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Abstract: The study of dispatching methods for large-scale interruptible loads and electric vehicle
clusters is of great significance as an optional method to alleviate the problem of overload in interface
power flow. In this paper, the distribution model and transfer capacity of large-scale interruptible load
and electric vehicle in two dimensions of time and space were firstly introduced. Then, a large-scale
interruptible load and electric vehicle dispatching model considering transmission interface power
flow balance was established. Finally, a case study was carried out with the city power grid as the
research object. Studies show that by dispatching large-scale interruptible load and electric vehicle,
the overload rate of interface power flow can be reduced by 12–17%, while the proportion of clean
energy generation increased by 4.19%. Large-scale interruptible load and electric vehicles are quite
different in terms of the role they play in grid regulation. The regulation cost of electric vehicles is
higher than that of large-scale interruptible load, but it also has the advantages of promoting the
consumption of clean energy and improving the overall operating economy. Which type of resource
should be given priority is based on the actual state of the grid. In addition, the cost of electricity
has a significant impact on the load response behavior of electric vehicles. It should be determined
according to various factors, such as interface power flow control requirements, regulation costs, and
power grid operation costs.

Keywords: interruptible load; electric vehicle; interface power flow overload; regulation cost;
dispatching model; spatial and temporal electricity price

1. Introduction

A transmission section is a collection of transmission lines connecting two regional
power grids. Due to the imbalanced distribution of energy resources and power demand,
most regional transmission sections in China have large-scale power exchange and expe-
rience imbalanced power flow distribution. In the event of a transmission line fault in a
particular section, the majority of power will be redirected to other lines within the same
section, leading to an overload on the remaining lines and ultimately resulting in a cascad-
ing failure. In recent years, there have been many blackouts due to section overload [1,2].
Against the background of a high penetration of renewable energy and power electronic
devices in modern power systems, optimizing interface power flow, achieving balance, and
enhancing disaster resistance ability have become urgent issues.

Currently, the research on transmission interface power flow equalization control
mainly involves several aspects: key section identification [3], section limit capacity
calculation [4], and unified power flow control [5,6].

Demand response programs are widely applied in electric power systems
nowadays [7–15], with new mathematical methods including deep learning being ap-
plied in this research filed. These demand response methods are also applied for power
system resilience enhancement [16,17]. In recent years, with the development of power
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grid regulation technology and increasing new flexible loads such as electric vehicle (EV)
loads and interruptible loads, some studies have utilized this type of load as a valuable
resource in the ancillary services for electric power systems [18].

The research on scheduling for EVs primarily involves optimizing the orderly charging
strategy for EVs, as well as exploring the ability of EVs to provide frequency and voltage
support services or participate in demand response programs.

A demand response program for EVs is proposed in [19] to provide support for a
grid-connected microgrid, which can help the microgrid reduce dependency on the power
system. An integrated demand response program is proposed in [20] for a community
integrated energy system with an EV charging station to promote a balance between
energy supply and demand while maintaining a user comprehensive satisfaction within
an acceptable range. EVs play an important role in the coordination of a flexible demand
response and uncertain renewable energy. In order to protect building energy systems
against natural disasters, EVs in the charging station are organized to help the building
recover from power outages [21].

In order to address the frequency support issue in microgrids, a control strategy for
cooperative frequency support between energy storage and EVs is proposed based on
predictive EV capacity [22]. Considering the cost of battery degradation and aiming for
minimal frequency adjustment expenses, the study coordinated EV output to ensure safe
and economical operation of the power system [23]. A power change mode optimization
method was proposed for taxis, which involves the use of a swapping station to support
voltage in the power grid [24]. A distributed voltage control strategy was proposed for
both balanced and unbalanced distribution networks, which functions by harnessing the
reactive power capabilities of large-scale decentralized EV chargers [25]. Aiming at the
demand of active power and reactive power in frequency and voltage stability control, the
effect of simultaneously supporting the voltage and frequency of the grid is achieved by
coordinating the charging and discharging active power of EVs and the reactive power of
charging inverters [18,26].

The involvement of interruptible loads in power grid load dispatching is facilitated
through contractual agreements. Researchers have carried out relevant studies on interrupt-
ible load scheduling. In one study, an automatic demand response framework based on
deep reinforcement learning was developed to provide technical support for the real-time
implementation of demand response [27]. Another study examined the pricing of subsidies
for users with interruptible loads, enhanced user engagement in demand response, miti-
gated peak system load and operating costs, and resolved the trade-off between minimum
daily load reduction and user interruption time [28]. Previous research also shows the
method of household interruptible load participating in demand response [29].

In reality, flexible demand resources like interruptible load and EVs that participate
in grid scheduling to achieve power balance, frequency, and voltage support require
appropriate pricing strategies to incentivize participation. The existing relevant studies
primarily aim at a reduction in electricity costs for consumers, generation of supplementary
benefits, and enhancement of grid voltage and frequency quality, but there is a paucity
of research on the dispatching of demand-side resources and resolution of power grid
transmission interface power flow congestion. This is known as an interruptible load, and
EVs, as flexible resources, have not played their due role in interface power flow overload.

In light of this, the present study comprehensively examines two types of demand-side
response resources, namely large-scale interruptible loads and EV clusters, and presents
conducts research on transmission sectional power flow equalization.

Firstly, the research presents the spatial and temporal distribution model of demand
response resources including an EV cluster and large-scale interruptible load that participate
in interface power flow optimization, respectively. Secondly, a flexible optimization model
of interface power flow is established with the aim of limiting power flow within safety
limits at minimal adjustment costs while considering demand-side resources. Finally, the
optimization simulation is conducted on the urban power grid as the research subject,
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analyzing and comparing response behaviors of large-scale interruptible loads and EV
clusters in various scenarios. The results provide guidance and suggestions for engineering
applications. Additionally, the impact of various electricity pricing policies on the response
behavior of EV clusters is examined, and a fundamental approach for determining electricity
pricing is proposed.

The main contributions of this article include (1) establishing a large-scale interruptible
load and EV cluster model for interface power flow optimization, enabling demand-side
resources to be included in power grid scheduling and fully considering the interests of
users in the model, and thus ensuring the feasibility of demand-side resources responding
to power grid regulation; (2) analyzing and comparing the ways in which large-scale inter-
ruptible loads and EVs participate in grid dispatch, and providing selected suggestions for
different engineering scenarios; (3) analyzing the impact of spatiotemporal electricity prices
on the response of EVs to grid dispatch, and providing suggestions for pricing principles.

2. Spatial and Temporal Distribution Model of Demand Response Resources
2.1. EV Charging and Discharging Load Spatial and Temporal Distribution Model

As a high-quality demand response resource, EV charging and discharging demand
exhibits certain probability distribution features in both the time and space dimensions.
On the basis of not affecting the travel of EV owners, the charging and discharging needs
of EVs are scheduled to recombine in time and space through an incentive mechanism to
achieve regional load redistribution in the power system, which alleviates the transmission
section congestion problem. The spatial and temporal distribution transfer models of EV
charging and discharging demand are highly correlated with the travel time of the vehicle
owner, travel location, and individual travel distance. The following modeling is performed
in two dimensions, time and space, respectively.

2.1.1. EV Load Temporal Distribution Model

According to the U.S. Department of Transportation’s statistics on car trips across the
United States, the daily mileage of home EVs follows a log-normal distribution of [30]:

f (D) =
1√

2πσdD
exp[− (ln D− µd)

2

2σ2
d

] (1)

Among them, σd = 0.87, and µd = 3.31.
Off-grid time follows a normal distribution:

f (Tlev) =



1√
2πσl

exp

[
− (Tlev − µl)

2

2σ2
l

]
0 < Tlev ≤ µl + 12

1√
2πσl

exp

[
(Tlev − 24− µl)

2

2σ2
l

]
µl + 12 < Tlev ≤ 24

(2)

Among them, σd = 3.24, µd = 8.92.
According to the relationship between the probability distribution of the daily driving

range of an EV and the state of charge (SOC) of the battery of the EV, the probability density
distribution function of the SOC of the EV is further obtained as:

f (E) =
1√

2π(1− E)σd
exp

{
− [ln(1− E) + ln D− µd]

2

2σ2
d

}
(3)

where E is the SOC of the EV.
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In turn, the charging power distribution of EVs in a day can be obtained as:

P(t, N, D) =
∫ 1

E0

N · f (E) · p(t)dE (4)

where N is the number of EVs, E0 is the lower limit of the V2G power of EVs, and p(t) is the
charging and discharging power of a single EV.

2.1.2. EV Load Spatial Distribution Transfer Model

As a load that depends on the spatial motion of the EV, the EV load has specific distribu-
tion characteristics in space in addition to those in time. A probabilistic model of EV charg-
ing locations is constructed by analyzing EV travel behavior. First, the origin–destination
(OD) matrix of EV trips is established using the origin–destination analysis method [31]:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 (5)

In the origin–destination matrix A, the element a represents the number of EV trips
from node i to node j. The probability of an EV traveling from node i to node j can be
expressed as the ratio of a to the sum of EVs traveling from node i to all other nodes, and
thus the EV travel probability matrix can be constructed as follows:

Pij =
aij

n
∑

j=1
aij

, (1 ≤ i, j ≤ n) (6)

The distribution of the number of EVs at each node can be obtained based on the
probability of traveling:

Ni = Ni0(1−∑
j 6=i

pij) + ∑
j 6=i

Nj0 pji (7)

Further the spatial charging demand distribution at a certain moment can be obtained
as:

Pi = P(Ni, D) (8)

2.2. Interruptible Load Temporal Distribution Model

Interruptible loads are those that can be interrupted during use without affecting
customers, including filtration, drying, and transmission types of loads in industrial pro-
duction and heating and cooling types of loads in household loads. This type of load
is generally dispatched for demand response by pre-contracting with the power supply
operator to determine the inconceivable time of the non-interruptible load, the value
of the interruptible load, the compensation method and compensation cost, and other
relevant metrics.

Assuming that the total number of interruptible loads participating in demand re-
sponse in a region is nint and the power of each load is pint,i(t), then the demand response
load that can be provided by interruptible loads in the region at time t is:

Pint =
nint

∑
i=1

pint,i(t) (9)
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3. Scaled Demand Resource Scheduling Model for Interface Power Flow Optimization
3.1. Objective Function

Demand resource scheduling considering cross-sectional power flow optimization
should ensure that the cross-sectional power flow is limited to the safety limit with mini-
mum regulation cost to enhance the safety and economy of power grid operation.

The objective function of the model is set as the sum of the total regulation cost for
large-scale interruptible load and EV clusters, the lowest generation cost of all power
sources, and the penalty cost of cross-sectional power flow overload.

minF = Fc + Fg + β(Ksec − 1) (10)

where Fc is the total regulation cost, Fg is the total generation cost, Ksec is the cross-sectional
power flow overload multiplier, and β is the cross-sectional power flow overload penalty
factor.

Fc consists of two components, EV cluster regulation and the dispatching cost and
interruptible load regulation cost:

Fc = CEV + Cirl (11)

where CEV is the EV cluster regulation cost and Cirl is the large-scale interruptible load
regulation cost.

(1) EV cluster regulation cost.

CEV = ∑ C0 −∑ Cp + ∑ Cg (12)

where C0 is the charging tariff of the EV cluster under the conventional charging mode;
Cp and Cg is the charging tariff and discharging tariff of the EV cluster after optimal
scheduling, respectively.

(2) Large-scale interruptible load regulation cost.

After the large-scale interruptible load is cut in response to the grid dispatching, the
compensation cost paid by the grid to the customer is the regulation cost. According to
the current model, there are two main ways to calculate this cost according to the amount
of electricity cut and the number of cuts. Considering these two methods, the cost of
large-scale interruptible load regulation is calculated in the following formula [30,31]:

Cirl =
Nirl

∑
i=1

(
Cirl,i∆T

nt

∑
t=1

Pirl,i,t + C0,irl,i

nt

∑
t=1

Birl,i,t

)
(13)

where Pirl,i,t is the active load reduction value of the ith interruptible load user in time period
t, Cirl,i and C0,irl,i are the unit power compensation cost and single response compensation
cost of the ith user, respectively, Nirl is the number of users, ∆T is the length of a dispatch
cycle, and nt is the number of dispatch periods.

(3) Total cost of power generation.

The generation cost is mainly considered for thermal power, which includes fuel,
pollutant gas emissions, carbon emission costs, etc., and is generally considered to be a
quadratic function of power output [32], which is calculated in the following equation:

Fg = ∆T
nt

∑
t=1

N

∑
i=1

(
Ai,2P2

i,t + Ai,1Pi,t + Ai,0

)
(14)

where Pi,t is the output of the ith unit in time period t, N is the number of power units, and
Ai,2, Ai,1, and Ai,0 are the cost coefficients of the respective units.
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3.2. Constraint Conditions

The constraint conditions of this model consist of three parts: large-scale interruptible
load constraints, EV cluster constraints, and grid operation and safety constraints.

3.2.1. The Constraint for Interruptible Load Reduction

Taking into account user satisfaction and practical feasibility, the large-scale interrupt-
ible load model aimed at flexible optimization of sectional power flow incorporates the
following constraints [33,34]:

1. Load reduction upper and lower limits constraints.

Pirl,i,tSirl,i,t ≤ Pirl,i,t ≤ Pirl,i,tSirl,i,t (15)

In the formula, Pirl,i,t and Pirl,i,t are the upper and lower limits of load reduction,
respectively, and Sirl,i,t is a binary variable representing the reduction state.

2. Maximum reduction in time constraints.

nt

∑
t=1

Sirl,i,t ≤ Sirl,i,max (16)

In the formula, Sirl,i,max represents the maximum number of load reduction intervals
agreed upon by the users within a scheduling plan.

3. The constraints for the maximum number of load reduction occurrences.

nt

∑
t=1

Birl,i,t ≤ Birl,i,max (17)

In the expression, Birl,i,t is the binary variable representing the load reduction period,
with 1 indicating the start of such a period; Birl,i,max denotes the maximum number of cuts
agreed upon by users within a scheduling plan.

4. Minimum cut time and cut interval constraints.
Birl,i,t + Eirl,i,t ≤ 1

Birl,i,t + Eirl,i,t+1 ≤ 1
Birl,i,t + Eirl,i,t+2 ≤ 1

· · · · · ·
Birl,i,t + Eirl,i,t+Tsus,i ≤ 1

(18)


Eirl,i,t + Birl,i,t+1 ≤ 1
Eirl,i,t + Birl,i,t+2 ≤ 1

· · · · · ·
Eirl,i,t + Birl,i,t+Tint,i+1 ≤ 1

(19)

In the expression: Eirl,i,t is a binary variable that represents the end of the load reduc-
tion period, and the value 1 indicates that load reduction is stopped from this period; Tsus,i
is the minimum duration of a single load reduction period agreed by the user, and Tint,i
is the minimum interval between two load reduction periods agreed by the user. This
constraint is set to avoid frequent load reduction instructions and improve user satisfaction.

3.2.2. Spatial-Temporal Transfer of EV Cluster Charging Load

Currently, EVs in China generally adopt a constant power charging mode, where
the energy conversion efficiency remains relatively stable throughout the entire charging
process [35,36]. Additionally, due to the complex and variable urban road conditions,
the time and energy consumption required for a single EV to travel between two points
exhibit significant randomness. However, when considering a large number of Evs forming
a cluster from a statistical perspective, the expected values tend to be more stable [37].
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Therefore, this model assumes that the time and energy required for the transfer of EV
clusters between different aggregation points remain unchanged.

Based on the above considerations, the EV cluster model, which considers sectional
power flow optimization, includes the following constraints [18–20,25,26]:

1. EV power change constraints.

E(i, t) = E(i, t− 1) + ηpPp(i, t)∆T −
Pg(i, t)∆T

ηg
(20)

In the equation, E(i, t) is the battery power of the ith EV cluster at the end of the
t period.

2. Upper and lower limits of charge and discharge power constraints.

0 ≤ Pp(i, t) ≤ P(i, t)Pp,max(i) (21)

0 ≤ Pg(i, t) ≤ G(i, t)Pg,max(i) (22)

where Pp,max(i) and Pg,max(i) represent the maximum charging power and discharging
power of the ith EV cluster, respectively, and P(i, t) and G(i, t) represent the binary variables
that characterize whether the cluster is charging or discharging during the t period.

3. Charge and discharge status constraints.
P(i, t) + G(i, t) ≤ 1

P(i, t + 1) + G(i, t) ≤ 1
P(i, t + 2) + G(i, t) ≤ 1
P(i, t− 1) + G(i, t) ≤ 1
P(i, t− 2) + G(i, t) ≤ 1

(23)

This constraint limits the charging and discharging of EVs, which are not to be carried
out at the same time, and at least two intervals are needed to extend the battery life.

4. The constraints for the upper and lower limits of a battery’s state of charge.

Emin(i) ≤ E(i, t) ≤ Emax(i) (24)

In the expression, Emax(i) and Emin(i) represent the upper and lower limits of the
battery’s state of charge for the ith EV cluster, respectively.

5. The constraints for the grid connection and disconnection of the EV cluster.

E(i, tin(i)) = Ein(i) (25)

E(i, tout(i)) = Eout(i) (26)

P(i, t) = G(i, t) = 0 t ≤ tin(i) | t > tout(i) (27)

In the equation, tin(i) and tout(i) represent the grid connection time and the agreed
disconnection time for the ith EV cluster, respectively. Ein(i) and Eout(i) denote the battery’s
state of charge at the time of grid connection and the agreed state of charge at the time of
disconnection, respectively.

6. The spatial distribution of charging stations constraints.

When an EV transfers from aggregator k to aggregator m to charge, the following
constraint conditions are satisfied [25]:

tin(i) = tin
(
i′
)
+ troad(k, m) (28)

Ein(i) = Ein
(
i′
)
−ω(i)troad(k, m) (29)
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In the equation, tin(i′) and Ein(i′) represent the grid connection time and the energy
consumption upon grid connection, respectively, for the ith EV cluster, without considering
spatial transfers.

7. The constraints for the temporal transfer of EV charging load.

Cp(t1)E + Crest + Cexp ≤ Cp(t0)E (30)

Cp ≤ ηpηgCg (31)

In the equation, Cp(t0) and Cp(t1) represent the charging prices for the corresponding
time intervals before and after the load transfer of EVs. E represents the planned charging
amount for EVs. Cp and Cg represent the charging and discharging prices for EVs. ηp and
ηg represent the charging and discharging efficiencies.

8. The constraints for the spatial transfer of EV charging load.

Cc − Cd + Crest + Cexp ≤ Cc0 (32)

Cp(A)E + Crest + Cexp ≤ Cp(B)E (33)

Crest = Cp(A)ωtroad + ϕtroad (34)

Cc0 and Cc represent the charging costs for EV users before and after spatial-temporal
transfers; Cd represents the electricity fee income obtained by the user through V2G
participation, while Crest represents the additional costs associated with spatial-temporal
transfers, including extra time spent, energy consumption, and battery life degradation.
Cexp represents the user’s psychological expected profit; Cp(A) and Cp(B) represent the
charging prices at nodes A and B, respectively. troad denotes the time required for spatial
transfer. ω represents the energy consumption coefficient, which refers to the energy
consumption per unit time during travel. ϕ represents the time cost coefficient, which
corresponds to the cost per unit time of travel.

9. The constraints for the upper and lower limits of charging and discharging power for
aggregators [20].

∑
i∈Ωj

[
Pp(i, t)− Pg(i, t)

]
≤ Pp,union,max(j, t)

∑
i∈Ωj

[
Pp(i, t)− Pg(i, t)

]
≥ −Pg,union,max(j, t)

(35)

In the equation, Ωj represents the collection of all EV clusters for charging and discharg-
ing at aggregator j. Pp,union,max(j, t) and Pg,union,max(j, t) denote the maximum charging
and discharging power that aggregator j can exchange with the grid during time interval t.

10. The constraints for EV user response willingness.

To safeguard the interests of EV users and ensure the willingness of the EV cluster to
respond to grid optimization dispatch, this model incorporates constraint conditions to
ensure that the total charging cost for the EV cluster after responding to grid dispatch is
not higher than that of conventional charging methods.

Cc(i) + ϕ(i)troad(k, m) ≤ C0(i) (36)

Cc(i) =
nt

∑
t=1

[
Cp(i, t)Pp(i, t)− Cg(i, t)Pg(i, t)

]
(37)

In the expression, Cc(i) represents the net charging cost paid by the ith EV cluster,
C0(i) represents the electricity cost under conventional charging methods, and Cp(i, t) and
Cg(i, t) represent the charging and discharging prices, respectively, of the ith EV cluster
during time interval t.
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3.2.3. Power Grid Operation and Security Constraints

The operation and safety of the power grid are subject to various constraints [26],
including power supply and demand balance (Formula (38)), network power flow (Formula
(39)), the maximum and minimum output of the power generation unit (Formula (40)), the
thermal power generating unit climbing constraint (Formula (41)), the hydropower storage
capacity and generator unit output constraint (Formulas (42) and (43)), and the system
rotation reserve constraint (Formulas (44) and (45)):

N

∑
i=1

Psource(i, t) = Pload(t) (38)

∣∣Pl,km(t)
∣∣ ≤ KsecPl,km (39)

Psource(i) ≤ Psource(i, t) ≤ Psource(i) (40)

|Pth(i, t)− Pth(i, t− 1)| ≤ r(i)∆T (41)

V(i, t)−V(i, t− 1) = ∆T[Qin(i, t)−Qout(i, t)] (42)

Ph(i, t) = ηρgH[Qout(i, t)−Qwaste(i, t)] (43)

N

∑
i=1

su(i, t) ≥ Pload(t)× L+% (44)

N

∑
i=1

sd(i, t) ≥ Pload(t)× L−% (45)

In the formulas above, Psource(i, t) represents the output of unit i during the period t,
and Pload(t) denotes the total network load for that corresponding period (including the
charging loads of EVs and reduced interruptible loads); Pl,km(t) signifies the power flow
through the line or interface km during period t, while Pl,km indicates the upper limit of
transmission power for that particular line (or interface); Psource(i) and Psource(i) represent
the upper and lower limits of unit is output, respectively. Pth(i, t) denotes the thermal
power output of unit i during period t, while r(i) represents its ramp rate. V(i, t) stands for
the water storage capacity of reservoir i at the end of period t, with Qin(i, t) and Qout(i, t)
representing the average inflow and outflow rates over that same time frame. The output
of hydropower unit i during period t is denoted by Ph(i, t), where η represents the power
generation efficiency of the unit, ρ denotes water density, g stands for acceleration due
to gravity, H signifies average head height, and Qwaste(i, t) indicates the water discarded
during this time frame. L+% and L−% are the positive and negative rotation reserve
capacity coefficients, respectively, for the system while su(i, t) and sd(i, t) represent the
positive and negative rotation reserve capacities that unit i can provide during period t.

3.3. Solution Method

The large-scale demand resource scheduling model for interface power flow optimiza-
tion established in this article is a DC power flow model, which does not consider system
reactive power and transmission line losses, nor does it consider the randomness of the
load. Therefore, the calculation results have a certain deviation from the actual situation [7].
However, considering that this model is used for day-ahead optimization scheduling, the
accuracy of the calculation results can meet the requirements.

Through the above simplification, this model uses mixed integer linear programming
(MILP), which can be solved by using the interior point method and branch-and-bound
method for overall optimization [38]. Compared to step-by-step optimization in different
periods, the overall optimization method proposed in this paper makes it easier to find the
global optimal solution [38].
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4. Case Study and Analysis
4.1. Introduction to the Case

In this paper, the 220 kV power grid of a provincial capital city in China is selected as
the research subject for an illustrative analysis. The key parameters of the power grid are
as follows: its maximum load capacity is 18,943 MW and it experiences a daily peak–valley
difference of 10,342 MW. Additionally, the total installed thermal power capacity amounts
to 2050 MW, while that of hydropower stands at 3830 MW. The external receiving channels
have a capacity of 14,100 MW, with the majority comprise clean energy sources such as
hydropower, wind, and solar power. In contrast, the receiving channels that are primarily
dominated by thermal power only have a capacity of 1800 MW.

There are approximately 460,000 EVs in the region, of which 58,000 are currently
included in the pool of schedulable control resources. These resources are divided into
38 clusters and have a combined daily charging capacity of around 2200 MWh. To facilitate
the temporal and spatial allocation of EV charging load, a three-tiered pricing scheme has
been implemented for peak, flat, and off-peak hours alongside a two-tiered pricing system
for heavy and non-heavy nodes. The peak discharge rate is set at 1.4 times the charging
rate, as illustrated in Table 1. Time segments are categorized as peak, valley, or flat based
on whether the forecasted load exceeds 80% of the maximum daily load, falls below 55%,
or falls between these two thresholds. The classification of heavy and non-heavy nodes is
determined by whether a node’s maximum load exceeds 85% of its capacity.

Table 1. Temporal and spatial distribution of electricity price.

CNY/kWh
Node Types Peak Price Flat Price Off-Peak Price Discharge Price

Overloaded nodes 0.96 0.6 0.24 1.344
Non-overloaded nodes 0.6 0.5 0.2 0.86

A network of 16 robust load nodes is equipped with large-scale and interruptible
resources capable of reducing the total load by up to 870 MW.

4.2. Case Results

The results of the above case are shown in Table 2. To evaluate the model and algo-
rithm presented in this article, a mature power flow calculation solver, MATPOWER [39],
(DC-optimized power flow algorithm) developed by Carnell University was used for
step-by-step calculations, and the results were used for comparison.

Table 2. Comparison of optimization results between this method and existing method.

Main Indicators of Calculation Results MATPOWER This Method Comparison

Calculation time/s 189.35 334.14 144.79

Total adjustment cost/CNY 10,000 179.21 123.84 −55.37

EV adjustment cost/CNY 10,000 101.44 73.61 −27.83

Interruptible load adjustment cost/CNY 10,000 77.76 50.23 −27.53

Total generation cost/CNY 10,000 3744 3635 −109

Total electricity consumption/MWh 307,483 307,245 −238

Clean energy generation/MWh 293,649 293,712 63

Proportion of clean energy supply/% 95.5 95.60 0.1

Thermal power generation/MWh 13,834 13,533 −301
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It can be seen that compared with the MATPOWER solver, the calculation time of the
model algorithm in this article is nearly twice as long; however, due to the fact that the
model in this article is based on the overall optimization of the entire time period before the
considered day, compared to the multi-time period step-by-step optimization algorithm,
it can obtain the global optimal solution, so the calculation results are significantly better
than the former.

4.3. Analysis of Calculation Results in Different Scenarios

To investigate the regulatory impact of large-scale interruptible load and EV schedul-
ing on sectional power flow, four distinct scenarios have been established:

Scenario 1: no demand response resources;
Scenario 2: only EV load is participating in dispatching;
Scenario 3: only interruptible load is participating in dispatching;
Scenario 4: both EV and interruptible loads are participating.

The optimization outcomes under the above four various scenarios are presented
in Figure 1.
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While no demand response resources on the load side participate, dispatching can
result in a maximum overload rate of power flow reaching 17.5% in the transmission
section. The participation of large-scale EVs and interruptible loads in grid response can
significantly alleviate section transmission overload (with overload rates being reduced
to 3.7% and 5%, respectively), while their joint action can effectively limit interface power
flow to within safe limits. Figure 2 illustrates the typical power flow curves of heavy and
overloaded sections in various scenarios. From the load curves of each section, it is evident
that large-scale interruptible load and EVs can mitigate the power flow burden of heavy
and overloaded sections by means of peak shaving during peak time as well as valley
filling during load valley time in the temporal dimension. Additionally, the charge and
discharge load transfer of EVs in the spatial dimension also yields significant effects.

Figure 3 illustrates the output characteristics of various power supply types under dif-
ferent scenarios, where grid response is influenced by large-scale EV loads and interruptible
loads, leading to a reduction in thermal power generation and an increase in clean energy
utilization. The aggregate power generation of thermal power units decreased by 48.8%,
while the proportion of clean energy supply increased by 4.19 percentage points. This can
be attributed to two primary factors: firstly, a reduction in the number of thermal power
units utilized for peak load balancing through peak shaving and valley filling (where the
number of large thermal power units was reduced from 7 to 5); secondly, an enhancement
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in the ability to receive clean energy from external regions via alleviating power flow
congestion of transmission interface (the power supply of clean energy outside the area
increased from 217,300 MWh to 229,751 MWh).

The charging profile of the EV cluster is depicted in Figure 4 for both conventional
charging scenarios (based on scenarios 1 and 3) and an electricity price incentive scenario
(based on scenario 4). Under the conventional charging mode, the EV cluster experiences
relatively concentrated charging times, resulting in several peaks of charging load that
coincide with peak periods of overall energy demand. By incentivizing electricity pricing
to encourage off-peak charging and reverse discharge during peak periods, this approach
effectively regulates power grid load fluctuations and alleviates overload in peak time. The
results show that during the maximum load period of the power grid, the charging power of
EVs decreased from 185.9 MW to 0, and 363.1 MW is discharged into the grid, equivalent to
a peak shaving of 549 MW. The cumulative charging energy during peak hours (16:30–21:45)
decreased from 616.1 MWh to 275.1 MWh, and 449.3 MWh was discharged into the grid
through V2G.

In scenario 4, Figure 5 illustrates the spatial transfer of EV load. The majority of
charging power from cluster 1, cluster 2, and cluster 3 located at nodes with heavy loads
(45, 43, and 48) was redirected to node 61, which has non-heavy loads. This effectively
mitigated the interface power flow congestion that was previously concentrated on nodes
45, 43, and 48.
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The response of large-scale interruptible load is depicted in Figure 6, where a reduction
in load of up to 480 MW during peak hours effectively mitigated the issue of overload
in power flow within transmission sections. The cumulative power reduction achieved
in scenario 3 and scenario 4 amounted to 497.4 MWh and 638.2 MWh, respectively. It
is evident that the EV clusters’ collaborative participation in grid response (Scenario 4)
resulted in a greater cumulative power reduction, and the reduction in power consumption
of interruptible loads was greater, indicating that the collaboration between these two
types of demand response resources can yield a more effective outcome for optimizing the
transmission interface power flow.

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 20 
 

 

the adjustment cost after conversion. As a result, the adjustment cost of EVs is higher than 

that of interruptible loads. 

0.8

1

1.2

1.4

1.6

1.8

2

p
o
w

e
r
 /

 M
W

10
4

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
 100

0

100

200

300

400

500

p
o
w

e
r
 /

 M
W

reduced load

total load curve (initial)

total load curve (reduced)

 
0.8

1

1.2

1.4

1.6

1.8

2

p
o
w

e
r
 /

 M
W

10
4

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
 100

0

100

200

300

400

500

p
o
w

e
r
 /

 M
W

reduced load

total load curve (initial)

total load curve (reduced)

 

(a) Scenario 3 (b) Scenario 4 

Figure 6. Large-scale interruptible load response situation. 

However, due to the temporal and spatial transferability of EV charging loads, they 

are distributed across time and space without reducing the overall load. As a result, they 

do not impact the network’s total electricity consumption but instead serve to smooth out 

peak demand periods and fill in valleys, thereby promoting clean energy usage and im-

proving grid operational efficiency. Scenario 2 exhibited a rise of 629 MWh and 1477 MWh 

in total electricity consumption and clean energy power generation, respectively, when 

compared to scenario 3. Additionally, the power generation from thermal power units 

decreased by 848 MWh, while the proportion of clean energy supply increased by 0.29 

percentage points. 

Therefore, in periods of overall power generation abundance but local blockages or 

tight supply, priority should be given to the spatial-temporal transfer of EV load for ad-

justment. In times of insufficient overall power generation, interruptible load reduction 

takes precedence. 

4.4. Analysis of the Influence of Electricity Prices on EV Response 

Electricity pricing plays a crucial role in guiding the spatiotemporal distribution of 

EVs. Unlike the command mode, which can interrupt power consumption, the response 

of an EV cluster to electricity price incentives is more complex. In order to enhance the 

regulatory function of the EV cluster, this paper employs distinct electricity prices for op-

timization calculation and examines the factors that impact electricity prices based on sce-

nario 2. 

4.4.1. The Effect of Pricing at the Time of Sale 

Based on the electricity prices presented in Table 1, we maintained the standard elec-

tricity rate while adjusting the peak-to-valley differential to 0.5×, 0.75×, 1×, 1.25×, and 1.5× 

the values given in Table 1; additionally, we set the peak discharge electricity price at a 

rate 1.4 times that of charging electricity prices. The optimization calculation results for 

each scenario are displayed in Table 3. 

Table 3. Optimization results for different time-of-use prices. 

Iterm Name 
Electricity Price Coefficient and Correspond-

ing Optimization Results 

Peak-to-valley price difference multiplier 0.5 0.75 1 1.25 1.5 

Figure 6. Large-scale interruptible load response situation.

In addition, it can be observed that the adjustment cost of EV load is higher than that of
large-scale interruptible load when the optimization effect of sectional power flow is similar
when comparing the calculation results between scenario 2 and scenario 3. The section
overload coefficient of scenario 2 was reduced by 0.013 compared to that in scenario 3, albeit
at the cost of a 58.8% increase in adjustment expenses. The two primary reasons for this
result are as follows. Firstly, the load regulation mode of EVs is based on electricity price
incentives, which lack accurate scheduling control and result in low utilization efficiency of
response resources. Additionally, due to the limited efficiency of charging and discharging
in EVs, additional electricity will be consumed in V2G mode. Furthermore, EVs require
extra time and energy for spatial transfer, which is included in the adjustment cost after
conversion. As a result, the adjustment cost of EVs is higher than that of interruptible loads.
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However, due to the temporal and spatial transferability of EV charging loads, they
are distributed across time and space without reducing the overall load. As a result, they do
not impact the network’s total electricity consumption but instead serve to smooth out peak
demand periods and fill in valleys, thereby promoting clean energy usage and improving
grid operational efficiency. Scenario 2 exhibited a rise of 629 MWh and 1477 MWh in total
electricity consumption and clean energy power generation, respectively, when compared
to scenario 3. Additionally, the power generation from thermal power units decreased by
848 MWh, while the proportion of clean energy supply increased by 0.29 percentage points.

Therefore, in periods of overall power generation abundance but local blockages
or tight supply, priority should be given to the spatial-temporal transfer of EV load for
adjustment. In times of insufficient overall power generation, interruptible load reduction
takes precedence.

4.4. Analysis of the Influence of Electricity Prices on EV Response

Electricity pricing plays a crucial role in guiding the spatiotemporal distribution of
EVs. Unlike the command mode, which can interrupt power consumption, the response
of an EV cluster to electricity price incentives is more complex. In order to enhance the
regulatory function of the EV cluster, this paper employs distinct electricity prices for
optimization calculation and examines the factors that impact electricity prices based on
scenario 2.

4.4.1. The Effect of Pricing at the Time of Sale

Based on the electricity prices presented in Table 1, we maintained the standard
electricity rate while adjusting the peak-to-valley differential to 0.5×, 0.75×, 1×, 1.25×,
and 1.5× the values given in Table 1; additionally, we set the peak discharge electricity
price at a rate 1.4 times that of charging electricity prices. The optimization calculation
results for each scenario are displayed in Table 3.

Table 3. Optimization results for different time-of-use prices.

Iterm Name Electricity Price Coefficient and Corresponding
Optimization Results

Peak-to-valley price difference multiplier 0.5 0.75 1 1.25 1.5

Coefficient of section overload 1.037 1.037 1.037 1.037 1.037

Cost of adjustment/CNY 10,000 33.61 50.12 66.56 82.01 99.16

Overall cost of electricity generation/CNY 10,000 3793 3790 3789 3789 3801

Total electricity consumption/MWh 307,806 307,829 307,834 307,835 307,839

Clean energy production/MWh 287,883 288,339 288,450 288,471 287,432

Improved ratio of clean energy supply/% 93.53 93.67 93.70 93.71 93.37

Thermal power generation output/MWh 19,923 19,490 19,383 19,364 20,406

Maximum power output for vehicle-to-grid (V2G) system/MWh 290.0 373.9 403.9 403.9 433.9

Cumulative V2G electricity consumption/MWh 277.8 326.0 344.5 344.3 364.1

The difference in peak–valley electricity prices has minimal impact on the section
overload coefficient. This is because, at 0.5 times the difference in peak–valley electricity
prices, the EV loads affecting key interface power flow have already been adjusted, and
increasing the price difference will not further optimize interface power flow. With the
increase in the price differential between peak and off-peak electricity, both the maximum
power output of vehicle-to-grid (V2G) systems and cumulative V2G electricity generation
also increase. This is due to variations in EV cluster parameters, as well as larger disparities
between peak/off-peak and charge/discharge electricity prices, resulting in a greater
number of EV clusters that meet the time transfer conditions. Increased participation of
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EVs in grid response can effectively promote the consumption of clean energy and reduce
reliance on thermal power generation. However, this also results in a proportional increase
in adjustment costs. Considering the proportion of clean energy power supply presented
in Table 3, it is reasonable to establish the peak–valley electricity price differential for this
scenario as being between 0.75 and 1 times that of the electricity price indicated in Table 1.

The power curve for charging and discharging EVs is depicted in Figure 7, where
positive values indicate charging power and negative values represent discharging power.
It can be observed that the general trend of the charge–discharge power curve for EVs
remains consistent; however, V2G power increases during certain periods with an increase
in the peak–valley electricity price differential.
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4.4.2. The Effect of Regional Electricity Prices

On the basis of the electricity prices shown in Table 1, the other electricity prices
are kept constant, the peak power prices of non-heavy-duty nodes are adjusted to vary
between 0.6 and 0.96 CNY/kWh, and the power prices of heavy-duty nodes vary between
0.36 and 0 CNY/kWh accordingly. Furthermore, the discharge price while maintaining the
peak is 1.4 times the charging price, and the results of optimization in each case are shown
in Table 4.

Table 4. Optimization results in different region-of-use prices.

Iterm Name Region 1 Region 2 Region 3 Region 4 Region 5

Peak power prices for non-heavy-duty nodes/CNY/kWh 0.6 0.69 0.78 0.87 0.96
Regional price difference/CNY/kWh 0.36 0.27 0.18 0.09 0.00

Coefficient of section overload 1.037 1.037 1.039 1.074 1.074
Adjustment cost/CNY 10,000 66.56 70.22 75.32 76.89 79.91

Total generation cost/CNY 10,000 3789 3789 3746 3787 3855
Overall power usage/MWh 307,834 307,840 307,875 307,850 307,844

Clean energy generation/MWh 288,450 288,496 289,036 288,681 284,850
The proportion of clean energy supply/% 93.70 93.72 93.88 93.77 92.53

Thermal power units’ electricity generation capacity/MWh 19,383 19,345 18,838 19,169 22,995
Maximum spatial transfer charging power/MW 48.58 37.50 34.33 0.00 0.00

Cumulative space transfer charge/MWh 44.03 34.94 30.52 0.00 0.00

The spatial migration of EV clusters in each scenario is illustrated in Figure 8 (with the
same transfer direction as depicted in Figure 5).
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With the rise in peak electricity prices for non-heavy nodes and the decline in regional
electricity price differentials, there was a significant reduction in both spatial transfer charg-
ing power and EV cluster charging volume, while section overload coefficients increased
markedly. The reason for this lies in the varying parameters of EV clusters. The spatial
transfer of EVs involves time and economic costs. Only when the regional electricity price
difference is large enough and the electricity cost saved by charging at non-heavy-duty
nodes is greater than the transfer cost (i.e., meeting the conditions of Formulas (32)–(34))
can the EV undergo spatial transfer. However, different EVs have different parameters,
such as time cost coefficient, electricity consumption coefficient, and planned charging
capacity. The smaller the regional electricity price difference, the fewer EV clusters that
can meet the conditions of Formulas (32)–(34), and the more reduced their ability to alle-
viate interface flow congestion. In this scenario, if the peak electricity price of non-heavy
nodes exceeds 0.78 CNY/kWh, indicating a regional electricity price difference of less than
0.18 CNY/kWh, EV clusters cannot be spatially transferred; the threshold condition for
spatial transfer of most EV clusters is a spatial electricity price difference of 0.18 CNY/kWh.

On the other hand, if only the time-of-use electricity price characteristics of non-
heavy-duty nodes are considered, the increase in the peak price of non-heavy-duty nodes
also increases the peak–valley price difference of the node, which can better motivate EV
clusters of the node to transfer during different times and participate in the V2G process,
promoting clean energy consumption and improving the economic efficiency of the power
grid. These two factors restrict each other. Therefore, the final optimization calculation
results are as follows: with the increase in the peak price of non-heavy-duty nodes, the
total generation cost of electricity by source, clean energy generation, and other economic
indicators gradually become better first, and then worse, and there is an optimal electricity
price, which is about 0.78 CNY/kWh in this scenario.

At the same time, the optimal electricity price determined through economic indica-
tors may not necessarily be the optimal electricity price to alleviate interface power flow.
Therefore, it is necessary to consider the interface overload coefficient in each scenario and
comprehensively determine a compromise for the electricity price.

5. Conclusions

To tackle the issue of power flow overload in power grid sections, this paper proposes
a load time–space transfer strategy for EV clusters and advocates their utilization as an
effective measure to mitigate both overall load and peak loads. The issue of interface power
flow overload is effectively mitigated, and the impact of time-based electricity pricing and
spatial zonal electricity pricing on EV load response is examined. The following conclusions
are drawn:

(1) Based on the model and case this paper established, by dispatching large-scale inter-
ruptible load and EVs, the overload rate of interface power flow could be reduced
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by 12–17%, while the proportion of clean energy generation increased by 4.19%,
promoting the consumption of clean energy.

(2) In the case of similar overload coefficients of interface power flow, the regulation cost
of EV clusters is 58% higher than that of large-scale interruptible loads, but it can play
an additional role in promoting the consumption of clean energy and improving the
overall operating economy of the power grid, thus emphasizing the need for prior-
itizing demand response resources based on actual power grid operations. The EV
cluster should be given priority for adjustment in case of a local power flow blockage
or tight power supply, while reducing interruptible load should be prioritized during
overall insufficient power generation.

(3) The response behavior of EV clusters can be significantly influenced by variations
in time-of-use and regional electricity prices, and thus affects the degree of inter-
face power flow overload and operation economy of the power grid: the larger the
difference in peak–valley electricity prices, the greater the difference in peak hour
electricity prices between heavy-duty nodes and non-heavy-duty nodes, and the more
significant the effect of optimizing power grid operation. However, at the same time,
the cost of regulation also increases. It is necessary to comprehensively consider
various factors, such as interface power flow control demand, regulation cost, and
power grid operation cost, to determine a compromise for the electricity price. Based
on the analysis presented in this paper, more effective determination of time-of-use
and zonal electricity prices can be achieved.
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