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Abstract: Themain reason for this research is to support the Korean government building retrofitting
program initiated to evaluate energy usage trends, propose energy‑saving technologies, and focus on
reducing the energy demand in residential buildings through energy efficiency improvement. This
is achieved by assessing the energy saved after introducing a simple retrofitting measure to an exist‑
ing residential building. The energy savings in the building were realized after collecting relevant
data from the house occupants, analyzing electricity bills, and introducing energy conservation mea‑
sures (ECMS), leading to an improvement in the energy performance of the building. The building
envelope saved 2098 kWh and 6307 kWh of energy via the heating and cooling equipment with an
initial incremental cost of USD 500, fuel cost savings of USD 306, and a simple payback of 1.6 years.
The analysis takes the occupants 2.6 years to recoup the initial cost of USD 2400 invested with an
electricity savings of 2144 kWh. Also, 3.3 tons of CO2 emissions per year were reduced, equivalent
to 3.3 people reducing energy use by 20%. Finally, the actual and simulated data are almost the same
for the consumption period, with only a slight difference in October and December, given 0.92 as the
Pearson Correlation coefficients.

Keywords: energy audit; energy saved; regression analysis; building performance; RETScreen
Expert software

1. Introduction
The building sector is one of the sectors with the highest greenhouse gas emissions

due to its high‑energy consumption rate [1]. One‑third of the harmful gas emissionsworld‑
wide are caused by the energy used in buildings [2] because buildings consume around
40%of theworld’s total energy consumption [3]. Energy use in high‑density cities accounts
for a significant proportion of urban greenhouse gases (GHG) [4–6]. The residential sector
is considered the second‑largest consumer of Energy in Asia, with about 25% of the total
energy consumed in South Korea coming from buildings [7]. Since the building sector is
highly energy‑intensive [3], methods to decrease greenhouse gas emissions by increasing
building energy efficiency are critical issues that play a prominent role in energy saving
and sustainability. It is paramount that the energy used by buildings is duly optimized [8]
to achieve energy savings after building retrofits [9] via the adoption of Energy Efficiency
Measures (EEMs), which decrease the amount of energy needed while providing the same
level of comfort. To increase the building energy performance by reducing the energy
consumption in residential buildings, energy‑efficient materials, efficient Heating, Ventila‑
tion, and Air Conditioning (HVAC) devices, Light Emitting Diode (LED) lighting systems,
Building Management Systems (BMSs), and solar photovoltaic are to be incorporated into
the building during building retrofits [10,11].
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An essential component of a successful retrofit project is using verified methods and
tools such as energy audits, energy monitoring systems, infrared thermography, and blower
doors tomeasure energy efficiency. Among these, the energy audit is an essential process that
guides auditors in obtaining comprehensive knowledge of a building’s energy consumption
profile and provides practical and systematic approaches to identify efficient energy usage
and potential savings [1]. Through cost–benefit analyses and detailed reports, the energy
audit assists in identifying and quantifying energy‑saving opportunities, assessing the en‑
ergy performance and carbon footprint of existing buildings, and evaluating the applicabil‑
ity of new energy‑efficient technologies [11,12]. The audit process typically consists of four
subgroups: walk‑through assessment, survey, retrofitting, and data collection for controlling
purposes. It is crucial to note that while an energy audit does not directly result in energy
savings [13], it plays a crucial role in establishing areas that require improvement and un‑
covering opportunities for energy conservation, as well as assessing the applicability of new
energy‑efficient technologies [9]. Thus, selecting suitable Energy Efficiency Measures (EEMs)
tailored to specific retrofitting cases becomes essential to optimize the retrofit process by con‑
sidering energy and cost impacts.

Many researchershavedemonstrated that energy efficiencymeasures inbuilding retrofits
can substantially reduce building energy use after energy audits [4]. Khalilnejad et al. [14]
conducted virtual energy audits using a non‑intrusive and automated method for buildings’
time‑series smart‑meter data. Mauriello et al. [15] evaluated a building via a one‑week, in‑
home field study in five homes and a semi‑structured interview with professional energy au‑
ditors. They used a temporal thermographic sensor system to analyze building envelope per‑
formance quantitatively. Woo andMoore [16] demonstrated a building energy audit process
in a high‑density multi‑residential modular development in Melbourne, Australia, collecting
extensive data on indoor air quality, occupant feedback, and utility usage. The analysis in‑
volved pre‑survey, walk‑through inspection, data collection, and formulation of energy effi‑
ciency solutions without software. Kerimray et al. [17] integrated a detailed building stock
module into Kazakhstan’s 16‑region TIMES energy systems model using statistical data and
building energy audit reports. They found networked gas and district heating economically
viable substitutes for coal in rural areas and flats, respectively, evenwith clean technology sub‑
sidies. These studies highlight the effectiveness of energy audits in identifying inefficiencies
and proposing retrofit solutions.

Efforts are needed to gather reliable data on building energy performance and com‑
pare it across different locations and building types to advance energy efficiency practices.
The energy consumption of Nigerian buildings remains uncertain. Mambo and Kebe [18]
conducted an energy audit of 105 buildings in Nigeria. They identified prevalent issues
such as using energy‑inefficient products, inadequate daylighting utilization, the absence
of building energy management systems, the low adoption of renewable energy systems,
and the poor consideration of bioclimatic factors in building orientation. It is important
to note that the objectives of improving buildings’ energy efficiency will result in (a) less
energy consumption while still maintaining occupants’ comfort level, (b) saving energy
and money, and (c) minimizing harmful emissions. However, focusing on constructing
high‑rise residential buildings in Korean metropolitan cities has led to neglecting energy
retrofitting in existing residential buildings [19].

Improving the energy performance of old residential buildings in Korea is impera‑
tive to address their high energy consumption, resulting in high utility costs and inade‑
quate indoor comfort. With buildings accounting for 56% of Seoul’s total energy and 87%
of the city’s electricity consumption [19], the Korean government initiated the Building
Retrofit Program (BRP) in 2008 to reduce greenhouse gas emissions by 40% by 2030. The
program enhances energy efficiency by installing new or retrofitting existing equipment,
insulation improvements, heating and cooling enhancements, and lighting upgrades. This
research supports the government’s initiative by evaluating energy usage trends, propos‑
ing cost‑effective energy‑saving measures, and reducing residential building energy de‑
mand through efficiency improvements. This study involves data analysis from occupants,
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examining electricity bills, and implementing energy conservationmeasures (ECMs) to en‑
hance building energy performance from 50 low‑rise residential buildings. This research
introduces a novel approach utilizing RETScreen software for auditing low‑rise residen‑
tial buildings to identify energy efficiency measures, assess energy savings potential, and
quantify CO2 emission reductions. This approach is the first in the region, offering valu‑
able insights for energy audits and mitigation strategies in the residential sector.

2. Literature on Building Retrofitting Measures
Greenbuildings andarchitecture arenecessary for sustainable buildingdevelopment [20].

Buildings are responsible for global high‑energy consumption and carbon emissions [21].
Retrofitting measures mitigate the effect of climate change on buildings by improving their
energy performance at beneficial cost‑effectiveness [22]. Themost critical aspect of retrofitting
is structural refurbishment, which aids in added strength, stability, and safety [23]. Although
retrofitting existing buildings offers significant opportunities to reduce global energy use and
greenhouse gas emissions [24], an insight into the applicable building retrofitmeasureswithin
a climate zone will guide the optimization framework to attaining sustainability in archi‑
tecture and the built environment [22]. Retrofitting measures are essential for reducing en‑
ergy consumption in residential and commercial buildings and cooling and heating require‑
ments in hot and cold climates [25]. Many researchers in the past have worked on different
retrofitting measures to improve the energy efficiency of buildings [26–31].

In 2021, Rabani et al. [32] studied optimizing energy use and improving building ther‑
mal and visual comfort conditions. They employed an optimization method that allowed
for the simultaneous optimization of various aspects, such as the building envelope, en‑
ergy supply, fenestration, shading devices, and control methods. Qu et al. [33] examined
three types of passive interior retrofits, namely internal wall insulation, glazing upgrade,
and airtightness improvement, for a historic building renovation. Their evaluation con‑
sidered energy‑saving potential, affordability, and thermal comfort performance and pro‑
posed five assessment indicators, including energy reduction rate and specific initial cost.
Fina et al. [34] investigated the profitability of implementing active and passive retrofitting
measures in buildings in 2021. They developed an optimization model to quantify the im‑
pact of renovation measures on the heat load. Their findings revealed that the profitability
of passive retrofittingmeasures, specifically building envelope renovation, depends signif‑
icantly on additional costs associated with CO2 emissions and the default heating system.

Furthermore, Shirazi andAshuri [35] explored retrofittingmeasures to enhance the oper‑
ational energy consumption of different building categories in the United States (U.S.) in 2020.
They assessed the embodied impacts associated with these measures and compared their en‑
vironmental efficiency. The study identified that retrofitting residential buildings, mainly
through attic/knee insulation andHVACunit replacement, had the highest environmental im‑
pacts. This underscored the significant environmental effects of retrofitting foundation wall
insulation and upgrading windows in dwellings constructed before the 1970s.

In a study by Pallonetto et al. [36], the energy savings achieved via retrofitting mea‑
sures on Irish residential buildings were investigated. By progressively retrofitting de‑
tached dwellings to become all electric, energy savings of up to 45% and CO2 reductions
of approximately 29% were achieved compared to the pre‑retrofitted buildings. Andrade‑
Cabrera et al. [37], in 2017, developed an automated calibrationmethodology for retrofitted
buildings using parametric Energy Conservation Measures (ECMs) functions. Through
Particle Swarm Optimization, retrofit functions were calibrated based on a baseline model
representative of the building before the retrofit. The analysis demonstrated that the pro‑
posedmethodology could effectively calibrate retrofitted building models with acceptable
accuracy, generating lumped parameter building models with similar dynamics for differ‑
ent ECMs across various building energymodels. In another study by Pallonetto et al. [38],
conducted in 2016, the impact of building retrofit measures on the carbon footprint of
dwellings was examined using EnergyPlus. The retrofit measures resulted in an overall
reduction in carbon footprint from 43.3 to 30.8 kg/m2 CO2, considering a pre‑retrofitted
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dwelling as the baseline. The case study accounted for a mix of energy supply sources, in‑
cluding fossil fuel for space heating, electricity for household equipment, and conventional
gasoline cars for transportation.

The reviewed literature presents various methodologies to optimize energy utiliza‑
tion, improve thermal and visual comfort, and evaluate the environmental implications
of retrofitting measures. Additionally, these studies emphasize the importance of care‑
fully considering specific retrofitting options, such as building envelope refurbishment,
attic/knee insulation, and HVAC unit replacement, to achieve substantial energy savings
and mitigate CO2 emissions. Moreover, the literature review underscores the necessity
of reliable data on building energy performance and highlights the potential efficacy of
automated calibration methodologies for retrofitting building models. The findings from
this review offer valuable insights that guide our current research, which is dedicated to
supporting the Korean government’s Building Retrofit Program. The primary objective of
this study is to assess energy usage trends and propose cost‑effective energy‑saving mea‑
sures in low‑rise residential buildings, utilizing the RETScreen software for energy audits
and mitigation strategies. Consequently, this research seeks to advance energy efficiency
practices and promote sustainability in the built environment, thereby addressing the chal‑
lenges associated with elevated energy consumption and inadequate indoor comfort in
existing residential structures within Korea.

3. Materials and Methods
Building energy audit is a significant activity in effectively controlling energy con‑

sumption leading to cost savings in a building. Energy auditing involves a comprehensive
building energy efficiency assessment, including feasibility analyses and suggestions for
suitable measures. After introducing a simple retrofitting step, this study evaluates the
total energy saved in an old residential apartment in Korea. This was conducted by con‑
sidering cost‑effective approaches to minimize energy use in the building and improve the
occupant’s comfort.

3.1. Selection of the Study Area
A voluntary sample survey was conducted in 2020 for 50 buildings in Buk District,

Daegu, Korea. This was performed to analyze low‑rise residential apartments’ energy per‑
formance and users’ behavior. The sample size was insignificant because of COVID‑19,
which limits interaction leading to social distancing in Korea. Hence, only 50 households
voluntarily participated in the survey because of their strong interest in the research. The
choice to survey 50 buildings was made to avoid research bias that could arise from se‑
lecting only one building as a representative sample. Figure 1 shows the location of the
survey site. The past year’s electricity bills were collected from each household and ana‑
lyzed. This was carried out to quantify the building’s energy use and performance. The
survey included questions related to the building type, building age, characteristics, elec‑
trical equipment, lighting equipment, and building HVAC, as shown in Table 1. The data
collecteddetermined the occupancy rate, schedule, window‑to‑wall ratio, heating and cool‑
ing setpoint, and building envelope performance.

From the information obtained from the occupant, 52% of the buildings are above
80 m2 in area. Furthermore, 38% have an area between 60 and 80 m2, while the remaining
10% have areas between 50 and 60 m2. In addition, from the orientation of 50 buildings ob‑
tained, 57% were southwest facing, and the remaining 43% were either southeast or south
facing. Also, 80% of the buildings surveyed were built in the 1980s, while 20% were con‑
structed in the 1990s. The information on the building year collected via the questionnaire
was used to calculate the walls’ U‑value. The U‑value was determined based on the adjust‑
ment in the policy of the thermal conductivity of walls in Korea, as shown in Table 2. This
was carried out to estimate the building’s energy performance.
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Figure 1. The satellite image of the location.

Table 1. Categorization of the survey contents [39].

Categorization Derivation Factor Unit Description

Settings Area m2

Position o Building angle relative to North

Activity

Family ‑
Occupancy person/m2 Obtained from the occupancy rate

Heating setpoint ◦C Heating thermostat setting
Cooling setpoint ◦C Cooling thermostat setting

Construction
Construction year ‑
Retrofitting year ‑

Opening Glazing type ‑
Area of window m2

Lighting
Schedule hour/day
Load W

Lighting per area W/m2

HVAC

Heating system ‑ Seasonal efficiencyCooling system ‑
Heating schedule hour/day Coefficient of performanceCooling schedule hour/day

Appliances
Power consumption W
Usage schedule hour/day
Duty cycle % % of the time, the load is running

Out of the 50 low‑rise residential buildings surveyed, 78% of the households had
single‑glazed windows, and 22% had double‑glazed windows. The window’s thermal
transmittance was calculated according to the criteria highlighted for the building enve‑
lope in Korea, as shown in Table 3. The heating set temperature, cooling set temperature,
equipment, and cooling/heating schedule were obtained and recorded. This was carried
out by counting the number of equipment, operating hours, and duty cycles of each gad‑
get. Furthermore, the electricity consumption of each household was calculated from the
information obtained.
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Table 2. Korean thermal properties of walls between 1980 and 2000.

1980s [39]
Part U‑Value (kcal/m2h◦C)

The outside wall of the sitting room 0.5
The upper floor of the sitting room 0.5

Roof 0.5
The bottom floor of the sitting room 1.0

Window facing outside 3.0
Specific insulation thickness Thermal resistance of more than 1.6

1990s [39] Thermal Resistance by Region (m2h◦C/kcal)
Part Central Southern Jeju Island

The external wall of the sitting room 1.6 1.25 1
The upper floor of the living room 2.5 1.9 1.25

Roof 2.5 1.9 1.25
The bottom floor of the sitting room 1.6 1.25 1

Window facing outside 3.0 3.0 3.0
Sidewall of an apartment 2.2 1.6 1.25

Table 3. The U‑values of the Korean building envelope [39].

Type of Window and Door
Thermal Conductivity According to the Kind of Window Frame and Door (W/mK)

Metal
Wooden PlasticNo Insulated Insulated

The thickness of the air gap (mm) 6 12 6 12 6 12

Double glazing (Low‑E) 3.70 3.20 3.10 2.60 2.90 2.40 2.90 2.40
Double glazing (Argon) 4.00 3.70 3.37 3.20 3.10 2.90 3.10 2.90

Double glazing (Low‑E, Argon) 3.37 2.90 2.80 2.40 2.60 2.20 2.60 2.20
Triple glazing 3.37 3.20 2.90 2.60 2.60 2.40 2.60 2.40
Single glazing 6.60 5.20 4.70 4.70

For the lighting, the number of lights, operating time, and duty cycles were changed
into consumption schedule (hour/day), lighting power (W), and light load per area (W/m2),
respectively. In addition, from the set heating and cooling temperature information ob‑
tained for both occupied and unoccupied periods, 65% of the building residents set their
space heating and cooling temperature at 20 ◦C and 22 ◦C for both actual and scheduled
when the building is occupied. The remaining 35% were set between 16 ◦C and 18 ◦C
for the unoccupied period. Moreover, 60% of the house occupants set the space heating
and space cooling temperature at 22 ◦C and 25 ◦C, respectively, for both actual and sched‑
uled. Furthermore, from the monthly distribution for the electricity consumption of the
fifty buildings shown in Figure 2, building 22 has the highest annual electricity consump‑
tion, followed by building 13. Hence, building 22 is used as a referenced building for the
retrofitting measure to analyze the building’s energy performance. This provided the nec‑
essary results to benchmark the selected facilities’ energy performance.

3.2. Referenced Building Information
The referenced residential building considered for this analysis is located in the Buk‑

gu District of Daegu City, South Korea. It is a low‑rise residential structure built in 1982,
encompassing an area of 88 m2 and comprising three bedrooms, a living room, a kitchen,
and a bathroom. Detailed information about the building’s heating and cooling equipment
was obtained, including the monthly electricity expenditure in USD/kWh. The tempera‑
ture settings for space heating and coolingwere recorded during occupied and unoccupied
periods, and the heating/cooling changeover temperature was. Occupancy rates were also
documented for scheduled and unscheduled times, as shown in Table 4. During scheduled
hours, the occupied building was heated to keep the temperature from going above 20 ◦C
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for the space heating during the winter season. It was cooled to keep the temperature from
rising above 25 ◦C for space cooling during the summer. Unoccupied periods were regu‑
lated for optimal energy conservation, with the temperature set at 15 ◦C for space heating
during winter and 0 ◦C for space cooling during summer when the air conditioner was
turned off.
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Table 4. Korean thermal properties of walls between 1980 and 2000.

Description Units Actual Schedule

Occupied—Space heating ◦C 20 20
Occupied—Space cooling ◦C 22 25

Unoccupied—Space heating ◦C 15
Monday h/d 24 16
Tuesday h/d 24 16

Wednesday h/d 24 16
Thursday h/d 24 16
Friday h/d 24 16
Saturday h/d 24 20
Sunday h/d 24 20

Occupancy Rate—Annual h/yr 8760 6257
Occupancy Rate—Annual % 100 71.4
Change over temperature ◦C 18

Length of the heating season d 192
Length of the cooling season d 173

Furthermore, data was collected regarding the lighting and electrical equipment used
in the residential apartment, including quantities, operating hours, power ratings, and
duty cycles. Information on hot water usage was also gathered, including daily water
consumption, temperature, occupancy rates, and operating hours. Additionally, details
on the building’s infiltration method, volume, and air change rate were recorded. In Jan‑
uary 2020, a simple retrofitting measure was implemented in the building, and the en‑
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ergy performance was evaluated using Measurement and Verification (M&V). The deci‑
sion to analyze the energy performance was prompted by the occupants’ realization that
the electricity consumption between October 2018 and December 2019 was significantly
higher than the benchmarked electricity usage in Daegu, Korea, during the same period.
Finally, RETScreen Expert software was utilized to calculate energy savings resulting from
the retrofit, fuel cost savings, payback period, and greenhouse gas (GHG) emissions.

3.3. Data Analysis
The four years of electricity data used for this analysis was obtained from the Korean

Electric Power Cooperation (KEPCO) under the authority of the building occupants. After
collecting all relevant information from the building occupants, the electricity data were
prepared in an Excel sheet. This was later imported into the software using the perfor‑
mance analysis capability of the software. The first analysis of the building was conducted
in January 2022, where the electricity data for the years 2018 and 2019 were analyzed using
the software. This was carried out to assess the year the occupant consumed more energy
and usage. After that, the software’s simulation capability introduced an energy audit that
included a simple retrofitting measure into the building. The energy saved from the build‑
ing, the fuel cost savings, the simple payback period, and GHG emission reduction by
carrying out the measures were analyzed. Finally, the electricity data for 2020 to 2021 was
imported into the software to ascertain that the effort introduced into the building yielded
actual energy savings.

3.4. Data Validation
A real‑time energy monitoring system was implemented in the reference building to

validate the results obtained from the software. This involved installing a smart meter
at the end‑use of selected home appliances to record real‑time energy consumption. The
smart meter, a real‑time monitoring device (RTMD), is a cost‑effective solution for collect‑
ing accurate meter data based on actual consumption. The data collected from the meter
were sent to the computer and later retrieved by downloading the data into a Microsoft
Excel sheet. Data collection using the RTMD spanned a period of one year, from January
2021 to December 2021. The data obtained are then used to develop metrics to display and
quantify the real effects of comprehensive energy upgrades by comparing them with the
electrical bills of the same year obtained from the occupants. This method was employed
because it allows the occupants to know the actual energy consumed from each appliance
and the amount spent. The analysis employed the correlation coefficient, as expressed in
the Equation below.

r =
n∑ xy− ∑ x∑ y√

[n∑ x 2 −
(

∑x)2
]
[n∑ y 2 − (∑ y)2]

(1)

The Pearson correlation coefficient is a statistical measure to assess the linear associ‑
ation between two variables. Its values range from −1 to 1, where −1 indicates a perfect
negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correla‑
tion. In Equation (1), x and y denote sets of data points, while n represents the number of
data points in those sets. Σxy is the sum of the products of corresponding values in x and
y, while Σx and Σy represent the sums of values in x and y, respectively. The sums of the
squared values of x and y are obtained by squaring each value and summing them up. The
denominator of the formula represents the product of the standard deviations of x and y,
reflecting their variability. The numerator, nΣxy− ΣxΣy, signifies the covariance between
x and y. The Pearson correlation coefficient is widely employed in statistical analysis to
determine the strength and direction of the relationship between two variables.
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4. Results and Discussion
In South Korea, the total electricity consumption in 2018 reached 545 TWh, a 34% in‑

crease compared to 2008 [40]. Specifically, residential electricity consumption experienced
a 20% growth from 56 TWh to 68 TWh during the same period. Data from KEPCO indi‑
cates that the average electricity consumption per household in Daegu metropolitan city
for 2018, 2019, and 2020 was 240 kWh, 233 kWh, and 241 kWh, respectively [41]. Analyz‑
ing the electricity consumption of the reference building in 2019 using RETScreen software
revealed that it deviated significantly from the benchmark set by average residential build‑
ings in Daegu, as shown in Figure 3. Notably, the highest electricity consumption occurred
in December, with monthly consumption of 600 kWh, followed by January, with 441 kWh,
as depicted in Figure 4. This energy performance abnormality suggests irregularity in the
building’s electricity consumption patterns. In Korea, electricity is typically used for space
cooling during the summermonths (June toAugust), while gas is commonly used for space
heating during winter. Therefore, when space heating is needed, the reference building’s
higher consumption during the winter indicates an anomaly in its energy performance.
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Figure 3. Monthly actual electricity and benchmark consumption for the whole data.
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4.1. Regression Analysis before the Measures
The regression analysis of the complete data established the correlation connecting the

heating degree days (HDD) and electricity consumed in the building, as shown in the time‑
series graph in Figure 5. TheHDD is an estimation outline to assess the demand for energy
needed to heat a building during summer, which did not follow the same pattern as the
consumption. It is worth noting that the heating requirements for a specific building at a
particular place are directly proportional to the number ofHDDs at that location. However,
from the time‑series graph, theHDD in the facility locationwent down in the last quarter of
2019, and invariably the energy consumed in the buildingwent up, citing an abnormality in
the energy performance in the building. In addition, the line graph of the actual electricity
consumed using the regression analysis agrees with the baseline predicted until December
2019, when the actual electricity consumed skyrocketed more than predicted, as given in
Figure 6. This is shown in Figure 7, where the cumulative sum graph (CUSUM) changed
direction in December 2019. The CUSUM graph of the building energy consumption has
two equal parts with opposites slopes. The first part of the graph on the left indicates that
the energy consumed in the referenced building is more than the baseline predicted by the
system. Hence, the slope is positive because the system is under‑predicted.
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Figure 5. Times series graph for electricity usage and heating degree days before retrofits.
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Figure 6. Line graph of the actual electricity consumed to the baseline predicted before retrofits.
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Figure 7. CUSUM of the total electricity consumed by the building before retrofits.

On the contrary, the graph on the right side indicates that the energy consumed in
the building is less than the baseline predicted. This means that the system over‑predicted,
making the slope to be negative. For a building to conserve energy, the actual energy
consumed should be less than the baseline predicted. However, the opposite was the case
for the first part of the graph in Figure 7 because it indicates that the building consumed
more energy in 2019, with the highest consumption in December. This means that the
system is under‑predicted, making the slope positive. It should be noted that the slope of
the graph changed at a reference year, which took place in January 2020. This was when
the occupants introduced some retrofitting measures into the building.

4.2. Regression Analysis before the Measures
Retrofitting is carried out to improve the energy performance of buildings because

they provide comfort without compromising functional needs [42]. These needs include
but are not limited to thermal, visual, and acoustic. In January 2020, the reference build‑
ing underwent retrofitting by implementing simple energy conservationmeasures (ECMs).
The retrofit included changing the heating and cooling systems and four minor retrofitting
measures on the lighting, equipment, hot water, and building envelope. In Table 5, the
simulationmodel considered level 1 of the light pane, as the retrofittingmeasures for light‑
ing were relatively minor compared to level 2. Data regarding floor area, lighting load per
unit area, and operating hours were collected for the base case.

Table 5. The base case and the proposed case for the building light.

Description Units Base Case Proposed Case

Floor area m2 88 88
Lighting loads per unit area W/m2 6 6

Operating hours h/w 50 40
Number of rooms 5 5

Electricity kWh 6883 5506
Total energy saved kWh 1377 (20%)

In contrast, information for the proposed case was added to achieve desired energy
savings. The proposed measure involved requesting occupants to reduce the operating
hours of lighting from 50 h per week to 40 h per week. The reduction was ensured through
effective occupancy monitoring and raising awareness about energy conservation benefits
resulting in 20% energy savings for the building, corresponding to the conservation of
1377 kWh of electricity.
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For the electrical equipment, six pieces of equipment were proposed to the occupant
for a behavioral change in the building. This was ensured through effective occupancy
monitoring and raising awareness about energy conservation benefits. The television op‑
erating hours of 28 h per week and duty cycle of 100%, having a power rating of 120 Watts
were reduced to 21 h per week and 75%, respectively. In addition, different measures were
taken, such as refrigerator, computer, iron, microwave oven, and bread toaster, as shown
in Table 6. The standard introduced saved 767 kWh of electricity consumed in the building
by the equipment, equivalent to 42% of the total energy saved.

Table 6. The base case and the proposed case for the electrical equipment in the building.

Electrical Items
Base Case Proposed Case

Quantity Hours
(h/w) Load (W) Duty Cycle

(%) Quantity Hours
(h/w)

Load
(W)

Duty Cycle
(%)

Television 1 28 120 100 1 21 120 75
Refrigerator 1 35 400 100 1 28 400 75
Computer 1 14 200 80 1 14 200 50
Clothes Iron 1 7 1200 100 1 7 1200 50

Microwave Oven 1 5 800 100 1 5 800 50
Toaster 1 5 800 75 1 4 800 75

Electricity (kWh) 1825 1058
Energy Saved

(kWh) 767 (42%)

Furthermore, the boiler used in the building was changed from an inefficient boiler
to a more efficient heating system having a seasonal efficiency of 80% with an initial incre‑
mental cost of USD 1500. The boiler change saved an estimated 1202 kWh of energy after
adjusting the hot water temperature from 60 ◦C to 55 ◦C and reducing the operating hours
from 12 to 8 h per day shown in Table 7. This was achieved after estimating the occupancy
rate and the daily hot water consumed by the occupants.

Table 7. The base case and the proposed case for the hot water usage in the building.

Description Units Base Case Proposed Case

Number of units occupants 5 5
Occupancy rate % 70 70
How water use L/d 300 300
Temperature ◦C 60 55

Water Temperature (min) ◦C 8.6 8.6
Water Temperature (max) ◦C 1.8 1.8

Operating hours h/d 12 8
Heat recovery rate % 0 0

Heating System (Boiler) kWh 2966 1764
Energy Saved kWh 1202 (40.5%)

Also, the cooling system in the building was changed, replacing it with an energy‑
efficient air conditioner featuring a coefficient of performance (COP) of 4. This modifica‑
tion incurred an initial additional cost of USD 400. The selected air conditioner operates in
an energy‑conserving manner by automatically shutting off the compressor and fan once
the desired temperature is reached. It is an energy‑efficient model with a smart thermostat
for remote control, multi‑stage cooling, and advanced air purification technology. The AC
also features a sleep mode, eco‑friendly refrigerant, quiet operation, and an energy usage
monitoring system for optimizing electricity consumption.

Significant energy savings were achieved by reducing the air change rate to 0.9 air
changes per hour (ac/h) through caulking measures around the door and window frames
to eliminate gaps and cracks. Table 8 details the energy saved, with a total of 6005 kWh
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conserved. Considering the building’s status as an older residential structure, a recom‑
mended air change rate of 0.9 ac/h was suggested, corresponding to the fresh air volume’s
introduction into the building [43]. This rate equates to 634 cubic meters of natural air
infiltration per hour. The comprehensive caulking and air leakage prevention measures
involved an initial additional cost of USD 500 but resulted in substantial energy savings
of 52.8%.

Table 8. The base case and the proposed case for the natural air infiltration in the building.

Natural Air Infiltration Unit Base Case Proposed Case Energy Saved

Method Air change rate Air change rate
Volume m3 704 704

Air change rate ac/h 1 0.9
Natural air infiltration m3/h 704 634
Incremental initial cost USD 500
Number of building

envelope units 1 1

System selection Heating and cooling Heating and cooling
Heating system Boiler Boiler

Heating kWh 12,194 9759 2435 (20%)
Cooling system Air condition Air condition

Cooling kWh 11,363 5359 6005 (52.8%)

Implementing retrofittingmeasures involved changes to the building envelopeplayed
a crucial role in reducing energy consumption and enhancing energy efficiency. Specifi‑
cally, the retrofitting addressed issues like cracks and gaps in windows and doors that
negatively affected natural air infiltration. Materials such as window veils, caulking guns,
and sealants were utilized to address these concerns, resulting in a total cost of USD 500,
including labor. In context, the initial investment for upgrading the air conditioner was
USD 400, and an additional USD 500 was allocated for the building envelope retrofitting.
As mentioned, these investments were essential to significantly improve the building’s
energy performance, leading to substantial energy savings and reduced greenhouse gas
emissions. Through these combined efforts, the building now operates with enhanced en‑
ergy efficiency, ensuring a greener and more sustainable future.

Implementing the simple retrofittingmeasures significantly reduced energy consump‑
tion, as indicated in Table 9. The building envelope retrofitting saved 2098 kWh in heat‑
ing equipment and 6307 kWh in cooling equipment, incurring an initial additional cost
of USD 500. This led to fuel cost savings of USD 306 and a payback period of 1.6 years.
The fuel cost savings for the heating and cooling equipment were USD 234 and USD 101,
respectively, with 6.4 years and 4 years of payback periods. The occupants took 2.6 years
to recover the total initial investment of USD 2400 in retrofitting measures, resulting in a
total electricity savings of 2144 kWh.

Furthermore, the analysis included calculating the annual gross reduction in green‑
house gas (GHG) emissions and comparing the base case and proposed case systems. Be‑
fore implementing any measures, the building emitted 8.8 tons of CO2 per year. After
retrofitting, the emissions were reduced to 5.5 tons of CO2 per year, resulting in a gross
annual reduction of 3.3 tons of CO2 emissions. This reduction is equivalent to the energy
savings achieved by 3.3 individuals reducing their energy consumption by 20%. Figure 8
provides a visual representation of these emissions reductions.

4.3. Regression Analysis before the Measures
It is a fact that old residential buildings in Korea were built without proper energy

measures [19]. Most buildings were designed with little consideration of energy efficiency
measures [44,45]. Understanding a building’s energy use is essential to collecting data
and analyzing electricity bills [46]. This is followed by considering the building envelope,
heating, cooling, ventilation, lighting, and electronic equipment when sourcing ways to
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reduce energy consumption [47,48]. Since the energy saved in a building cannot be mea‑
sured directly because it represents the absence of energy consumption. A baseline period
was set to establish the relationship between energy consumption and factors influencing
consumption. The relationship was used to estimate energy consumption. The predicted
values were compared to the actual energy consumption in the building after implement‑
ing the ECM with the difference given the energy savings. To calculate the energy saved
after the measure, the electricity bills for 2020 and 2021 were collected from the occupants
to run the analysis. As shown below in Figure 9, the building consumed less energy than
predicted after undergoing simple retrofitting measures. This is due to the change in the
system because of a change in the slope of the graph.

Table 9. The included measure table for the overall retrofitting measures.

Energy Use Heating
(kWh)

Cooling
(kWh)

Electricity
(kWh)

Initial Costs
(USD)

Fuel Cost
Savings
(USD)

O&M Cost
(USD)

Simple
Payback (yr)

Boiler 1500 234 0 6.4
Air Condition 400 101 0 4.0

Building Envelope 2098 6307 500 306 0 1.6
Lights 1377 0 138 0 immediate

Electrical
Equipment 767 0 76.7 0 immediate

Hot water 1202 0 84.8 0 immediate
Total 3300 6307 2144 2400 939 0 2.6
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Figure 8. The gross annual GHG emission reduction chart of the RETScreen.

A cumulative sum (CUSUM) is a difference between the actual electricity consumed
in the building and the electricity predicted by the system for each period. It represents
all the reduction in the energy consumed by the building compared to what the building
would have consumed if it acted according to the baseline amount. It should be noted that
the cumulative sum is zero at the end of the baseline period, where the chart’s slope starts
to go down. Hence, when the differences are added together, it creates a running total
known as the cumulative total savings of the electricity consumed in the building.

According to [19], the Measurement and Verification analysis (M&V) is the process
of planning, measuring, collecting, and analyzing data to verify and report energy sav‑
ings within an individual facility resulting from implementing ECMs. Through the Mea‑
surement and Verification analysis (M&V), as shown in Figure 10, the actual net savings
recorded from the building is 1604 kWh. This is 25% (540 kWh) less than the actual electric‑
ity savings obtained during the measures. The difference is due to many factors, including
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COVID‑19, which restrains the occupants from going to the office due to social distance
rules in Korea. Another reason is climate change, which necessitates using more energy in
the building. The final reason is due to the occupants’ behavioral change that is dynamic
and not static.
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Figure 9. CUSUM of the total electricity consumed by the building after retrofits.
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4.4. Monitoring and Validation (M&V) Analysis
Following the retrofitting of the building, an energy monitoring and verification (M&V)

analysis was conducted to track its energy usage. This comparative study aimed to assess the
effectiveness of the retrofitting measures and obtain accurate information on the building’s
energy performance. The actual energy consumption was verified and compared with simu‑
lated results by installing an energy monitoring device. During the analysis, it was observed
that the highest daily electricity consumption reached 9 kWh, with total energy consumption
of 265 kWh in August and 252 kWh in July. These months correspond to the summer period
in Korea, characterized by increased electricity usage for space cooling.

Figure 11 compares the actual data obtained from the installed device and the simu‑
lated data for 2021. The two datasets exhibited a close resemblance throughout the con‑
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sumption period, except for slight deviations in October and December. The experiment
comprised 50 simulations conducted with varying operation parameters. Among these
simulations, we meticulously identified the one that demonstrated the most promising
convergence and delivered highly accurate results. To ensure robustness in our analysis,
we employed statistical analysis techniques, specifically focusing on the coefficient of cor‑
relation. This allowed us to assess the strength of the linear relationship between the data
obtained from measurements and the actual data. As a result of our rigorous analysis,
we achieved a Pearson correlation coefficient of 0.92, signifying a robust and significant
correlation between the actual values and the simulated results. This strong correlation
provides a solid foundation for the validity and reliability of our simulation outcomes.
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Figure 11. The graph of actual data against the simulated data for the year 2021.

Additionally, the regression analysis of the dataset (Figure 12) further confirms the
strong correlation between the actual and simulated values. These findings highlight the
reliability and predictive capability of the software in analyzing the energy performance
of retrofitted buildings. The close alignment between the actual and simulated data, sup‑
ported by the high Pearson correlation coefficient, validates the software’s accuracy in pre‑
dicting energy consumption.
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5. Conclusions
This study assesses the impact of implementing mitigation technologies to decarbonize

a residential building in South Korea by evaluating energy savings, cost reductions, and CO2
emission reductions. A survey was conducted among 50 buildings to collect data on building
characteristics, electrical equipment, lighting equipment, and HVAC systems. Four years of
electricity data from KEPCOwere utilized, with a reference building serving as a benchmark
for retrofitting measures. The implemented measures resulted in significant energy savings
for lighting (1377 kWh) and electrical equipment (767 kWh), as well as notable energy sav‑
ings in the building envelope due to improved heating and cooling systems (2098 kWh and
6307 kWh, respectively). The initial investment cost for these measures was USD 500, with
fuel cost savings of USD 306 and a simple payback period of 1.6 years. The implemented
measures also led to a reduction of 3.3 tons of CO2 emissions per year, equivalent to a 20%
reduction in energy use by 3.3 individuals. The occupants of the building recouped the initial
investment cost of USD 2400 over 2.6 years, resulting in a total electricity savings of 2144 kWh.

Furthermore, there were fuel cost savings of USD 234 and USD 101, with payback pe‑
riods of 6.4 years and 4 years for heating and cooling equipment, respectively. However,
the actual net savings obtained from the building were 1604 kWh, which is 25% (540 kWh)
lower than the predicted electricity savings during the implementation of measures. This
difference can be attributed to various factors, including the impact of COVID‑19 on occu‑
pant behavior due to social distancing rules, the increasing energy demand due to climate
change, and dynamic changes in occupants’ behavior. Finally, the actual and simulated
data exhibited close alignment throughout the consumption period, with a Pearson corre‑
lation coefficient of 0.92, except for slight variations observed in October and December.

6. Recommendation and Future Research
The findings underscore the importance of cost‑effective approaches to minimize en‑

ergy consumption and improve occupant comfort. Future research would focus on con‑
ducting long‑term analyses to assess the sustainability of implemented measures and ex‑
panding this study to include a larger sample size and diverse building types. Based on
the results obtained, several recommendations can be made. Firstly, policymakers should
consider incentivizing the adoption of energy‑efficient technologies and retrofitting mea‑
sures in residential buildings to promote sustainable practices. Secondly, further research
should be conducted to explore innovative approaches for optimizing energy consump‑
tion and reducing emissions in the residential sector. This may involve leveraging emerg‑
ing technologies or exploring new strategies for behavior change among building occu‑
pants. By continuing to advance knowledge in this field and implementing energy‑saving
measures on a broader scale, we can contribute to a more sustainable and energy‑efficient
future in residential buildings in South Korea and globally.
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