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Abstract: Globally, urbanization, industrialization, and transportation have worsened urban air
quality in recent decades. Using sustainable, cost-effective methods to monitor and reduce air
pollution is crucial. The best Nature-based Solution (NbS) for urban environmental cleanup is plants.
Roadside plants are key carriers of air pollution and have various tolerances. Ziziphus spina-christi’s air
pollution tolerance was assessed using the Air Pollution Tolerance Index (APTI). The Bioconcentration
Factor (BCF) examined the heavy metal accumulation capacity of Ziziphus spina-Christi’s fruits and
leaves. Two sampling sites were studied: a reference location remote from human activity and a
densely populated metropolitan region. Ziziphus spina-christi is considered a tolerant species in
Qatar, based on its calculated value of APTI in this study. Both total chlorophyll and ascorbic acid
influence APTI levels and have a strong positive correlation with APTI. BCF values in leaves were
higher than fruits indicating that the leaves of Ziziphus spina-christi have a greater potential for metal
absorption than its fruits. Moreover, the leaves of Ziziphus spina-christi showed a potential for mercury
accumulation (BCF > 1), thus it is a good candidate to be used for phytoremediation in areas of
mercury contamination. The integration of both APTI and BCF methods is significant and beneficial
in advising policymakers and urban planners regarding suitable tree species for sustainable urban
development.

Keywords: Air Pollution Tolerance Index (APTI); Bioconcentration Factor (BCF); bioindicator; urban
air quality; sustainable solution; Ziziphus spina-christ

1. Introduction

The massive development of commercial, urban, and industrial activities and their
combined emissions of air pollutants have made air quality a global environmental issue
in the recent century [1]. Due to changes in physical developments like factories, build-
ings, and paved roads, green areas and open lands—which cool the city and improve air
quality—have decreased [2]. Urbanization also boosted industrial and vehicular activity,
worsening air quality [3]. Road traffic is a major source of urban air pollution [1,4]. Traffic-
related emissions such as carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4),
non-methane gases, sulfur oxides (SOx), and particulate matter (PMs) can impact climate
change [2]. Road traffic also releases heavy metals (HMs) like chromium (Cr), lead (Pb),
cadmium (Cd), arsenic (As), zinc (Zn), copper (Cu), nickel (Ni), and mercury (Hg) from
vehicle exhaust, tire wear, brake lining, and road surface. Air pollution in cities has several
health impacts. Traffic-related air pollution’s health consequences are a key transport
problem. The WHO Regional Office for Europe expects ambient air pollution to cause
100,000 deaths a year in Europe in future decades, decreasing life expectancy by a year [5].
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Short-term and long-term air pollution exposure causes COPD, asthma, respiratory and car-
diovascular illnesses, and mental and perinatal disorders in newborns and adults [6]. Qatar
is one of the fastest-growing nations [7]. Qatar’s Planning and Statistics Authority (PSA)
anticipated 1,964,978 automobiles in 2022 and 3 million people in March 2023. Increased
air emissions will damage air quality and harm the ecosystem and humans. Nature-based
Solutions (NbS) are gaining popularity as effective techniques for reducing environmental
pollution [3,8,9]. The European Commission defines NbS as “solutions that are inspired
and supported by nature, which are cost-effective, simultaneously provide environmen-
tal, social, and economic benefits, and help build resilience” [10]. NbS is a cost-effective,
sustainable, and effective way to monitor and mitigate urban air pollution [3,11]. Con-
ventional solutions require continuous monitoring programs using fixed stations, which
do not represent the area [12]. Urban vegetation is a cheap and easy way to monitor air
quality across vast regions [13]. Air pollutants damage plants the most, especially leaves,
which are the main receptors and environmental sinks. The Air Pollution Tolerance Index
(APTI) measures plants’ ability to tolerate air pollutants [12,14]. APTI helps classify plants
as sensitive, intermediate, or resistant to air pollution [15,16]. Sensitive species with low
APTI values are important early pollution indicators, while tolerant species with high APTI
values are best for pollution mitigation. APTI uses four biochemical parameters—total
chlorophyll, ascorbic acid, leaf extract pH, and relative water content—that are immediately
impacted by air pollution and easy to quantify. Several studies evaluated the Air Pollution
Tolerance Index of plant species along roadsides and in industrial, urban, and rural areas in
India [14,15,17], China [18,19], Nepal [16], Saudi Arabia [20–22], Oman [23], and Iraq [24].
In addition, roadside plants may accumulate pollutants like HMs and be employed in
phytoremediation. The bioconcentration factor (BCF) is one of the measures that can
quantify a plant’s phytoremediation capacity [25]. Numerous scholars have conducted
investigations on the accumulation of heavy metals in roadside vegetation [26–30]. To our
knowledge, there are no studies conducted in Qatar to assess the use of plants in biomon-
itoring and mitigation of air pollution. Thus, this study examines, for the first time in
Qatar, the use of Sidr trees (Ziziphus spina-christi), which are evergreen trees native to Qatar
and commonly found along roadsides, gardens, and residential areas, as a nature-based
solution for biomonitoring air quality and phytoremediation of heavy metals. Here, we
aim to investigate the tolerance of this tree species and its potential accumulation of HMs.
The Air Pollution Tolerance Index and heavy metal accumulation potential of Sidr trees
(Ziziphus spina-christi) along the roadside of a highly urbanized and active area in Qatar
and at a control site were examined. While there is existing research on the assessment
of using plants for biomonitoring air quality based on APTI, we added the use of BCF
(for both leaves and fruits of the tree) to enhance the assessment. In this research, for the
first time in arid climate, we incorporated the usage of both APTI and BCF to evaluate
Ziziphus spina-christi trees as a sustainable option for biomonitoring of urban air quality
and a potential phytoremediation solution of heavy metal pollution. Combining both APTI
and BCF measures is useful in recommending suitable tree species for sustainable urban
development, which is significant for policymakers and urban planners.

2. Materials and Methodology
2.1. Study Area and Sampling Strategy

Two areas were selected for this study: The first is a rural area as a reference site
located at the Northside of Qatar away from pollution sources (approximately 70 km from
Doha). The second is a roadside area located near a high traffic density area, including
universities, schools, and governmental institutions (Figure 1). In the summertime, temper-
atures can exceed 40 ◦C (104 ◦F) [31]. In August and September, relative humidity rises,
making circumstances uncomfortable. The winter season has little erratic precipitation. Air
pollution is often linked to traffic congestion, largely due to automobile emissions. This
might increase PM2.5, PM10, NO2, CO, and VOCs [32]. Fully developed leaf and fruit
samples were randomly collected in five independent replicates from Ziziphus spina-christi
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trees at the height of 1.5 to 2 m during March (temperature 16–40 ◦C, with an average of
P25 ◦C) [33]. The collected samples were immediately transferred to polythene bags and
stored in a freezer set at −20 ◦C, then transferred to the laboratory for analysis.
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Figure 1. Geographic position of study sites in Qatar. Maps show different land uses in the selected
study sites.

2.2. Biochemical Parameters
2.2.1. Ascorbic Acid

The ascorbic acid was determined following the method used by the University of
Canterbury (2021) [34]. In essence, 0.5 g of fresh leaves were crushed and added to 10 mL
of distilled water for extraction. The extract was then transferred to a 15 mL centrifuge tube
and centrifuged at 4500 RPM for 15 min. The clear extract was then titrated with 0.005 M
Iodine solution to determine the ascorbic acid concentration.

2.2.2. Total Chlorophyll Content (TChl)

The total chlorophyll content was determined following the method described in the
literature by Alhesnawi et al. (2018) and Alotaibi et al. (2020) [21,24]. The method entails
using 0.20 g of leaves crushed and extracted with 10 mL of 80% acetone. The resulting
solution is then incubated for 15 min and centrifuged for 3 min (2500 RPM), and the
absorbance read at 645 nm and 663 nm. The total chlorophyll content was calculated using
the below formula.

TChl
(

mg
g

)
= 20.2 × A645 + 8.02 × A663 (1)

where A645 and A663 are the absorbance at wavelengths of 645 nm and 663 nm.

2.2.3. pH of Leaf Extract

A sample of 0.5 g of leaves was ground, dissolved in 50 mL of distilled water, and
filtered, and the pH was measured using a calibrated pH meter.

2.2.4. Relative Water Content (RWC)

The relative water content was determined following the method described by
Alhesnawi et al. (2018) and Alotaibi et al. (2020) and calculated using the below
formula [21,24].
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RWC =
FW − DW
TW − DW

× 100 (2)

where FW denotes fresh weight, DW denotes the dry weight, and TW denotes the turgid
weight.

2.3. Air Pollution Tolerance Index (APTI)

The Air Pollution Tolerance Index was determined using the measured ascorbic acid,
total chlorophyll concentration, pH, and relative water content. The APTI was calculated
using the formula developed by Singh and Rao in 1983 [15].

APTI =
A(TChl + pH) + RWC

10
(3)

where A is the ascorbic acid of leaf in mg/g (dry weight), TChl is the total chlorophyll of
leaf in mg/g (dry weight), pH is the leaf-extract pH, and RWC is the relative water content
of leaf tissue in percentage.

Based on APTI values, plants are categorized as sensitive, intermediate, moderately
tolerant, and tolerant (Table 1).

Table 1. Plants categories based on APTI values adapted from (Singh et al. (1991)) [35].

APTI Response

≤14 Sensitive
15–19 Intermediate
20–24 Moderately tolerant
>24 Tolerant

2.4. Chemical Analysis of Metals

Dried and homogenized soil sample of approximately 0.25 ± 0.05 g was weighed
and mixed with 9 mL of concentrated nitric acid and 3 mL hydrofluoric acid (Puriss,
Honeywell, Muskegon, MI, USA) in a 50 mL PTFE tube before digestion using a microwave
digestion system (MARS-6, C.E.M. Corporation, Matthews, NC, USA) according to US EPA
(2007) [36]. For leaf and fruit samples, they were washed three times with Milli-Q ultra-pure
water (IQ 7010, Merck, MA, USA) to remove the particulate matter (PM) deposited on the
surface before being freeze-dried (SP VirTis AdVantage Pro, ATS, Sewickley, PA, USA) until
a constant weight was reached. Then, approximately 0.5 ± 0.05 g of dried, ground, and
homogenized sample powder was weighed in a 50 mL PTFE digestion tube, to which 5 mL
of concentrated HNO3 and H2O2 were added [37]. The digestion was carried out using
a microwave digestion system (MARS 6, C.E.M., NC, USA). The digested samples were
then preserved with 3 mL of nitric acid and diluted up to 50 mL with reagent-grade water
before being analyzed with ICP-OES (Optima 7300DV-Perkin Elmer, Waltham, MA, USA)
and direct mercury analyzer (DMA-80 evo, Milestone Srl, Sorisole, Italy).

2.5. Quality Assurance and Control

The establishment of analytical quality assurance was achieved with the examina-
tion of reagent blanks and certified reference materials (CRM). Two certified reference
materials (CRMs) were employed in this study. The first CRM utilized was NIST-2709a,
which is specifically designed for San Joaquin soil. It had a certified value of 0.90 ± 0.20.
Two reference materials were used in this study: (i) NIST 1566a, obtained from the National
Institute of Standards and Technology, which is a standard reference material for oyster
tissue and (ii) NIST 1573a, also obtained from the National Institute of Standards and
Technology, which is a standard reference material for tomato leaves. The approved value
of this substance is (0.034 ± 0.00). In order to ensure adequate quality, 10% of the total
samples tested have been allocated as quality control (QC) samples. The analysis of all



Sustainability 2023, 15, 13590 5 of 15

samples was conducted in triplicate, with an average weight of 0.25 ± 0.05 g. The recovery
percentage obtained ranged from 89% to 102%.

2.6. Bioconcentration Factor (BCF)

The Bioconcentration Factor (BCF) of HMs in plant tissue (i.e., leaves and fruit) can be
defined as the capability of plant tissues for element accumulation from the soil [38]. It can
be measured by dividing the measured concentration of metals in the plant tissue by the
metal concentration in the substrate [39].

BCF =
Concentration of Metal (plant tissue)

Concentration of Metal (soil)
(4)

BCF is used as an index to determine the ability of plants to accumulate HMs. Based
on BCF, the plant can only absorb the metal without accumulation if BCF ≤ 1, while it can
accumulate the metal if BCF > 1 [29,40]. Higher BCF values indicates that the plant has
higher potential of phytoaccumulation [28].

2.7. Statistical Analysis

A One-way (ANOVA) test was performed to evaluate the mean variation between
the sample groups. Pearson correlation (2-tailed) analysis at the 0.05 level was performed
to reveal the relationships between five parameters (pH, Ascorbic Acid, TChl, RWC, and
APTI). Principal Component Analysis (PCA) was performed based on five parameters
(pH, Ascorbic Acid, TChl, RWC, and APTI) of the Ziziphus spina-Christi. The extracted
factors with initial eigenvalues < 1 and the varimax method were used for rotation with
Kaiser normalization. The statistical data analysis was carried out with IBM-SPSS-25 and
Minitab-17 software.

3. Results and Discussions

The APTI determination relies on various biochemical parameters: total chlorophyll,
ascorbic acid, leaf pH, and relative water content [41,42]. Each contributes to the overall
tree species categorization. The descriptive statistics of all biochemical parameters and APTI
for all 12 sites (roadside areas and rural areas) are shown in Table 2. A One-way (ANOVA)
test was performed to evaluate the mean variation between the sample groups. Significant
variations (p < 0.05) were observed in all variables at 95% CI along roadsides in Qatar.

Table 2. Summarized descriptive analysis for ascorbic acid, mg/g (dry weight), total chlorophyll,
mg/g (dry weight), pH, relative water content (%), and APTI.

Site

Rural Area
(Reference Site) Roadside Area

Ascorbic Acid, mg/g (dry weight)
Mean ± Std 38.93 ± 0.90 42.94 ± 4.73

Range 37.70–40.23 34.98–54.70

Total Chlorophyll, mg/g (dry weight)
Mean ± Std 5.94 ± 0.06 3.32 ± 1.00

Range 5.89–6.02 1.94–4.87

pH
Mean ± Std 6.15 ± 0.01 6.17 ± 0.08

Range 6.15–6.16 6.05–6.36

Relative Water Content, %
Mean ± Std 92.18 ± 1.91 78.82 ± 4.41

Range 89.09–94.13 71.83–90.24

APTI
Mean ± Std 56.29 ± 1.13 48.88 ± 7.80

Range 54.68–57.81 39.55–63.01
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3.1. Ascorbic Acid

Ascorbic acid is a reductant and an antioxidant found in all plant growing parts [43,44].
It plays a significant role in photosynthetic carbon fixation; its role is correlated with its
concentration [45]. Plants that retain high ascorbic acid levels even under contaminated
habitats are thought to be air pollution resistant [46,47]. Numerous studies have demon-
strated a positive correlation between raised levels of ascorbic acid and the ability of plant
species to tolerate increased air pollution [17,48,49]. Furthermore, another research has
hypothesized that the presence of traffic-induced stress leads to an observable elevation
in the levels of ascorbic acid in plants [50]. Ascorbic acid helps uphold the plant cell
stability in harsh conditions by scavenging cytotoxic free radicals [51,52]. In addition, it
is a strong reducing agent in plants that triggers many defenses mechanisms [53]. In this
study, all data from roadside samples displayed high ascorbic acid values that may indicate
the species’ tolerance to air pollution within the sample zone and reference area. The
ascorbic acid average value at roadside areas was higher (42.94 mg/g) than in rural areas
(38.93 mg/g). The results obtained in our study is consistent with the data shown in Table 3
and Figure 2 of the Kingdom of Saudi Arabia (KSA) study [21]. However, the calculated
ascorbic acid values are high compared to other values found in the literature (e.g., [54])
(Table 3, Figure 2), which may indicate variation in both the environment and the sampling
areas’ climates.
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Figure 2. Comparison plot of biochemical parameters and APTI of Ziziphus spina-christi from the
literature. Y-axis on the left side of the graph represents the range of ascorbic acid (A) (mg/g), total
chlorophyll (T-Chl) (mg/g), pH, relative water content (RWC) (%), and Air Pollution Tolerance Index
(APTI). NA means Not Available.

Table 3. Comparison of APTI and biochemical parameters of Ziziphus spina-christi from the literature.

Country Site
Ascorbic

Acid
(mg/g)

Total
Chlorophyll

(mg/g)
pH

Relative
Water

Content
(%)

APTI Reference

KSA Reference/rural 35.30 1.08 5.52 89.10 32.20 [21]

KSA Roadside site 78.60 0.69 5.55 72.00 56.20 [21]

Egypt Roadside 30.11 0.32 6.40 90.40 29.26 [54]
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Table 3. Cont.

Country Site
Ascorbic

Acid
(mg/g)

Total
Chlorophyll

(mg/g)
pH

Relative
Water

Content
(%)

APTI Reference

Oman Roadside 5.52 2.35 7.07 75.39 12.74 [23]

Iraq Reference/rural 5.87 1.50 6.90 76.86 12.62 [24]

Iraq Roadside 6.16 1.27 6.30 70.33 11.68 [24]

Qatar Reference/rural 38.93 5.94 6.15 92.18 56.29 This
study

Qatar Roadside 42.94 3.32 6.17 78.82 48.88 This
study

3.2. Total Chlorophyll

Chlorophyll is a guide of productivity of the tree species [55]. This parameter shows
the plant photosynthetic ability and thus its biomass growth. Reports indicate that chloro-
phyll content depends on the species kind, pollution levels, and other biotic and abiotic
conditions; certain pollutants increase the chlorophyll content while others may reduce
it [56]. The chlorophyll molecule can be degraded due to high quantity of pollutants in the
atmosphere [17]. In this study, the total chlorophyll values ranged from 5.89 to 6.02 mg/g
in rural areas and 1.94 to 4.87 mg/g in roadside areas, showing a reduction in chlorophyll
at the roadside. Data from our results indicate the average highest chlorophyll content
was observed in the reference site (as expected), 5.94 mg/g. These high values indicate
low pollution within the area or may indicate that the plant has become tolerant to pol-
lution [57,58]. Shyam et al. (2006) reported that elevated chlorophyll might also result
from a reduced accumulation of dust particles on the surface of the leaves [59]. Samples
collected from the roadside sampling area showed a significant reduction in the chlorophyll
content of up to 69%. These results agree with previous data by Achakzai et al. (2017), who
reported the decrease in total chlorophyll content with increased pollution [48]. Rahmawati
et al. (2014) suggested that the air pollutant may affect the chemistry of the chlorophyll
molecule [60], in which hydrogen atoms replace magnesium within the chemical matrix,
reducing the efficiency of the chloroplast, photosynthesis, and the conductance of stomata
and increasing leaf fall [61–63]. Others such as Bakiyaraj et al. (2014) reported that lower
chlorophyll content was associated with a higher level of pollution [64]. Our data imply a
high polluted site with low chlorophyll levels.

3.3. pH

Within plants, pH plays a significant role by regulating the function of the plant’s
enzymes that are responsible for many of the chemical reactions that take place within
plants. The activity of enzymes is affected by pH, and each enzyme has an optimal pH
range at which it functions most efficiently, some requiring higher pH than others do [48].
Moreover, pH can also play more roles in metabolic reactions and disease resistance [65,66].
Acidic pollutants such as SO2 and NOx decrease the pH nature of the leaf and thus adversely
affect the plant. Tolerance of the plant then governs the rate of pH drop. An increase in the
pH increases the plant’s resistance to air pollutants attained by the chemical conversion of
hexose sugar to ascorbic acid in the foliar tissue of plants [67]. Our results indicate that the
pH in roadside areas was slightly higher than in rural areas. Our pH data are in agreement
with similar studies conducted in the region [21] (Table 3, Figure 2).
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3.4. Relative Water Content

The relative water content plays a vital role in the ability of plants to endure pollution
as water regulates many physiological processes under high stress from contaminants [47].
The RWC gauges the water’s balance (uptake and release) [68,69]. This parameter governs
the permeability of the outer non-aqueous surface layer of the protoplasm within the tree
species [70] and thus accounts to some extent for the tolerance against pollutants [48]. As
the air around the plant gets polluted, the plant’s cell permeability increases [71]. This, in
turn, results in an increased loss of water and nutrients, triggering a domino effect leading
to the immature senescence of leaves [72]. High water levels within a plant species can
also counteract high acidity with its cells sap and control drought conditions [17]. Elevated
values of RWC indicate drought resistance species, while reduced levels may be the result
of pollutants affecting the rate of transpiration within the plant [73,74]. Moreover, Rai (2016)
proposed a direct link between physiological functions and RWC in stressed conditions [75].
In this study, the RWC% mean value in rural areas was considerably higher than in roadside
areas (92.18% vs. 78.82%). This is in agreement with previous studies from similar regions
as both Alotaibi et al. (2020) and Alhesnawi et al. (2018) reported higher RWC% at rural
areas in comparison to roadside areas (Table 3, Figure 2) [21,24].

3.5. APTI

The reaction of most plants to the stress bought on by different contaminants, whether
this emanates from the water, soil, or air, depends on the species. The APTI is a significant
tool that is used as a measure of the sensitivity of plants, which helps in the selection
of pollution tolerant plants for mitigation purposes [17,47]. Plants with elevated APTI
are a good choice and show tolerance to air pollution. In our study, the APTI range of
roadside and rural areas was between 39.55–63.01 and 54.68–57.81, respectively. Based
on our calculated values of APTI and the APTI categories by Singh et al. (1991) (Table 1),
Ziziphus spina-christi is tolerant to air pollution in our study area [35]. The tolerance of
Ziziphus spina-christi to air pollution was also found to be high (i.e., tolerant species) in
Saudi Arabia [21] and Oman [23]. The same species (i.e., Ziziphus spina-christi) was reported
to have intermediate tolerance to air pollution in Egypt [54] and Iraq [24]. Our data indicate
that Ziziphus spina-christi is tolerant to air pollution within sampled sites in Qatar and is
a good candidate for air pollution mitigation and can be used where air pollution is of
particular concern such as in industrial areas, urban areas, and heavy traffic roadsides,
which would result in lower air pollution loads. As stated earlier, depending on the climatic
nature of the site, other studies may contradict our findings (e.g., [24,54]) with regards to
the species. Nevertheless, there are no data concerning this species and subject in Qatar
yet. Thus, it would be appropriate to conduct more studies on this species, including other
native plant species compatible with Qatar climate, and investigate their utilization to
mitigate air pollution and its effects.

The Air Pollution Tolerance Index combines the data of four biochemical parameters,
ascorbic acid, total chlorophyll content, pH, and relative water content, to give a better
understanding with regard to the response of plants to pollution [76,77]. A Pearson
correlation analysis was performed between all biochemical parameters and APTI. APTI
showed a strong positive correlation (p < 0.01) with both total chlorophyll (coefficients 0.83)
and ascorbic acid (coefficient 0.76). In contrast, a weak correlation was observed between
RWC, pH, and APTI (Table 4 and Figure 3). Alotaibi et al. (2020) reported a strong positive
correlation of APTI with ascorbic acid, while it had weak correlation with the rest of the
parameters [21]. A strong positive correlation between APTI and ascorbic acid was also
reported by [24].
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Table 4. Pearson correlations (2-tailed) between variables at 95% CI. (* Correlation is significant at
the 0.05 level (2-tailed), ** Correlation is significant at the 0.01 level (2-tailed)).

pH Ascorbic Acid Total Chlorophyll RWC APTI

pH 1

Ascorbic Acid 0.05 1

Total Chlorophyll 0.063 0.27 * 1

RWC −0.21 −0.33 * 0.30 * 1

APTI 0.08 0.76 ** 0.83 ** 0.04 1
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The Principal Component Analysis (PCA) method was used to identify significant
factors influencing APTI levels. Table 5 represents the correlation matrix between variables
(total chlorophyll, ascorbic acid, pH, relative water content, and APTI). Eigenvalues of the
principal components greater than or equal to one are classified as statistically significant.
The percentage variance of components 1 and 2 was calculated using the PCA method.
PC1 (total chlorophyll, ascorbic acid, and APTI) represented 45%, while PC2 (pH and
RWC) indicated 27% with an approximate total cumulative of 73% (Figure 4). The results
indicate that the cluster of two components (total chlorophyll and ascorbic acid with APTI)
represented 45%. In contrast, PC2 (pH and RWC) indicated 27%, pointing to the former
two as main parameters when determining the ATPI. The Pearson’s correlation also shows
this as both total chlorophyll and ascorbic acid showed a strong positive correlation with
APTI (Table 4, Figure 3). As shown in Figure 4, ascorbic acid and total chlorophyll are
substantially correlated with APTI among the four biochemical parameters.
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Table 5. Eigenvalues and total variance of the Principal Component Analysis.

Component
Initial Eigenvalues

Variables

Rotated Component
Matrix

Total % of
Variance

Cumulative
% PC1 PC2

1 2.279 45.589 45.589 APTI 0.994 −0.102
2 1.399 27.979 73.568 TChl 0.871 0.288

3 0.950 18.997 92.565 Ascorbic
Acid 0.700 −0.537

4 0.371 7.417 99.983 RWC 0.139 0.900
5 0.001 0.017 100.000 pH 0.061 −0.477
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3.6. BCF

Bioconcentration factor is a vital measure to investigate a plant’s potential in the
remediation of heavy metals [25]. The accumulation of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni,
Pb, Zn, and Hg by the Ziziphus spina-christi was assessed using BCF in the leaves and fruits
as depicted in Figure 5. Generally, BCF values were higher in leaves than fruits implying
that leaves of Ziziphus spina-christi have a greater potential for metal absorption than its
fruits. The results showed that both the leaves and fruits of the studies plant species had
BCF values < 1 for all the investigated elements except Hg where BCF > 1 in both leaves
and fruits of Ziziphus spina-christi. The metal concentrations were obtained in the order of
Hg > Zn > Cu >Ni > Pb > Mn > Cr > Cd > Co > Ba > Fe > Al in the leaves and Hg > Zn >
Pb > Cu > Ni > Cd > Fe > Mn > Cr > Co > Ba > Al in the fruits. The highest BCF obtained
was Hg 4.301 and 2.32 in leaves and fruits, respectively. These findings suggest that the
leaves and fruits of Ziziphus spina-christi can accumulate Hg; however, they can absorb but
not accumulate Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. Our findings suggest that
the native Ziziphus spina-christi has the ability to accumulate Hg and therefore is a good
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candidate to be used for phytoremediation in areas of mercury contamination. El-Amier
and Alghanem (2018) estimated the BCF of four metals (Zn, Cu, Cd, and Pb) in leaves
of Ziziphus spina-christi from an urban area in Egypt [28]. The results obtained in their
study align with our findings for the elements Zn, Cu, and Pb, since both studies observed
BCF < 1. However, their study found a BCF of more than 1 for Cd, suggesting that the leaves
of Ziziphus spina-christi have the ability to accumulate this particular element. Based on the
values of BCF higher than 1 of Fe, Pb, and Cd in the leaves of Ziziphus spina-christi in an
industrial area in Iran, Abbaszadeh-Dahaji et al. (2019) concluded that for phytoextraction
of heavy metals in both urban and industrial areas, Ziziphus spina-christi can be considered
as a suitable species [78]. Furthermore, Rafati et al. (2019) conducted a study to determine
the BCF of four heavy metals (iron, manganese, lead, and cadmium) in the leaves of Ziziphus
spina-christi in an industrial region of Iran. The findings of their research indicated that
the BCF for cadmium exceeded 1, suggesting that this particular plant species has the
potential to be utilized for phytoremediation purposes in regions affected by cadmium
contamination [30].
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4. Conclusions

In this study, Ziziphus spina-christi showed a different response to air pollution that
alerts biochemical parameters of the tree. Our study revealed that the rural site was the
least disturbed by anthropogenic activities based on high levels of both total chlorophyll
and relative water content and low levels of ascorbic acid. APTI is a significant tool for
future planning and can help efficiently in the selection of plants for biomonitoring of air
quality in urban areas. Plants with higher APTI values are considered tolerant species. They
can be used as a sink to different air pollutants, while those with lower APTI values are
considered sensitive and valuable as bioindicators of air pollution. Based on the calculated
APTI in our study, Ziziphus spina-christi is considered a tolerant species and therefore is
recommended to be incorporated into the green belt design in Qatar to enhance the air
pollution mitigation in the state. Additionally, based on our results, Ziziphus spina-christi
leaves showed that they accumulate mercury and thus have great potential to be used
for phytoremediation of mercury contamination. Further studies are suggested to investi-
gate other plant species in Qatar (especially native plants) around different pollution sites
(i.e., urban, industrial, and roadside) to help identify effective species for reducing pollu-
tants or as bioindicators air pollution.
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