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Abstract: Multi-source nonlinear noise exists in the process of multi-source navigation information
fusion in long-endurance positioning systems in complex environments. In such engineering applica-
tions, the classical Kalman filter (KF) and the extended Kalman filter (EKF) have the phenomena of
noise instability and parameter drift, which lead to the divergence of filtering results and reductions
in accuracy over long periods of time. Aiming at the above problems, this paper proposes a fusion
algorithm of the variational Bayesian (VB) and the cubature Kalman filter (CKF). Firstly, the system is
modeled through nonlinear filtering, and the CKF error equation is established by taking the position
difference and velocity difference between SINS and GPS as observation variables. Then, to address
the problem of poor self-adaptation of the CKF algorithm, the variational Bayesian adaptive estima-
tion method is introduced into the CKF algorithm, and a measurement noise variance estimation
model is introduced to the process of time and measurement updates of the CKF algorithm to finally
obtain the adaptive VB–CKF algorithm. The simulation results from the experimental platform show
that the proposed fusion algorithm improves the combined SINS/GPS system by about 30% in terms
of attitude angle accuracy and reduces speed and position estimation errors (RMSE) by about 45%.
At the same time, comprehensive experiments on multiple types of sites show that compared with
the CKF algorithm, the VB–CKF algorithm improves the positioning accuracy by 10% when the GPS
signal is stable and improves the accuracy by about 38% when the GPS measurement noise changes
dramatically in complex terrain, which effectively suppresses the accuracy divergence of the CKF
algorithm and has high value for engineering applications.

Keywords: SINS/GPS integrated system; nonlinear noise; adaptivity; VB–CKF algorithm

1. Introduction

Multi-source information fusion is an advanced positioning method that pinpoints a
carrier’s exact location by combining information from several navigational sources. It has
been extensively used in both civil and military settings, including geodetic surveying and
mining. Military settings include the sea, land, and air. A range of navigation methods,
such as inertial navigation based on inertial devices and satellite navigation based on
satellite location, are starting to emerge with advancements in science and technology. In
practical applications for integrated positioning, two or more separate navigation methods
are frequently combined to increase positioning accuracy [1]. Fusions of navigation and
positioning technology combine the advantages of several navigation methods together.
Among them, navigation systems combining the strapdown inertial navigation system
(SINS), which uses inertial devices for calculating navigation, and the global navigation
satellite system (GNSS) are mainstream.
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The SINS collects data using inertial devices and then solves the position informa-
tion by using a navigation algorithm. Since the location information it solves has strong
anonymity and concealment, it is not disturbed, even in a complicated confined context.
However, based on the navigational theory of the SINS and the inertial sensors’ own low
accuracy, the system’s navigational error rises over time [2]. GNSS is a space-based wireless
navigation system that provides navigation information by satellite, and it can precisely
determine a receiver’s position through the time difference between the signals received on
the ground and the signals sent from the satellites. Because the GNSS positioning technique
requires the real-time intervention of satellite signals during the whole operation, there is
no cumulative positioning error caused by increases in working time. But, it also creates
a problem, which is outlined as follows: since GNSS needs to receive signals in real time
during the working process and because the quality of the received signals is related to the
external environment, its positioning accuracy is easily affected by the external environ-
ment. Considering the coverage of ground monitoring stations and the construction and
cost of use in the civil field, this paper uses the Global Positioning System (GPS), which is
one of the branches of GNSS.

So, it can be found from the above that GPS can effectively address the impact of
cumulative errors, while the SINS can compensate for the lack of positioning accuracy when
GPS signals are disturbed. Combining two navigation and positioning technologies can
increase the precision of navigation and positioning through the technologies enhancing
each other’s strengths [3]. The data from the two navigation sources can be fused by
the proposed SINS/GPS integrated navigation system, and the fusion approaches can be
split into loose coupling and tight coupling, depending on complementarity and scene
requirements. The integrated navigation system’s loose coupling is a straightforward
design that uses GPS navigation data to repair mistakes made by SINS. GPS and SINS
operate separately and without interfering with one another. With long-term work, this
cascade structure results in issues of rapid error divergence and weak anti-interference
ability [4].

The tight coupling structure is described as SINS and GPS correcting each other;
the structure can take the difference between the pseudorange and pseudorange rate
information obtained by GPS and the pseudorange and pseudorange rate information
calculated by SINS combined with an ephemeris and then use this difference as the input
of the fusion filter to correct estimation errors. Although this connection structure has
a high computational cost, it performs long-endurance tasks with greater accuracy and
robustness [5]. In the tight coupling system, the velocity and position solutions of SINS and
GPS have nonlinear characteristics. The Kalman filter (KF) is a linear filtering technology
that belongs to a special case of Bayesian filtering inference. Due to the existence of many
unknown noises in practical applications, the classical linear Kalman filter has been unable
to meet practical engineering needs [6]. Filters based on nonlinear filtering technology
can help solve the problem of information fusion in a nonlinear state, so many nonlinear
filtering algorithm ideas are derived from Bayesian filtering, and scholars in the industry
have carried out a series of studies on this and derived a series of filtering methods. One
of the more commonly used methods in combined systems is the extended Kalman filter
(EKF), which sets the system to a nonlinear state and truncates the higher-order terms in
the Taylor expansion. Because the noise in the system satisfies the properties of Gaussian
distribution, the EKF is relatively simple to implement and converges very quickly [7].
However, the disadvantage of the EKF is that if the system is strongly linear or has large
errors at higher orders, the estimation accuracy of the EKF deviates greatly, resulting
in filter scattering and a lower accuracy after fusion. J. L. Carssidis [8] proposed a new
SINS/GPS combination method based on the unscented Kalman filter (UKF) to ensure that
the EKF is continuously differentiable in the system model, using the Rodriguez attitude
update algorithm to avoid the effects of quadratic normalization. However, this method
still has the phenomena of noise instability and parameter drift. H. U. Heo proposed a UKF
adaptive filtering algorithm based on Interacting Multiple Model (IMM) fusion, which uses
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a Gaussian density function to compute the nonlinear posterior distribution of the system
state equation [9]. The experimental results show that this fusion algorithm is better than
the filtering effect of EKF and UKF alone; even without knowing the accurate state model
and noise variance of the SINS/GPS integrated system, the fusion result is ideal and more
adaptive, although the structure of its multi-cascade filter makes its implementation very
complicated. In addition, the complexity of the UKF algorithm increases rapidly with an
increase in the state and observation dimension, which eventually leads to poor real-time
performance [10].

The complexity of the cubature transformation Kalman filter (CKF), in contrast, is
considerably less than that of the UKF because it uses the cubature numerical integration
concept and solely considers the state dimension when determining transition weights. As
a result, to address the aforementioned issues that the SINS/GPS integrated navigation
system frequently encounters, this article uses the CKF to fuse the SINS and GPS signals,
as illustrated in Figure 1, in order to improve the stability and accuracy of long-endurance
navigation. Additionally, in order to improve the adaptability of the CKF algorithm, it is
necessary to choose an appropriate estimator to account for the noise statistical character-
istics of the combined system given the estimation error brought on by the challenge of
determining various time-varying noise models in practical engineering applications [11].
Finally, the superiority of the positioning and navigation performance of the algorithm is
verified by experiments.
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Figure 1. Schematic diagram of the SINS and GPS fusion system using CKF.

The SINS/GPS integrated navigation system has two types of error feedback: open-
loop feedback and closed-loop feedback. The primary role of the combined system’s filter
in closed-loop feedback is to reduce SINS error divergence, and the SINS solution values
take into account the estimated output values of the filter as well as errors such as zero
bias of the IMU [12]. Therefore, the solution value of the SINS system is the final output
value of the combined system, which is also the optimal estimation result of the filter.
Then, at the end of the current calculation cycle, the state estimator of the parameter error
of the previous cycle in the filter is finally reset and the next filtering estimation will be
performed. The integrated navigation system designed in this paper is a SINS/GPS tightly
coupled system based on MEMS inertial sensors, and the pseudorange and pseudorange
rate information derived using this method have significant variances when the carrier is in
a highly dynamic environment, which has an impact on the output of the integrated filter.
In addition, the system model is more difficult to determine when the initial unfolding
point has large attitude and position errors. Therefore, the strongly linked closed-loop
feedback mode is used for the integrated navigation system in this research. Firstly, in
order to complete the acquisition of the initial navigation parameters for the SINS platform,
the GPS receiver measures the pseudorange and pseudorange rate while the gyroscope
and accelerometer obtain the angular velocity and acceleration information of the moving
carrier [13]. Next, the input of the combined system filter is constructed by the pseudorange
and pseudorange rate data computed by SINS, with the pseudorange and pseudorange rate
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data provided by GPS. Finally, the estimation error was fed back to the SINS solver loop in
real time to obtain real-time high-precision attitude, velocity, and position information.

2. Materials and Methods
2.1. Implementation Principle of VB–CKF Algorithm

Given that the tightly coupled model proposed during this research has nonlinear
properties and that the CKF is a suboptimal filter based on the theoretical foundation of
Bayesian filtering, its system model frequently has the following structure:{

xk = f (xk−1) + wk−1
yk = h(xk) + vk

(1)

In Equation (1), xk and yk are the n-dimensional state vector and L-dimensional
measurement vector of the system, wk and vk are the system noise and measurement noise,
respectively, f and h are the nonlinear state model and nonlinear measurement model of
the system [14].

Then, the derivation defines that Y = {y1, y2, · · · yk} is the set of measurements from
the initial moment to moment K. According to reference [15], the core idea of Bayesian
filtering is that, after the state posterior probability density function P(xk|Yk) at moment k
is known, the state posterior probability density function at the next moment P(xk+1|Yk+1)
can be updated by using the measurement value zk+1 at the next moment in the process
of time updating and measurement updating. In the time-updating step, the one-step
state prediction probability density function p(xk+1|Yk) is computed by the integral of the
following equation:

p(xk+1|Yk) =
∫

p(xk|Yk)p(xk+1|xk)dxk (2)

Finally, the expression p(xk+1|Yk) can be obtained as:{
p(xk+1|Yk+1) =

1
Ck+1

p(xk+1|Yk)p(yk+1|xk+1)

Ck+1 =
∫

p(xk+1|Yk)p(yk+1|xk+1)dxk+1
(3)

In Equations (2) and (3), above, p(xk+1|xk) is one-step state transition probability
density and p(yk+1|xk+1) is a measure of the probability density function.

Considering that both the measurement equation and the state equation are nonlinear
modes at this moment and the noise is Gaussian white noise, the state prediction matrix
and the prediction error covariance matrix should be modified to the nonlinear state first:

x̂k|k−1 =
∫

fk−1(xk−1)F(xk−1, x̂k−1, Pk−1)dxk−1

Pk|k−1 =
∫ (

fk−1(xk−1)− x̂k|k−1

)(
fk−1(xk−1)− x̂k|k−1

)T
F(xk−1, x̂k−1, Pk−1)dxk−1

=
∫

fk−1(xk−1) fk−1(xk−1)
T F(xk−1, x̂k−1, Pk−1)dxk−1 − x̂k|k−1 x̂k|k−1

T + Qk−1

(4)

The measurement equation’s (yk = hk(xk) + vk) mean, variance, and cross-covariance
matrix take on the following form:

yk|k−1 =
∫

hk(xk)F(xk, x̂k−1, Pk−1)dxk

Pk|k−1 =
∫ (

hk(xk)− ŷk|k−1

)(
hk(xk)− ŷk|k−1

)T
F(xk, x̂k−1, Pk−1)dxk

=
∫

hk(xk)hk(xk)
T F(xk, x̂k−1, Pk−1)dxk − ŷk|k−1ŷT

k|k−1 + R̂k

Pxkyk =
∫ (

xk − x̂k|k−1

)(
hk(xk)− ŷk|k−1

)T
F(xk, x̂k−1, Pk−1)dxk

=
∫

xkhk(xk)
T F(xk, x̂k−1, Pk−1)dxk − x̂k|k−1ŷT

k|k−1

(5)
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The forms of state estimation and covariance estimation are now expressed as:
Kk = Pxkyk P−1

yk|k−1

Pk = Pk|k−1 − KkPyk KT
K

x̂k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

) (6)

In the above equation, Pk represents the measurement noise variance, x̂k|k−1 represents
the first- and second-order matrix expression of the predicted distribution function, and x̂
represents the mean value.

According to Equations (4) and (5), it is found that to implement nonlinear Gaus-
sian filtering, we can calculate multiple integrals of the nonlinear function × Gaussian
probability density function, which is [16]:

I( f ) =
∫

f (x)N(x, x̂, Px)dx (7)

Using the sphere-radial cubature criterion, the above equation can be approximated
as follows:

I( f ) ≈ 1
2n

2n

∑
i=1

f (
√

Pxζi + x̂) (8)

where ζi is n column vectors, where these n column vectors form the cubature points matrix,
and 2n of these points is denoted as [17]:

χi =
√

Pxζi + x̂ (9)

Finally, the mean, variance, and cross-covariance of the measurement equation can be
approximately expressed in analytical form as follows:

ŷ = 1
2n

2n
∑

i=1
f (
√

Pxζi + x̂)

Py = 1
2n

2n
∑

i=1
f (
√

Pxζi + x̂) f (
√

Pxζi + x̂)T − ŷŷT

Pxy = 1
2n

2n
∑

i=1
(
√

Pxζi + x̂) f (
√

Pxζi + x̂)T − x̂ŷT

(10)

Since 2n points are taken in this experiment, the weight ω = 1/2n. This weight is
always positive, so the numerical divergence problem is avoided.

In the system state equation
.
x = f (x) + w of this SINS/GPS tightly coupled model,

x = [δq0δq1δq2δq3δVEδVNδVU δLδλδhεx εy εz∇x∇y∇zbtdt], attitude errors δq0,δq1,δq2,δq3
are the main factors leading to the system accuracy offset. δVE, δVN , and δVU are the
amount of velocity error in three directions, δL, δλ, and δh are the amount of position error,
εx , εy , and εz represent random constant value drift of the gyro,∇x,∇y, and∇z represent
random constant drift of the accelerometer, and bt and dt denote the clock offset and drift
of the receiver.

In this experiment, the difference between the pseudoranges and pseudorange rate
provided by GPS and those calculated by SINS are used as the observed quantities [18]: δpk =

√
(xl − xk)

2 + (yl − yk)
2 + (zl − zk)

2 −
√
(x− xk)

2 + (y− yk)
2 + (z− zk)

2 − dt− εk
p

δ
.
pk

= uk
lx(xl − xk) + uk

ly(yl − yk) + uk
lz(zl − zk)− uk

x(xl − xk)− uk
y(yl − yk)− uk

z(zl − zk)− dt− .
ε

k
p

(11)

In the above equation, δpk and δ
.
pk represent the pseudorange measurement error

and pseudorange rate measurement error of the KTH satellite, respectively. [xkykzk] is
the location of the satellite under an Earth-Centered Earth-Fixed (ECEF) system, [xyz] is
the actual distance from the satellite to the carrier, and the position of the SINS carrier is
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[xlylzl]. [uk
lxuk

lyuk
lz] is the unit observation vector on the SINS of the KTH satellite under

ECEF system.
Variational Bayesian (VB) is a method for calculating high-order integrals, which is

usually used in complex models of observed and unobserved variables [19]. In order to
achieve the estimated distribution of non-linear functions with fewer errors, it makes the
assumption that the likelihood function, likewise, follows a Gaussian distribution and sets
a dynamic threshold for the marginal likelihood function. The marginal likelihood value of
the model can be used to determine how well the model fits the data; the higher the value,
the better the fit, and the lower the error will be. For the simultaneous estimate of state
and measurement noise variance, Wang ShiYuan introduced the VB–KF algorithm [20];
however, its underlying filter is the KF algorithm, which is not appropriate for nonlinear
systems. As a result, we suggest the VB–CKF combination technique in this study to
enhance the adaptability of changes in noise statistics in a tightly linked SINS/GPS system.

In general, the normal distribution N
(
µ, σ2) represents the distribution relationship of

multiple measurements of a certain system state quantity. The mean µ of the population
can be used to evaluate the sample variance model for the state model that follows the
normal distribution. If µ is determined, the sample variance model follows an inverse
Gamma distribution with conjugation. Therefore, when VB is used for error estimation, the
prior probability density function and posterior probability density function have similar
expressions that can be written as IG

(
σ2, α, β

)
, where α and β represent the parameters to

be calculated. E(σ2) = β/α can be expressed from the means of inverse Gamma, and it
can be known that the noise variance σ2 can be determined when α and β are obtained.
VB is an approximation method, which can solve a more complex posterior distribution
by approximating several known distributions. Therefore, the posterior estimation of
IG
(

σ2
k,i, αk,i, βk,i

)
can be obtained by using the VB estimator. Since the variance parameters

αk and βk are only related to the variance parameters αk–1 and βk–1 at the previous time,
a variance change coefficient ρ at the adjacent time is set to represent the relationship
between them. Therefore, the prediction equation can be calculated using the statistical
linear method.

For the posterior update of the noise parameters, it is first necessary to obtain the
predicted residual vector at the current moment, and then the approximate measurement
noise can be calculated based on the residual Cyk . Finally, the noise parameter βk can be
updated, which is [21]:

βk = β−k +
1
2
(yk − ŷk)

2 +
1
2

diag
(
Cyk

)
(12)

For Equation (12), the state vectors ŷk and Cyk can be approximated by collecting
sample points for the weighted summation operation and then using the filter estimates
xk and Pk. It is known that the CKF filter is an approximation of the statistical lineariza-
tion filtering, and the conclusion of reference [22] shows that statistical linearization by
using the estimated value of filtering depends on the estimation accuracy of nonlinear
filtering. So, the estimation results of filtering can be used for statistical linearization, and
its expression is: 

yk = Ah,kxk + Bh,k + dh,k + vk
Ah,k = PT

xkyk
P−1

k|k−1
Bh,k = ŷk|k−1 − Ah,k x̂k|k−1

(13)

In the equation, Ah,k and Bh,k represent the statistically linearized state transfer matrix
and the matrix composed of vectors unrelated to the state transfer matrix, respectively.
dh,k represents the statistical linearization error, and its variance can be represented by
Cyk|k–1 − Ah,kPk|k–1 AT

h,k. Cyk|k−1 represents the prediction error covariance matrix of the
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homogeneous measurement equation, combining the above-generalized equation; the
formula for Cyk|k−1 can be obtained as follows:

Cyk|k−1 =
∫ (

hk(xk)− ŷk|k−1

)(
hk(xk)− ŷk|k−1

)T
F(xk, x̂k−1, Pk−1)dxk (14)

The predicted mean and covariance in the measurement equation can be expressed
after statistical linearization [23] as:{

y′k|k−1 = Ah,k x̂k−1 + Bh,k

P′k|k−1 = Ah,kPk|k−1

(
Cyk|k−1 − AT

h,k

)
+ Rk

(15)

According to reference [24], the variance parameter can only be estimated after updat-
ing the filtering posterior, so the incomplete sequence after statistical linearization can be
obtained from the filtered results x̂k and Pk as follows:

yk − ŷ′k = yk − (Ah,k x̂k + Bh,k) (16)

Similarly, the approximate measurement noise correction term C′yk
after statistical

linearization can be expressed as:

C′yk
= Ah,kPk AT

h,k + Cyk|k−1 − Ah,kPk|k−1 AT
h,k (17)

From Equations (12), (16), and (17), the posterior update formula for βk can be deter-
mined as:

βk = β−k +
1
2
(yk − Ah,k x̂k + Bh,k)

2 +
1
2

diag
(

Ah,kPk AT
h,k + Cyk|k−1 − Ah,kPk|k−1 AT

h,k

)
(18)

The above equation is the core of the VB noise estimator with statistical lineariza-
tion. The two terms Bh,k and variance Cyk|k−1 − Ah,kPk|k−1 AT

h,k ensure the stability when
estimating the noise variance and improve the estimation accuracy.

2.2. Algorithm Test Plan

By combining the VB estimator mentioned above with the filter based on the CKF
algorithm, the specific implementation process of the VB–CKF algorithm can be concluded
as follows:

1. Time update

(1) Calculate the cubature points near the state variable that generate propagation
with the state equation [25]:{

χk−1 = x̂k−1 +
(√

nPk−1
)

i x̂k−1 −
(√

nPk−1
)

i
χk|k−1 = fk−1(χk−1)

(19)

(2) The covariance matrix and the predicted value of the measurement noise
variance parameter are as follows:

x̂k|k−1 = w
2n

∑
i=1

χi,k|k−1 (20)

Pk|k−1 = w
2n

∑
i=1

χi,k|k−1χT
i,k|k−1 − x̂k|k−1 x̂T

k|k−1 + Qk−1 (21)

αk|k−1 = ραk−1 βk|k−1 = ρβk−1 (22)

2. Parameter passing:
αk = αk|k−1 βk = βk|k−1 (23)
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3. Measurement update:

(1) Analyze the data and calculate the estimated variance of measurement noise:

R̂k = diag(βk/αk) (24)

(2) Generate cubature points propagating with the measurement equation near
the state value x̂k|k−1:

χ̃k−1 = x̂k|k−1 +
(√

nPk|k−1

)
i
x̂k−1 −

(√
nPk|k−1

)
i

(25)

γk|k−1 = hk(χ̂k−1) (26)

(3) Calculate the predicted values of measurement update, autocovariance matrix,
and cross-covariance matrix, respectively [26];

Pyk = w
2n

∑
i=1

γi,k|k−1γT
i,k|k−1 − ŷk|k−1ŷT

k|k−1 + Rk (27)

γk|k−1 = hk(χ̂k−1) (28)

Pxkyk = w
2n

∑
i=1

χ̂i,k|k−1γT
i,k|k−1 − x̂k|k−1ŷT

k|k−1 (29)

(4) Calculate the filtering gain, state estimation value, and covariance matrix,
respectively [27];

Kk = Pxkyk P−1
yk

(30)

Pk|k−1 = w
2n

∑
i=1

χi,k|k−1χT
i,k|k−1 − x̂k|k−1 x̂T

k|k−1 + Qk−1 (31)

x̂k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)
(32)

4. Use the filtering results x̂k and Pk to obtain the values of Ah,k, Bh,k, and
Cyk|k−1 − Ah,kPk|k−1 AT

h,k after statistical linearization;
5. Finally, Ah,k, Bh,k, and Cyk|k−1 − Ah,kPk|k−1 AT

h,k are substituted into Equation (18) to
obtain the updated value of βk [28].

Both prediction and updating procedures are included in the measurement noise
variance in VB–CKF. This algorithm uses estimation of the previous moment to pass
instead, and the current estimate is only related to the previous estimate. This method
avoids the storage and summation operation of the new interest sequence in the sliding
window in the conventional method because all of the variance of the measurement noise
is unknown. Additionally, the noise-tracking ability, which fluctuates independently in the
covariance matrix, can be adjusted separately by modifying the weight ρ. From (15), it can
be seen that the parameter to be estimated is only related to ρ, which is usually ρ ∈ (0, 1]. A
lower value of ρ means that the predicted value of the variance parameter is less related to
the previous time, and the actual measurement noise changes more sharply. Therefore, the
ρ value can be adjusted according to different application environments to flexibly enhance
the adaptive capability of the system.

Figure 2 depicts the VB–CKF algorithm’s adaptive tight coupling fusion process in
combinatorial navigation systems. The technique first estimates the closely coupled state
with CKF and then simultaneously estimates the variance of measurement noise from
satellites using VB. The SINS solution value is corrected using the estimated state feedback,
the CKF filtering is implemented using the calculated variance parameter, and, finally, the
forecast value is updated. The predicted value is estimated and updated, as well as the
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subsequent sample point during this processing [29]. The system also outputs the filtered
navigation parameter data at the same time.
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First, the carrier’s trajectory was simulated using the trajectory generator on the
MATLAB R2019b software platform. The platform also featured a VB–CKF tightly coupled
algorithm, a GPS data generator, and an IMU data generator. Software tools that can
simulate actual devices in the MATLAB platform include the trajectory generator, IMU data
generator, and GPS data generator. For the purpose of solving SINS, the IMU data generator
can simulate the actual gyro and acceleration measurements. The IMU is configured as
MEMS grade with low precision in this experiment, and the solving frequency is 10 Hz.

Following the selection of the IMU type, which is MEMS-level and has a low de-
gree of accuracy, the following error settings are specified for the IMU’s gyroscope and
accelerometer: the constant drift of the gyroscope is set at 10◦/h, the gyroscope white
noise is 0.05◦/

√
h, and the gyroscope cross-coupling error is 200 ppm. The accelerometer

bias is set to 1 mg, the accelerometer white noise is 0.5 mg/
√

Hz, and the accelerometer
cross-coupling error is 200 ppm.

GPS data generator can be used to acquire the test object’s pseudorange and pseudor-
ange rate. Other settings are set as follows after selecting the week_824 file as the satellite
book during the simulation and setting the output frequency to 1 Hz: the clock drift white
noise is set to 0.1 m/s, the clock offset white noise is 10 m, the initial pseudorange value is
set to 10 m, and the initial pseudorange rate measurement noise variance is 0.3 m/s [30].
As electromagnetic transmissions, GPS signal must account for atmospheric delay errors.
Considering that the electromagnetic wave can produce bending and delay in the tropo-
sphere, it is necessary to model the tropospheric zenith delay (TZD) [31]. The modeling
form given by the mapping function in this study is as follows:

TZD =
0.002277

f (φ, h)
×
[

Ps + (
1255

Ts
+ 0.05)es

]
(33)

es = rh× 6.11× 10
7.5(Ts−273.15)

Ts (34)

f (φ, h) = 1− 0.00266 cos(2ϕ)− 0.00028h (35)

In the above three equations, TS is the surface temperature (K), PS is the surface air
pressure (mbar), eS is the surface water pressure, and rh is the surface relative humidity.
f (φ, h) is a function of latitude and height, reflecting the variation in gravity acceleration
with geographical location and altitude, φ is the geocentric geodetic latitude of the station,
and h is the geodetic height of the station.

In addition, when the electromagnetic wave signal passes through the ionosphere at a
height of 60–1000 km, its propagation speed is changed with the change in electron concen-
tration. According to the relationship between group refractive index and phase refractive
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index in electromagnetic wave theory, the ionospheric pseudorange delay correction model
from satellite s to observer o can be written as follows:

∆ρ =
∫ o

s
(ngr − 1)ds =

∫ o

s

1
2

f 2
p

f 2 ds =
∫ o

s

1
8π2

dee2
0

f 2meε0
ds =

40.3
f 2 TEC (36)

where TEC is the propagation path of the signal from satellite s to observation point o, and
its expression can be set as follows:

TEC =
∫ o

s
de(s)ds (37)

The experiment selects longitude λ = 106.61, latitude L = 29.53◦, and altitude H = 450 m
as the initial position. After setting the initial parameters in the system, in order to verify
the adaptability of the algorithm, it is necessary to adjust the measurement noise in the
simulation movement of the carrier, especially to make the GPS signal change rapidly with
time in a certain period of time, but the specific situation of the change is random. Therefore,
combining Equation (14), the tracking ability of the system is enhanced by adjusting the
initial weight ρ= 1− e−2. In order to ensure that the error of VB–CKF does not increase
with time under this condition [32], the number of cubature points is set to 1600, and the
initial value of the filter can be set as x0 = [018×1].

3. Results

After the above simulation process, the simulation results are shown in Figure 3.
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Equation (24), whose value is influenced by the noise variance of neighboring mo-
ments, can be used to estimate the value of the corresponding measurement noise when
the equivalent measurement noise swings significantly in a short amount of time, as shown
in Figure 3. The estimated value will change if the noise variance does. Even though there
will be modifications, there is a general inhibitory impact. The VB–CKF algorithm has
good flexibility, as can be observed from the overall simulation results; when the noise
variance diverges, the system can quickly suppress it. We can still see from the image
that the algorithm has a decent chasing ability, and the data results are ideal, despite the
fact that the noise variance changes rapidly in a short amount of time and some cubature
points are not recorded in the matrix for the parameter transfer. Therefore, as a whole,
the VB–CKF algorithm has good tracking ability in both cases where the noise variance is
constant and rapidly changing, and there is no residual record in the entire system. Figure 3
compares the simulation result curves for the velocity, position, and attitude parameter es-
timation error of the CKF algorithm with the VB–CKF algorithm under the aforementioned
simulated settings.

As shown in Figure 4, the CKF algorithm and VB–CKF algorithm have estimation
error convergence within the ideal range when the variation range of system measurement
noise is within the controllable range, but the VB–CKF algorithm has a relatively faster
convergence speed and performs better in terms of speed, position, and tracking accuracy.
In the attitude calculation, because the commercial IMU is selected, the performance is not
as good as the military level in all aspects. When the parameters are set, the compensation
accuracy is not enough, which leads to a great impact on the gyro accuracy. When the CKF
filter is used for simulation, the attitude angle curve produces slightly significant burrs.
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On the whole, the CKF algorithm and VB–CKF algorithm have ideal estimation
accuracy of attitude angle, and there is no obvious divergence. However, from the point of
view of details, VB–CKF has a better effect, and this algorithm can also produce an obvious
response to noise mutation occurring in a short time. Compared to the CKF algorithm,
the VB–CKF algorithm weighs various parameters, which makes it more adaptive. The
observation results show that the diagonal elements of the time-varying noise variance
matrix have the function of independent adjustment and tracking, and the estimation
accuracy has been greatly improved. The estimation error of the VB–CKF algorithm is
shown in Table 1. Compared with the CKF algorithm, the VB–CKF algorithm improves
attitude angle accuracy by around 30% while reducing speed and position estimate error
(RMSE) by about 45%.

Table 1. Comparison of estimation errors (RMSE) among tightly coupled algorithms.

Error Direction CKF VB–CKF

speed error (m/s)
East (E) 1.679 0.914

North (N) 3.124 2.281
Up (U) 2.772 1.751

position error (m)
Latitude (L) 2.572 1.173

Longitude (λ) 2.143 0.995
Height (H) 2.674 1.680

attitude error (deg)
East (E) 1.646 1.169

North (N) 1.748 1.183
Up (U) 1.467 1.130

In order to verify the fusion performance of the VB–CKF algorithm in the combined
system, the experimental sites are chosen in the outdoor playground with strong GPS signal
and complicated portions with significant GPS signal occlusion in some road sections, as
shown in Figure 5. The system prototype consists of SINS developed independently by
our experimental team and the NEO-7N-0-00 GPS module produced by ublox company.
In order to increase the system’s stability, the test team should secure the prototype to the
waist and conduct tests in the selected test site to verify the performance of the combined
system, as shown in Figure 6.

The outdoor playground is located in an open area without occlusion around it, and
the system can receive a stable GPS signal (in the whole test process, the number of visible
satellites that can be stably received by the GPS module reaches six). Therefore, the initial
value of the weight of the parameter transfer equation in the VB–CKF algorithm is set
to ρ= 1− e−5. The movement path of the tester is shown in Figure 5a as A-B-C-D-E-A
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(starting from point A, two different movement modes of walking and accelerating running
can be switched arbitrarily according to the subjective will of the tester and finally stop at
point C and save the data in the whole process). Three groups of experiments were carried
out using the pure SNIS algorithm, CKF algorithm, and VB–CKF algorithm, respectively.
The following is the estimated reproduction map of different navigation algorithms and
the final heading angle error comparison table (Figure 7 and Table 2).
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Table 2. Table of test results for different testers.

Number Initial Heading/◦ Final Heading
(SINS/CKF/VB–CKF)

Error
(SINS/CKF/VB–CKF)

1 0.51 15.54/2.07/1.8 15.03/1.51/1.24
2 2.65 16.35/3.97/3.7 14.7/1.32/1.05
3 354.65 11.32/356.23/355.8 16.67/1.58/1.15
4 358.27 15.39/0.53/0.17 17.11/2.26/1.90
5 357.21 14.86/359.53/359.03 17.65/2.32/1.82

The results show that due to the open and flat terrain, the visible number of satellites
is high, and the GPS data almost coincide with the standard line. The VB–CKF algorithm
filter focuses more on the GPS measurements, and the VB estimator compensates for the
SINS noise characteristics, so the combined VB–CKF-based system has optimal positioning
results compared to the other two algorithms. When the GPS measurement noise is stable
(the number of GPS observables is greater than 4), the sum of the absolute values of the
errors of the VB–CKF algorithm in the two-dimensional plane is about 1 m, which is about
10% better than the CKF algorithm in terms of positioning accuracy. In the heading angle
comparison, setting the direction pointed by AB as the initial heading 0◦, the accuracy of the
heading angle of the VB–CKF algorithm is improved by about 20% on average compared
with that of the CKF algorithm.

The whole length of the mountain section is about 1050 m, and the GPS signal of some
sections is seriously occluded, and the number of visible points is less than three, which is
represented by the blue dashed line box in Figure 5b, accounting for about 30% of the total
path. Interval 3–4 is the indoor interval. So, the initial value of the weight of the parameter
transfer equation in the VB–CKF algorithm is set to ρ= 1− e−2 to reduce the influence of
the measurement value in the system. The starting point of the tester is the position of point
0 in the figure, and the tester proceeds along the direction indicated by the arrow until he
returns to the starting position of point 0 from point 12. The remaining test conditions are
the same as the previous test. Figure 8 shows a reproduction of the motion trajectories of
different algorithms in this environment.

It can be seen from Figure 8 that the CKF algorithm cannot adjust the noise statistical
characteristics in real time, and there is a noise jump in the GPS measurement in this test,
so that the system gain direction cannot be adjusted in time, resulting in a large closed-loop
error of 4.6 m when finally returning to the origin, but the closed-loop error of the VB–CKF
algorithm phase is only about 2.5 m. The height difference from the highest point to the
lowest point of the CKF algorithm is about 18.9 m, and the final convergence error is about
2.5 m. The difference between the highest point and the lowest point collected by the
prototype of the VB–CKF algorithm is about 17.2 m, and the height error after returning
to the origin is about 1.5 m. Since the GPS measurement noise in this test environment
varies drastically, the CKF is unable to adjust the estimator gain, which leads to a certain
degree of deviation, while the prediction of the variance parameters αk , βk of the VB–CKF
algorithm is only determined by the variance parameters αk−1 , βk−1 of the previous time
and the variance variation coefficient ρ of the adjacent time, which realizes the synchronous
estimation of the combined system state and the GPS measurement noise variance, so the
positioning accuracy of the VB–CKF algorithm is higher.

According to the results of multiple sets of experimental data in Figure 9, the position-
ing accuracy of the VB–CKF algorithm is about 38% higher than that of the CKF algorithm.
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4. Discussion

Modern navigation and positioning technology is widely employed in aerospace,
land vehicles, and ocean cruise navigation and positioning as an essential cutting-edge
technology in contemporary society [1]. Modern navigation and positioning technologies
can be categorized as inertial positioning and navigation, satellite navigation, geomagnetic
navigation, and environmental-assisted navigation [2], depending on how data from
navigation sources are obtained. According to the benefits and drawbacks of various
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positioning sources, integrated navigation systems—which combine two or more different
positioning sources—have, in practice, taken over in terms of modern navigation and
positioning technology, with SINS and GPS being the most popular combination [3].

Currently, there are two main categories of information-coupling methods: loose
coupling and tight coupling. When compared to the loose coupling model, in which
the systems operate independently, the tight coupling structure is a type of combination
mode that allows SINS and GPS systems to modify one another. It is also more in line
with the demands of contemporary society for high accuracy and high robustness in long-
endurance positioning [4,13]. Many researchers have made in-depth studies on SINS and
GPS information fusion to improve the long endurance accuracy and stability of integrated
navigation. In order to obtain the nonlinear fusion results of signals in practical applications,
many researchers have proposed the EKF algorithm based on the KF algorithm, which is
simple to implement and has fast convergence speed [5,6]. J. L. Carssidis et al. proposed
a new SINS/GPS combination method based on UKF [8], and H. U. Heo proposed a
combination algorithm of IMM and UKF soon after [9]. The above studies improved the
filtering effect of information fusion in the nonlinear state, but there are still shortcomings,
such as large high-order error, large amount of calculation, and low real-time performance.

In the preliminary research, it was found that CKF follows the volume numerical
integration principle, and the transition weights are only related to the state dimension. Its
time complexity is lower than UKF, and it avoids the high-order divergence problem of
EKF [7,10,11]. Additionally, it was discovered that using VB as a method for computing
high-order integrals in complex measurement models or unmeasured models is possible
through the process of learning from the Bayesian notion, which is the foundation of the KF
algorithm [14,15]. Therefore, VB is used to realize the synchronous estimation of the state
and the measurement noise variance [19]. Wang ShiYuan proposed a VB–KF algorithm
for the simultaneous estimation of state and measurement noise variance [20], but this
algorithm is not suitable for nonlinear environments. Finally, combined with the above
problems in the previous research, the VB–CKF algorithm is proposed to solve the above
shortcomings and improve the accuracy and stability of the long-endurance navigation
system. After experimental verification, compared with the CKF algorithm, the VB–CKF
algorithm proposed in this paper can improve the positioning accuracy by about 10% under
a stable environment and about 38% under severe environmental changes. It improves the
adaptability of the integrated navigation system and ensures the accuracy and stability of
the long sailing time.

In addition to obtaining GPS information through pseudorange measurement, there
is another way: carrier phase measurement. Carrier phase measurement estimates the
distance by measuring the carrier phase difference between the receiver and the satellite,
which is characterized by periodic changes and is relatively insensitive to multipath inter-
ference. In the following, we discuss the performance comparison between carrier phase
measurement and pseudorange measurement, and we explain why we decided to use
pseudorange measurement in this study.

The first step is to establish an equation for the carrier phase measurement: the
principle of carrier phase ranging can be expressed by Equation (38), where r represents
the geometric distance between the satellite and the receiver, λ is the carrier wavelength,
φ is the phase change of the satellite carrier signal from the satellite end to the receiver end,
and N is an unknown number, usually called integer ambiguity.

φ = λ−1r + N (38)

Due to the influence of error factors, such as receiver clock difference, satellite clock
difference, and atmospheric delay, the distance between satellite and receiver determined
by carrier phase observation includes the above error terms in addition to the real geometric
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distance. Combining the above error term into Equation (1), the following carrier phase
observation equation is obtained.

φ = λ−1(r + c(δtu − δts)− I + T) + N + εφ (39)

Here, δtu and δts are the receiver and satellite clock errors, respectively, I and T are the iono-
spheric and tropospheric delays, respectively, and εφ is the carrier phase measurement noise.

The actual carrier phase φ extraction process is performed by adding the amount of
carrier phase change measured via the carrier loop between each observation calendar to
the initial value of the carrier phase. When the phase-locked loop (PLL) can track a satellite
signal continuously and accurately, it is equivalent to recording the carrier phase change
value generated by the distance change of the actual satellite signal during the observation
interval time.

Finally, the carrier phase observation obtained at each observation time i can be
expressed as follows:

φ̃i = N0 + Int(φ)i + Fr(φ)i (40)

In the above equation, N0 represents the initial integer ambiguity, Int(φ)i repre-
sents the integer part of the carrier phase variation during the observation interval, and
Fr(φ)i represents the fractional part of the carrier phase variation.

Next, the performance comparison of carrier phase measurement and pseudorange
measurement for the VB–CKF algorithm proposed in this study will be experimentally
verified. For the first time, the experimental site is chosen in a section with both an empty
section and a covered area of tall buildings marked by the blue dashed box. This experiment
is divided into three groups, and the pure SINS algorithm, the VB-CKF algorithm of
pseudorange measurement, and the VB-CKF algorithm of carrier phase measurement are
used as positioning algorithms in turn. The experimenter starts from point 1, completes the
route along the number 1-2-3-4-5-6-5-2-1 in Figure 10, and returns to the origin. Figure 10
shows the experimental roadmap, and Figure 11 and Table 3 show the comparison map of
the final positioning data.

Table 3. Table of test results for different algorithm types.

Algorithm Type Error
Mean Value/m

Error
Variance Value/m

SNIS 2.7 6.4
VB–CKF (pseudorange) 0.8 0.42
VB–CKF (carrier phase) 0.6 0.37
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The data in Figure 11 and Table 3 show that the VB–CKF algorithm based on pseu-
dorange and the VB–CKF algorithm based on carrier positioning are close in terms of
positioning effect. However, through the comparative analysis of the speed results in
Figure 12 below, it can be seen that the number of points solved using the VB–CKF algo-
rithm based on carrier positioning is significantly less than that solved using the VB–CKF
algorithm based on pseudorange in the same time. This is because the carrier phase
measurement has higher requirements and complexity for the accurate calculation of
carrier phase and data differential processing, which requires more calculation and pro-
cessing steps. Therefore, considering the real-time requirements of the solution data of the
long-endurance integrated navigation system proposed in this study, and considering the
hardware cost and practicability, this study chooses the pseudorandom measurement with
higher cost performance.
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Although the comparison of simulation data and numerous sets of experiments show
that the VB–CKF method increased the navigation and positioning accuracy compared to
other algorithms, there are still some areas that can be further improved in the follow-up
research:

1. In this paper, motion patterns, such as jumping, bending forward, and crawling, are
not taken into account, but these behavior patterns will appear multiple times in some
actual complex scenes. The following study will take into account the aforementioned
varied unorthodox motion modes in order to guarantee and enhance the integrated
navigation system’s long-endurance accuracy.
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2. For the tightly coupled nonlinear data fusion problem, variational Bayesian filtering
considers the propagation relationship between the time-varying characteristics of
the noise parameters and the previous time, which provides a solution in practical
application. However, at the simulation level, higher-order models such as ARMA
in pattern recognition can be further used to deal with the time-series relationship of
SINS/GPS measurement noise.

3. In order to accomplish long-term seamless positioning in intricate urban environments,
further navigation information sources and positioning technologies should be added
to the integrated navigation system, if this study is to continue to be useful in the
application of smart cities. The latter study will concentrate on WIFI, navigation
databases, and signal quality control criteria [33,34].

5. Conclusions

The SINS/GPS integrated system requires the fusion of navigation source information.
During the fusion process, non-stationary noise will be generated over time, which reduces
the stability and adaptability of the system.

(1) In this paper, a fusion method based on VB estimation is proposed, the CKF algo-
rithm is used as a filter to deduce the VB–CKF algorithm in detail, and the whole
process of the algorithm is introduced. The simulation results show that the VB–CKF
algorithm performs better than the previous CKF algorithm in speed, position, and
tracking accuracy.

(2) Through simulation and outdoor experiments in different scenarios, it is found that
the VB–CKF algorithm is better than the CKF algorithm in terms of speed, position,
and attitude errors. In the open area with good GPS signals, compared with the CKF al-
gorithm, the VB–CKF algorithm improves the positioning accuracy by about 10% and
improves the heading angle accuracy by about 20% on average; in complex long-
distance road sections where GPS signal is partially inhibited, the VB–CKF algorithm
improves the location accuracy by about 38% compared with the CKF algorithm.

(3) The results show that the algorithm can effectively improve the self-adaptive ability
of the integrated system and effectively improve the long-endurance accuracy of the
navigation system. The research in this paper has a positive effect on improving the
positioning accuracy of the SINS/GPS tightly coupled system and provides a solution
to realize the high value of this system for engineering applications.
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