steady-State Model

In order to obtain the steady-state equivalent circuit of DFIG, the necessary assump-
tions are as follows: the stator and the rotor are both in the star configuration, and the rotor
parameters are referred to the stator side.

The one-phase steady-state equivalent circuit of DFIG referred to the stator side is
illustrated in Figure 1, and the expressions are derived according to the circuit [36].

Us − Es = (Rs + jωsLσs)Is (1)

Ur
s
− Es = (

Rr

s
+ jωsLσr)Ir (2)

Es = jωsLm(Is + Ir) (3)

where Us represents the stator voltage, Es represents the induced EMF in the stator wind-
ings, Rs represents the stator resistance, Is represents the induced stator current, Rr repre-
sents the rotor resistance referred to the stator side, Ir represents the induced rotor current
referred to the stator side, ωs represents the angular frequency of the stator voltages, Lm rep-
resents the mutual inductance between the stator and rotor, Lσs represents the rotor leakage
inductance, and Lσr represents the rotor leakage inductance referred to the stator side.
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Figure 1. Steady-state equivalent circuit of DFIG referred to the stator side.

The steady-state equivalent circuit of DFIG is obtained according to Thevenin’s equiv-
alent theorem. The steady-state voltage equation is also derived, which can be used for a
steady-state variable analysis. However, the operation of DFIG in the steady state cannot
meet the actual engineering needs. In order to fully understand how DFIG reaches a steady
state in different operation modes, a dynamic model is derived, and the dynamic voltage
and flux equations are developed.
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2.2. DFIG Dynamic Model

Under ideal assumptions, the mathematical model of DFIG in the two-phase synchronously
rotating dq reference frame can be described according to the following equations [36]:

usd = −Rsisd − dψsd/dt + ωψsq (4)

usq = −Rsisq − dψsq/dt−ωψsd (5)

urd = −Rrird − dψrd/dt + (ω−ωr)ψrq (6)

urq = −Rrirq − dψrq/dt− (ω−ωr)ψrd (7)

ψsd = Lsisd + Lmird (8)

ψsq = Lsisq + Lmirq (9)

ψrd = Lmisd + Lrird (10)

ψrq = Lmisq + Lrirq (11)

where usd, usq, urd, and urq represent the d-axis and q-axis components of the stator and rotor
voltages, respectively; ψsd, ψsq, ψrd, and ψrq represent the d-axis and q-axis components of
the stator and rotor fluxes, respectively; Rs and Rr represent the stator and rotor resistances,
respectively; isd, isq, ird, and irq represent the d-axis and q-axis components of the stator
and rotor currents, respectively; ω represents the synchronous electrical angular speed;
and ωr represents the rotor electrical angular speed. Ls represents the stator inductance
(Ls = Lσs + Lm), and Lr represents the rotor inductance (Lr = Lσr + Lm).

Moreover, the torque expression yields

Tem =
3
2

p
Lm

Ls
(ψsqird − ψsdirq) (12)

3. Conventional Deadbeat Control for DFIG

DFIG is essentially a wound-rotor induction motor, where the basic control principle
is consistent with that of other AC machines. The mainstream control methods include
vector control, direct torque control, and direct power control, among which vector control
is the most widely used. According to the orientation reference, the vector control can be
further divided into the rotor-flux-oriented method, the air-gap-flux-oriented method, the
stator-flux-oriented method, and the stator-voltage-oriented method.

When adopting the stator-flux-oriented method, the cross-coupling items are relatively
few. Correspondingly, the expression of the flux equation is simple, where the direct-axis
and quadrature-axis components are the stator flux and zero, respectively. However, the
observation accuracy of the stator flux is affected by motor parameters, such as the stator
resistance, stator inductance, and mutual inductance. Additionally, the observation is
susceptible to magnetic saturation, which limits the reactive power compensation ability of
the DFIG system. When using the stator-voltage-oriented method, the above problems are
alleviated because the observation of the stator flux is not needed. In this case, the q-axis of
the synchronous rotating coordinate is oriented in the direction of the stator voltage vector,
and the d-axis lags the q-axis by 90◦. Since the stator resistance is very small, by neglecting
its effect, Equations (4)–(11) can be modified as [37]

0 = −Rsisd −
dψsd

dt
+ ωψsq (13)

us = −Rsisq −
dψsq

dt
−ωψsd (14)

urd = −Rrird −
dψrd

dt
+ ωsψrq (15)
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urq = −Rrirq −
dψrq

dt
−ωsψrd (16)

where us is the amplitude of the stator voltage, and ωs is the slip angular speed. It can be
obtained from Equations (8) and (9) that

isd =
ψsd − Lmird

Ls
, isq =

ψsq − Lmirq

Ls
(17)

Then, by substituting Equation (17) into Equations (10) and (11),

urd = −(Rr + Rs
L2

m
L2

s
)ird − σLr

dird
dt

+ σωsLrirq +
Lm

Ls
(

Rs

Ls
ψsd + ωrψsq) (18)

urq = −(Rr + Rs
L2

m
L2

s
)irq − σLr

dirq

dt
− σωsLrirq +

Lm

Ls
(

Rs

Ls
ψsq + ωrψsd) +

Lm

Ls
us (19)

where σ is the leakage coefficiency, which can be calculated as 1− L2
m

Ls Lr
. As the stator

resistance is relatively small, Equations (18) and (19) can be further simplified as

urd = −Rrird − σLr
dird
dt

+ σωsLrirq +
Lm

Ls
ωrψsq (20)

urq = −Rrirq − σLr
dirq

dt
− σωsLrirq +

Lm

Ls
ωrψsd +

Lm

Ls
us (21)

It can be seen that the dq voltages are composed of the corresponding currents, their
derivatives, coupling terms, and other disturbance terms. Hence, the dq rotor currents
are usually adjusted using the PI controller, and the dq-axis decoupling is realized using
feedforward compensation. The control diagram is presented in Figure 2.
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However, it takes effort for the parameter tuning of the controller. Additionally, the
feedforward compensation for coupling terms plays an important role and cannot be ignored.
Thus, the dynamic performance of the DFIG system is limited. To this end, the deadbeat
predictive control is introduced to obtain a faster dynamic response [35]. By discretizing
Equations (20) and (21), the predictive current in the next period can be given as

ird(k + 1) = (1− RrTs

σLr
)ird(k)−

Ts

σLr
urd(k) + Tsωsirq(k) +

TsLmωrψsq

LsσLr
(22)

irq(k + 1) = (1− RrTs

σLr
)irq(k)−

Ts

σLr
urq(k)−ωsTsird(k) +

LmTsωrψsd
σLrLs

+
LmTsus

σLrLs
(23)

where “k” and “k + 1” denote the variables in the present and the next periods, respectively.
Based on the deadbeat principle, supposing that the dq currents track the reference ones
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in the next period, i.e., ird(k + 1) = ire f
rd (k) and irq(k + 1) = ire f

rq (k), the corresponding dq
voltages that need to be applied in the (k + 1)th period are

ure f
rd (k + 1) = −Rrird(k)− σLr

ire f
rd (k)− ird(k)

Ts
+ σωsLrirq(k) +

Lm

Ls
ωrψsq (24)

ure f
rq (k + 1) = −Rrirq(k)− σLr

ire f
rq (k)− irq(k)

Ts
− σωsLrird(k) +

Lm

Ls
ωrψsd +

Lm

Ls
us (25)

where ure f
rd (k + 1) and ure f

rq (k + 1) denote the dq-axis reference voltages, respectively. In
steady-state operation, the amplitude and frequency of the grid voltage can be considered
constant. Thus, ψsd = − us

ω , and ψsq = 0, and Equations (24) and (25) can be converted to

ure f
rd (k + 1) = −Rrird(k)− σLr

ire f
rd (k)− ird(k)

Ts
+ σωsLrirq(k) (26)

ure f
rq (k + 1) = −Rrirq(k)− σLr

ire f
rq (k)− irq(k)

Ts
− σωsLrird(k) + ωs

Lmus

Lsω
(27)

It can be derived from Equations (26) and (27) that, with accurate parameters, the rotor
currents will track the reference ones in the next period once the reference voltage is applied.

Nevertheless, from the calculation of reference voltages, the deadbeat control can be
regarded as the proportional control with feedforward compensation. When the parameters
are less accurate, the obtained reference voltages will deviate from the ideal values. This
may result in distorted phase currents and deteriorated torque performance. Moreover,
because there is no integration term, the tracking error exists, leading to the quality decline
of the power generation. To solve this problem, a parameter-robust deadbeat control for
the DFIG system is proposed.

4. Proposed ESO-Based Deadbeat Control for DFIG

As illustrated above, the model predictive control has been extended to the DFIG
system due to its advantages of high dynamic performance, easy implementation, and
simple control principle. In addition, benefitting from the modulation process, the current
ripple is lower, and the output torque performance is better when adopting the deadbeat
control. However, in this case, the system performance is highly dependent on the accuracy
of the model. When the model parameters are less accurate, or the actual parameters of the
motor change with the operation, serious current distortions and even system oscillation
may occur.

Moreover, in the traditional deadbeat control, the predictive model is established
based on an approximate simplification of the DFIG system. Hence, many items such as
unmodeled parts and disturbances are still not included when establishing the predictive
model. To be more specific, the dead-time effect and the voltage drop of power switches, the
cross-coupling of dq-axis components, the controller and driver delay, the cogging torque,
and other factors are often ignored when establishing the traditional predictive model.
This makes the prediction less reliable and ultimately degrades the system’s performance.
Considering the parameter inaccuracy and the unmodeled parts, the detailed analysis is as
follows.

Among all the parameters in the drive system, it is reported in ref. [38] that the motor
inductance is most likely to deviate in the DFIG system, including the stator and rotor
inductance. To simplify the analysis, the deviation of rotor inductance is discussed as an
example. Denoting that L′rd and L′rq are the utilized parameters in the predictive model,
and hrd and hrq are the lumped effects from unmodeled parts. Then, the reference voltages
obtained using the deadbeat principle are
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u′rd(k + 1) = −Rrird(k)− σ′L′r
ire f
rd (k)− ird(k)

Ts
+ σ′ωsL′rirq(k) + hrd(k) (28)

u′rq(k + 1) = −Rrirq(k)− σ′L′r
ire f
rq (k)− irq(k)

Ts
− σ′ωsL′rird(k) +

ωsLm

ωLs
us + hrq(k) (29)

where σ′ is the corresponding leakage coefficient, which is 1− L2
m

LsL′r
. Compared with the

reference voltage obtained under the accurate model, the obtained reference voltage with
less accurate parameters can be expressed as

u′rd(k + 1) = ure f
rd (k + 1)− ∆e ·

ire f
d (k)− ird(k)

Ts
+ ∆e ·ωsirq(k) + hrd(k)︸ ︷︷ ︸

∆urd(k)

(30)

u′rq(k + 1) = ure f
rq (k)− ∆e ·

ire f
rq (k)− irq(k)

Ts
− ∆e ·ωsird(k) + hrq(k)︸ ︷︷ ︸

∆urq(k)

(31)

where ∆e = σ′L′r − σLr, and ∆urd and ∆urq are the dq reference voltage errors. It can be
seen in Equations (28)–(31) that both the parameter inaccuracy and the unmodeled parts
lead to the deviation of reference voltages. In consequence, the current harmonics and the
torque ripple increase, leading to the deterioration of the system performance. To this end,
a novel ESO-based deadbeat control for the DFIG system is put forward, and the concrete
principle is presented as follows.

4.1. Disturbance Estimation Principle of ESO

To improve the parameter robustness, the extended state observer is introduced to
estimate the system disturbances and unmodeled parts of the system. The disturbance
estimation principle is presented below.

By converting the linear system into a state space form, it can be observed that

.
X = AX + Bu (32)

Y = CX (33)

where X and Y are the state variable vector and output vector with the dimensions of
m × 1 and n × 1, respectively. It should be noted that m and n are the numbers of the
system state variables and output variables, respectively. u is the system input; A, B, and
C are the system matrix, input matrix, and output matrix with the dimensions of m × m,
m × m, and n × m, respectively. Supposing that there exists some uncertainty in the system
matrix or input matrix, a new state variable needs to be extended to represent this part. It
can be observed that .

X = AX + Bu + z (34)
.
z = r (35)

Y = CX (36)

where z is an additional extended state variable vector with the dimension of m × 1, and r
is the change rate vector of z. Since z is the unknown part, to estimate it, the observer can
be established as .

X̂ = AX̂ + Bu + ẑ + L1(Y− Ŷ) (37)
.
ẑ = L2(Y− Ŷ) (38)

Ŷ = CX̂ (39)
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where L1 and L2 are the gain parameters. By referring to the equation, both L1 and L2 have
the dimensions of m × n. It can be seen in Equations (37)–(39) that, when Y approaches its
estimated value, the above equation can be simplified as

.
X̂ = AX̂ + Bu + ẑ (40)

This means that the estimation of z is also approaching the real z. Therefore, the
ESO can effectively estimate the extended state of the system in the steady state. At the
beginning of the operation, the estimation error is relatively large. However, with the
integration process, the estimated values gradually approach the real ones.

In the DFIG system, as shown in Equations (30) and (31), the error resulting from the
parameter inaccuracies and unmodeled parts can be considered as the extended state of
the system. Then, by using the ESO to estimate the lumped disturbance and compensate it
in the predictive model, a more accurate prediction of the system is realized.

4.2. Disturbance Estimation in DFIG Using ESO

As shown in Equations (28)–(31), the parameter inaccuracy and unmodeled parts
cause a disturbance in the DFIG system, which eventually leads to the degradation of the
system performance. Hence, based on the state space of the dq-axis voltage equation of
DFIG, the ESO for the corresponding disturbance estimation is constructed as follows.

Considering the influence of disturbance, the dq-axis voltage equation of DFIG in the
continuous domain can be expressed as

urd = −Rrird − σLr
.
ird + σωsLrirq + frd (41)

urq = −Rrirq − σLr
.
irq − σωsLrird +

ωsLm

ωLs
us + frq (42)

where frd and frq represent the lumped effect resulting from the disturbances in the dq-axes,
respectively. Transforming Equations (41) and (42) to the state space form, the extended
state DFIG model can be obtained as

.
ird = − Rr

σLr
ird + ωsirq −

urd
σLr

+ Frd (43)

.
irq = − Rr

σLr
irq −ωsird −

urq

σLr
+

ωsLm

σωLrLs
us + Frq (44)

where Frd = − frd
σLr

, and Frq = −
frq

σLr
.

After obtaining the extended state dq-axis DFIG model, by referring to Equations (37)–(39),
the ESO for the disturbance estimation in the d-axis of DFIG can be designed as

errd = îrd − ird (45)
.
îrd = − Rr

σLr
îrd + ωsirq −

urd
σLr

+ F̂rd − β1derrd (46)
.
F̂rd = −β2derrd (47)

where îrd and F̂rd are the estimated d-axis rotor current and the disturbance, respectively.
errd is the estimation error of the d-axis rotor current. β1d and β2d are the gain factors of
the ESO.

Similarly, the q-axis ESO for the disturbance estimation can be designed as

errq = îrq − irq (48)

.
îrq = − Rr

σLr
îrq −ωsird −

urq

σLr
+

ωsLm

σωLrLs
us + F̂rq − β1qerrq (49)
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.
F̂rq = −β2qerrq (50)

where îrq and F̂rq are the estimation values of the q-axis rotor current and the disturbance,
respectively. errq is the estimation error of the q-axis rotor current. β1q and β2q are the
gain factors of the ESO. It is worth noting that the gain factors are closely related to the
bandwidth of the observer. By taking the appropriate values of these gain factors, the
estimated currents can quickly track the actual currents. At the same time, the observation
of the disturbances is realized.

After the acquisition of the lumped disturbances of the DFIG system, more accurate
predictions can be achieved by compensating for the disturbances in the prediction model.
This means that the system has a higher robustness to parameters. Correspondingly, the
system performance is also improved, as the unmodeled parts are also included.

4.3. Implementation of the Proposed ESO-Based Deadbeat Control on DFIG

To implement the ESO-based deadbeat control in the digital control system, the ob-
server needs to be discretized. Considering the first-order Euler dispersion, the discretized
ESO for the d-axis disturbance estimation can be constructed as

errd(k) = îrd(k)− ird(k) (51)

îrd(k + 1) = îrd(k) + Ts

 −
Rr

σ′L′r
îrd(k) + ωsirq(k)− 1

σ′L′r
urd(k)

+F̂rd(k)− β1derrd(k)

 (52)

F̂rd(k + 1) = F̂rd(k)− Tsβ2derrd(k) (53)

where îrd(k), F̂rd(k), errd(k), urd(k), and ird(k) are the estimated d-axis rotor current, the
estimated d-axis disturbance, the d-axis current estimation error, the applied d-axis rotor
voltage, and the measured d-axis rotor current in the present (k)th period, respectively.
îrd(k + 1) and F̂rd(k + 1) are the estimated d-axis rotor current and the estimated d-axis
disturbance in the next (k + 1)th period, respectively. It should be noted that, when
constructing the ESO in the digital system, accurate parameters are not available. Hence, σ′

and Lr
′ rather than σ and Lr are used.

After the observation of the discretized d-axis disturbance, according to Equations (28)–(31)
and (51)–(53), the d-axis reference voltage can be calculated as

urdc(k + 1) = −Rrird(k) + σ′L′r

(
−

ire f
rd (k)− ird(k)

Ts
+ ωsirq(k)− F̂rd(k)

)
(54)

where urdc(k + 1) is the compensated d-axis voltage to be applied in the next (k + 1)th
period. For the convenience of application, a block diagram of the proposed ESO-based
deadbeat rotor current control in d-axis is shown in Figure 3.

Because there are differences between the rotor-side dq-axis voltage equations, the
establishment of the corresponding ESOs and compensation for disturbances are introduced
separately. The design of the d-axis component of the proposed scheme is derived above,
while the corresponding q-axis component is presented below.
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In this case, by referring to Equations (48)–(50), the ESO for the q-axis disturbance
estimation is constructed as

errq(k) = îrq(k)− irq(k) (55)

îrq(k + 1) = îrq(k) + Ts


− Rr

σ′L′r
îrq(k)−ωsird(k)−

1
σ′L′r

urq(k)

+
ωsLm

σ′ωL′rLs
us + F̂rq(k)− β1qerrq(k)

 (56)

F̂rq(k + 1) = F̂rq(k)− Tsβ2qerrq(k) (57)

where îrq(k), F̂rq(k), errq(k), urq(k), and irq(k) are the estimated q-axis rotor current, the
estimated q-axis disturbance, the q-axis current estimation error, the applied q-axis rotor
voltage, and the measured q-axis rotor current in the present (k)th period, respectively.
îrq(k + 1) and F̂rq(k + 1) are the estimated q-axis rotor current and the estimated q-axis
disturbance in the next (k + 1)th period, respectively.

After obtaining the discretized q-axis disturbance, according to Equations (28)–(57),
the q-axis reference voltage can be calculated as

urqc(k+ 1) = −Rrirq(k)+σ′L′r

(
−

ire f
rq (k)− irq(k)

Ts
−ωsird(k) +

ωsLm

σ′ωL′rLs
us − F̂rq(k)

)
(58)

where urqc(k + 1) is the compensated q-axis voltage to be applied in the next (k + 1)th
period. For the convenience of implementation, a block diagram of the proposed ESO-
based deadbeat rotor current control in the q-axis is shown in Figure 4.

Moreover, the control instructions are implemented discretely in the digital control
system. In other words, when the reference voltages are obtained, they will only take effect
in the next period. Hence, the one-step delay is introduced, leading to the deterioration
of the control performance. To solve this problem, further estimations and predictions are
carried out, where the reference voltages are given by

urdc(k + 2) = −Rrird(k + 1) + σ′L′r

(
−

ire f
rd (k + 1)− ird(k + 1)

Ts
+ ωsirq(k + 1)− F̂rd(k + 1)

)
(59)



Sustainability 2023, 15, 12020 11 of 18

urqc(k + 2) = −Rrirq(k + 1) + σ′L′r

 −
ire f
rq (k + 1)− irq(k + 1)

Ts
−ωsird(k + 1)

+
ωsLm

σ′ωL′rLs
us − F̂rq(k + 1)

 (60)

In Equations (32) and (33), the estimation of disturbances and the predicted currents
in the (k + 1)th period, i.e., F̂rd(k + 1), F̂rq(k + 1), ird(k + 1), and irq(k + 1), are obtained by
further performing the estimation and prediction presented in Equations (51)–(58).
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5. Simulation Results

In order to validate the effectiveness and robustness of the control strategy proposed
in this paper, simulations are conducted in MATLAB/Simulink R2022a for a 1.5 MW DFIG.
The nominal parameters of the simulated DFIG system are provided in Table 1. It should
be noted that, in the simulations, the active power Ps, reactive power Qs, electromagnetic
torque Tem, rotor speed ω, and the DFIG stator and rotor parameters are evaluated in pu,
while the DC-bus voltage Udc is evaluated in the respective SI unit (V).

In the simulation, the conventional deadbeat control and the proposed parameter ro-
bustness enhanced ESO-based deadbeat control strategy are carried out for a 1.5 MW DFIG,
and the step changes in the reference rotor speed and electromagnetic torque are applied to
emulate the variations in operating conditions, including wind speed changes. For the con-
trol of the grid-side converter, the control signals are derived according to the conventional
vector control algorithm. In terms of the rotor-side converter control, the dq voltages to be
applied at the (k + 1)th instant are calculated according to Equations (26) and (27) in the
conventional deadbeat control strategy, which can be regarded as the proportional control
with feedforward compensation. Furthermore, when applying the proposed parameter
robustness enhanced ESO-based deadbeat control strategy, ird(k), irq(k), urd(k), and urq(k) are
used as the input variables in the ESO-based disturbance estimation module to achieve
the estimated d-axis and q-axis disturbances, which are taken into consideration during
the calculation process of the compensated dq rotor voltages at both the (k + 1)th and
(k + 2)th instants. Compared with the traditional deadbeat control method, the proposed
strategy is capable of compensating the errors caused by the deviations in the stator and
rotor inductances.
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Table 1. Nominal parameters of the DFIG system.

Parameter Description Value

Pn Rated power 1.5 MW
fn Rated frequency 50 Hz

Usn Stator nominal voltage 575 V
Rs Stator resistance 0.023 p.u.
Lls Stator leakage inductance 0.18 p.u.
Rr Rotor resistance 0.016 p.u.
Llr Rotor leakage inductance 0.16 p.u.
Lm Magnetizing inductance 0.29 p.u.
p Number of pole pairs 3

Udcn Nominal DC-link voltage 1150 V

In order to comprehensively analyze the steady-state and dynamic performance of
the conventional method and the proposed method under various operating conditions,
a series of step signals are introduced as the reference ones in the simulation. The basic
reference signals are the rotor speed ωref and electromagnetic torque Tref. The changes in
the reference signal levels in the simulation are given in Table 2.

Table 2. Reference signal values set in simulation.

Reference Value

time 0–5 s 5–10 s 10–15 s 15–20 s
ωref (p.u.) 0.9 0.9 1.1 1.1
Tref (p.u.) −0.3 −0.5 −0.5 −0.8

The simulation results of DFIG with matched parameters in the deadbeat control are
presented in Figures 5 and 6. Figure 5 shows the waveforms, including the torque, DC-bus
voltage, active and reactive power, and rotor and stator currents with the conventional
deadbeat control method and the proposed ESO-based deadbeat control method, respec-
tively. It can be seen in the figure that the same steady states under various operating
conditions can be achieved with both methods, and stable operation after the switching
between different conditions as the reference signals change can be achieved. Moreover, for
dynamic performance, as the speed changes, the overshoots of all displayed signals with
the proposed control method are significantly reduced compared to those with the conven-
tional method. It can be seen that, when the step change in torque occurs, larger overshoots
are encountered compared to the conventional method. However, the overshoots as torque
reference signal changes in the proposed control scheme are small enough to be ignored,
and a fast dynamic response is maintained.

Figure 5a,b show the performance of the dq rotor currents under the defined order of
the reference step change (i.e., the signals defined in Table 2) with the conventional deadbeat
control method and the proposed ESO-based deadbeat control method, respectively. In
order to clearly demonstrate the current tracking performance in the different operating
conditions, two typical cases are considered. To be more specific, the situation of 2.5–5.0 s
(i.e., ωref = 0.9 (p.u.), Tref = −0.3 (p.u.)) and the situation of 17.5–20.0 s (i.e., ωref = 1.1 (p.u.),
Tref = −0.8 (p.u.)) are selected to present the operating conditions of “low speed and low
power” and “high speed and high power”, respectively, which are denoted as cases A
and B.

As is presented in Figure 6a, when the conventional deadbeat control scheme is
adopted, there are steady-state errors in both the results of the d-axis and q-axis rotor
currents. For case A, the real values of the dq rotor currents are always lower than the
reference ones, while for case B, the opposite situation occurs. When the proposed ESO-
based deadbeat control method is adopted, although the steady-state error of the q-axis
rotor current is not reduced significantly, the steady-state errors of the d-axis rotor current
in both cases A and B are eliminated. Moreover, as is indicated in Figure 5, when the speed
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reference changes, larger current oscillations are introduced compared to the situation when
the conventional control method is adopted. However, for the wind energy conversion
application, the steady-state performance is much more important than the transient
response; thus, the dynamic response is not focused on in this paper, since stable operation
after the step change in the reference is guaranteed in the foregoing analysis. Therefore,
according to the simulation results in Figures 5 and 6, for the parameter-matched situation,
the DFIG system with the proposed control method can effectively work under various
operating conditions, and the steady-state tracking accuracy of the d-axis current can be
greatly improved.
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The rotor current tracking performance of DFIG with mismatched parameters in the
deadbeat control is presented in Figures 7–10. Specifically, two situations of Lr

′ = 1.3Lr and
Ls
′ = 1.3Ls are taken as examples to represent the parameter-mismatched condition.

The simulation results for cases A and B when Lr
′ = 1.3Lr are presented in Figures 7 and 8,

respectively. According to Figures 7a and 8a, when the conventional deadbeat control method
is applied, increased current harmonics and steady-state current errors occur due to parameter
mismatch. From Figures 7 and 8, it can be seen that, for both cases A and B, the current
harmonics, especially those of the d-axis rotor current, are significantly reduced by adopting
the proposed ESO-based deadbeat control strategy. Additionally, it can also be observed that
the steady-state errors of the rotor current in both cases A and B are greatly reduced. Therefore,
with the proposed control method, the rotor current tracking performance can be obviously
improved, even when parameter Lr mismatch exists.
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Similarly, when Ls
′ = 1.3Ls, the simulation results for cases A and B with the conven-

tional and the proposed control schemes are presented in Figures 9 and 10, respectively.
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According to Figures 9a and 10a, when Ls
′ = 1.3Ls, increased current harmonics and

steady-state current errors occur in the conventional control scheme. However, when the
proposed control scheme is adopted, the current harmonics, especially those of the d-axis
rotor current, are significantly reduced in both cases A and B. Additionally, the steady-state
errors of the rotor current in both cases A and B are also greatly reduced. Therefore, the
rotor current tracking performance can be greatly improved with the proposed control
method, and the control system is more robust to parameter mismatch.
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′ = 1.3 × Ls). (a) Results of the conventional
control scheme; (b) results of the proposed ESO-based deadbeat control scheme.

In a word, based on the above analysis, by adopting the proposed control scheme, accu-
rate control of the rotor current and strong robustness can be achieved simultaneously, which
validates the effectiveness of the proposed ESO-based deadbeat control strategy. Moreover,
stable operation and fast switching between various conditions as the reference signals change
are also obtained. Specifically, the overshoots of the currents, dc-bus voltage, and active power
can be reduced by 10%, 30%, and 20%, respectively, compared with the traditional deadbeat
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control method. Furthermore, under the 30% deviation of inductance, the current ripple with
the proposed control strategy can be reduced by approximately 40%.

6. Conclusions

In this paper, a parameter robustness enhanced deadbeat control strategy with an
ESO-based disturbance estimation is proposed for a DFIG wind energy conversion sys-
tem. Under the harsh service environment of wind energy conversion systems, motor
parameters, such as stator and rotor inductances, are prone to deviate from the originally
designed values, which unavoidably deteriorates the system performance. Based on the
evaluation of the effects of inaccurate motor parameters on system performance, an ESO is
established for the deadbeat control of DFIG to compensate the system disturbance and
enhance the parameter robustness. According to the obtained results, the following points
are summarized:

1. The transient performance during the speed-change process is significantly improved
when applying the proposed method. Specifically, the overshoots of the currents,
dc-bus voltage, and active power can be reduced by 10%, 30%, and 20%, respectively.

2. The DFIG system can operate effectively with a high current tracking accuracy under
different operating conditions with the proposed strategy.

3. When the proposed control method is applied, the current harmonics are greatly re-
duced compared to those of the conventional deadbeat control scheme when parameter
mismatch is encountered. Specifically, under a 30% deviation of inductance, the current
ripple with the proposed control strategy can be reduced by approximately 40%.

4. The proposed parameter robustness enhanced ESO-based deadbeat control strategy
of DFIG is highly effective in dealing with the inductance deviation issue, making the
wind energy conversion system more adaptive to the harsh service environment.
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