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Abstract: In recent years, ESG (Environmental, Social, and Governance) has become a critical indicator
for evaluating sustainable companies. However, the actual logic used for ESG score calculation
remains exclusive to rating agencies. Therefore, with the advancement of AI, using machine learning
to establish a reliable ESG score prediction model is a topic worth exploring. This study aims to
build ESG score prediction models for the non-financial industry in Taiwan using random forest
(RF), Extreme Learning Machines (ELM), support vector machine (SVM), and eXtreme Gradient
Boosting (XGBoost) and investigates whether the COVID-19 pandemic has affected the accuracy of
these models. The dependent variable is the Taiwan ESG Sustainable Development Index, while
the independent variables are 27 financial metrics and corporate governance indicators with three
parts: pre-pandemic, pandemic, and the entire period (2018–2021). RMSE, MAE, MAPE, and r2 are
conducted to evaluate these models. The results demonstrate the four supervised models perform
well during all three periods. ELM, XGBoost, and SVM exhibit excellent performance, while RF
demonstrates good accuracy but relatively lower than the others. XGBoost’s r2 shows inconsistency
with RMSE, MAPE, and MAE. This study concludes the predictive performance of RF and XGBoost
is inferior to that of other models.

Keywords: ESG score prediction; machine learning; SVM; random forest; XGBoost; ELM

1. Introduction

In recent years, there has been a growing global interest in Corporate Social Respon-
sibility (CSR), sustainability, ESG, and risk asset management issues [1]. ESG ratings of
companies have become crucial indicators for assessing their sustainability capabilities [2].
A study by PwC [3] revealed that the impact of ESG ratings on investment strategies
is increasing, making it a key factor influencing investment decisions. As a prominent
economic powerhouse in Asia, Taiwan holds a significant position in the global market.
Compared with other economic regions, Taiwan’s economy is relatively concentrated,
highly technology-driven, and operates in a shallow market structure, which sets it apart
from the diversified economic structures of larger economic regions. Additionally, the
limited circulation of stocks in the Taiwanese market, higher costs, and limited funding
sources for companies impose constraints on their development. Due to these factors,
Taiwanese investors face greater liquidity, price volatility, and information asymmetry risks
compared with investors in other economic regions. Therefore, for Taiwanese investors, ef-
fectively measuring a company’s ESG performance and evaluating its sustainable business
capabilities hold significant importance [4].

The ESG score and sustainability rating are derived from various factors encompassing
environmental, social, governance, and economic-related aspects [5].

The issue of the accuracy of ESG scores and sustainability ratings is a subject frequently
discussed in the literature. Shen et al. [6] conducted an evaluation of the sustainability
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ratings of China’s construction industry infrastructure projects using Key Assessment
Indicators (KAIs). Meanwhile, Dong et al. [7] employed the Data Envelopment Analy-
sis (DEA) method to assess the sustainability performance of 157 Chinese cities’ water
infrastructure. The DEA approach calculates a unified sustainability score by considering
seven inputs and five outputs that represent the economic, resource, and environmental
dimensions of sustainability. In the realm of water resource management, Koop et al. [8]
applied the geometric aggregation method to enhance the lowest-scoring indicators in
integrated water resources management. In studies pertaining to public health, Gore,
Ross, et al. [9] and Zamponi, Virginia et al. [10] employed statistical modeling techniques
to assess various aspects of public health. Typically, rating agencies determine the ESG or
sustainability scores based on the information disclosed by the companies themselves [11].
However, concerns about the accuracy of ESG scores have been widespread due to issues
such as the absence of standardized criteria, the credibility of information sources, lack
of transparency, and potential conflicts of interest, all of which can introduce biases and
trade-offs [12]. Abhayawansa and Tyagi [13] proposed that a lack of standardization and
credibility could be attributed to the opacity of scoring mechanisms employed by different
ESG rating agencies and the lack of comparability among their rating standards. They also
presented evidence showing a weak correlation between ESG ratings issued by different
agencies. Different agencies devise their own scoring systems and criteria for calculating
ESG scores, and they may develop different rating weights based on industries and na-
tional locations, resulting in significant discrepancies in scores for the same company across
different rating agencies. Liu M. also pointed out that the average correlation between ESG
ratings from different agencies ranged from 0.3 to 0.66 [14]. With dozens of ESG rating
agencies internationally and over 600 sustainability ratings currently available, such as
Bloomberg, MSCI, S&P SAM, ISS ESG, etc., the lack of consistent standards and credibility
in ESG scores has become a subject of controversy [11,15–19]. The transparency of ESG
calculation methodologies is a concern as ESG calculations may be influenced by company
reports and related information disclosure, leading to potential information asymmetry
issues in ESG ratings [20]. The extent of subjectivity involved in the calculation methods
of different rating agencies remains largely unknown to the general investors, making the
actual calculation logic appear somewhat similar to a black-box model. Chen et al. [21] also
emphasized that the composition of ESG scores involves multiple dimensions, requiring
a comprehensive consideration of the interactions and impacts among these dimensions
to achieve accurate predictions. These complexities have contributed to public skepticism
regarding the transparency of ESG scores.

To clarify the logic behind ESG score calculations, many studies have focused on estab-
lishing statistical predictive models for ESG. Licari, J. et al. [22] utilized traditional linear
regression to predict ESG scores for over 19,000 companies across 96 countries/regions
from 2004 to 2020. However, they found the linear regression predictive performance unsat-
isfactory, with an r2 of only 31.13%. This phenomenon may be attributed to the interference
caused by the complex factors involved in the ESG rating process, which includes directly
engaging with companies, reviewing publicly disclosed information during the data collec-
tion process, and occasionally supplementing with alternative data to measure and assign
attribute weights within the assessment scope. There are significant gaps in coverage,
especially when it comes to smaller companies, less regulated industries, and emerging
markets. Consequently, applying traditional statistical tools for predictive ratings in such
a complex environment poses substantial challenges. For instance, Del Vitto et al. [23]
employed elementary regression models such as Ridge and Lasso regularization to forecast
the individual E, S, and G sustainability ratings of corporations. They underscored that
these models are classified as white-box algorithms, signifying their complete explicability.
Their underlying mechanisms are uncomplicated: the model’s output is computed via a
weighted summation of the attributes within each data sample. Consequently, the model’s
interpretation can be directly inferred from the weightings allocated to the variables within
the algorithm. Nevertheless, it is crucial to acknowledge that linear regression is vulnerable
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to overfitting when confronted with a substantial number of regressors (the features). Ridge
regression mitigates overfitting but elevates bias (while reducing variance). Conversely,
Lasso regression is designed to select features by driving coefficients toward zero through
its penalization term. Nonetheless, Lasso selects only one feature from a cluster of corre-
lated features, and this selection is arbitrary. This has a modest impact on the algorithm’s
predictive capacity but does affect its interpretability unless complemented by specialized
methodologies [24].

With the progression of AI technology, machine learning has emerged as a highly
promising approach in the realm of environmental, social, governance, and economic
analysis [23] and has been extensively researched. In the realm of economic forecasting,
Tehranian, K. [25] employed various machine learning techniques such as Probit, Logit,
Elastic Net, RF, Gradient Boosting, and Neural Networks to predict economic recessions in
the United States. Concerning health issues and disease diagnosis, M. Maydanchi et al. [26]
compared six classification models, including AdaBoost, RF, Decision Trees, K-Nearest
Neighbors (KNN), Naïve Bayes, and Perceptron, to predict CVD symptoms. In the field of
engineering, Ghasemi, A., Naser M.Z. [27] utilized multiple linear regression and two AI
algorithms (RF and XGBoost) to develop a working model for predicting the properties
of 3D concrete mixtures capable of withstanding pressure. In the realm of networking
technology, Yonghong Wang et al. [28] employed machine learning to classify SDN traffic
into attack or normal traffic. They used feature selection methods such as Fisher scoring
and Wrapper for fine-grained detection. Subsequently, they employed Renyi’s rule-based
detection method using a joint entropy algorithm to detect DDoS attacks on SDN controllers.
All these studies addressed complex nonlinear problems using machine learning or deep
learning and extended hidden layers based on the complexity of the problem, which is
challenging to achieve with traditional statistical methods.

In general, machine learning techniques offer the advantage of reducing human effort
in monitoring extensive amounts of information related to various ESG and sustainability
issues [29] while ensuring the provision of consistent and real-time reporting streams [30–33].

Regression trees, random forest (RF), gradient boosting machines, artificial neural
networks (ANN), support vector machines (SVM), eXtreme Gradient Boosting (XGBoost),
and Extreme Learning Machines (ELM) have demonstrated their capacity to uncover
intricate patterns and hidden relationships that may be difficult or even impossible to
identify using linear analysis methods. Additionally, in the presence of multicollinearity,
they outperform linear regression and enable precise classification of observations [12].
Valeria D’Amato [34] explored the importance of various financial fundamentals when
predicting ESG ratings using generalized linear models and RF. However, their study
was constrained to a limited set of financial fundamentals, including the current assets
to current liabilities, sales-to-assets ratio, net income to sales, earnings before interest
and tax to sales, price-to-earnings ratio, dividend yields, and debt-to-total assets ratio.
Similarly, Fernando García et al. [35] conducted a comparable study on select financial
fundamentals of certain companies. These included earnings per share, returns on assets,
debt-to-equity ratio, market capitalization, trading volumes, and stock beta. They used a
rough set model to predict ESG ratings for European companies. Tim Krappel et al. [36]
introduced a heterogeneous ensemble model, incorporating feedforward neural networks,
CatBoost [37], and XGBoost [38] models to predict ESG ratings using fundamental financial
data for companies. Although these studies have provided evidence of the utility of
financial fundamentals in predicting ESG ratings, they either focused on a limited subset of
financial indicators, which may not be sufficient for the task, or applied machine learning
techniques to a broad array of financial fundamentals without investigating the importance
or statistical significance of these individual financial fundamentals.

Regarding the comparison of ESG classification prediction models, SVM, and tree-
based ensembles have shown promising results in credit rating prediction [39–41]. Previ-
ous studies have also compared SVM and RF. Teoh T-T, et al. [42] found that both SVM
and RF performed well in different industries, such as Basic Materials and Consumer
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Cyclicals. Lachlan M. [43] used RF, SVM, and logistic regression (LR) models to predict
ESG performance for US and global companies, RF showed the highest classification pre-
dictability compared with conventional, sophisticated, and boosted tree-based methods.
D’Amato et al. [12] used RF to assess how structural data (balance sheet items) might im-
pact ESG scores assigned to regularly traded stocks. The results indicated that RF effectively
reduced prediction errors while monitoring variance. Raza H et al. [44] employed various
supervised machine learning techniques, including K Nearest Neighbors (KNN), polyno-
mial regression, naive Bayes, random forest, artificial neural networks (ANN), and SVM
(RBF), to predict ESG scores for non-financial companies in the UK, US, and Germany.
Based on the MAE performance, SVM outperformed RF. The results imply that SVM and
RF are appropriate models for ESG prediction; however, their suitability can be context-
dependent. Krappel, T et al. [36] utilized the XGBoost model to predict ESG ratings, and
they found that XGBoost provided accurate and reliable predictions. Agosto, A. [45] com-
pared the applicability of different models, including XGBoost and RF, using ESG scores
for 1382 European companies. The results showed that both XGBoost and RF exhibited
good predictive accuracy, with XGBoost outperforming RF in terms of AUROC (area under
the ROC curve) and AUPRC (area under the precision and recall curve).

Overall, different machine learning models have their respective advantages and
limitations. RF exhibits benefits in high accuracy, resistance to overfitting, applicability
to high-dimensional and large datasets, and feature importance estimation. However, it
has drawbacks in terms of high computational cost and lower interpretability [46]. SVM
demonstrates high accuracy and suitability for high-dimensional data, but it faces chal-
lenges in computational efficiency and parameter tuning [47]. XGBoost offers advantages
in high accuracy and efficiency but has complexities in parameter tuning, requiring caution
against overfitting risks [48]. Additionally, the emerging ELM model has gained popularity
due to its high learning efficiency and strong generalization capabilities, widely applied in
classification, regression, clustering, and feature learning tasks [49]. However, there are
limited literature studies on whether ELM is suitable for predicting ESG scores, making it a
worthwhile focus of discussion in this study.

Furthermore, in recent years, the outbreak of the COVID-19 pandemic has led to lock-
downs and restrictions on public activities in various countries, significantly impacting the
economy and financial markets. Instances of stock market crashes, plummeting commodity
prices, and global demand declines have increased uncertainties for investors. Burdekin,
R. C., and Harrison, S. [50] pointed out that the pandemic-induced financial and investor
sentiment fluctuations may also cause fluctuations in ESG scores. Rubbaniy et al. [51]
utilize a wavelet coherence approach to assess the co-movement between the daily global
COVID-19 fear index (GFI) and the returns of ESG indices from 5 February 2020 to 18
January 2021. Their findings reveal a robust and positive co-movement between the GFI
and ESG indice202s throughout the pandemic, providing evidence of the safe-haven char-
acteristics of ESG indices during the COVID-19 pandemic. Therefore, one of the topics of
interest in this research study is how the accuracy of machine learning models for ESG score
prediction is affected when the market faces noise and disruptions due to the pandemic.

In summary, existing research on ESG score prediction has mainly focused on Euro-
pean and American markets, with limited studies on Taiwan’s highly technology-driven
and shallow-depth market. This study aims to fill this research gap by focusing on Tai-
wanese companies and exploring the accuracy of machine learning models in predicting
ESG scores. Additionally, the study hoped to expand beyond the use of financial indicators
alone and incorporate corporate governance-related indicators for a more comprehensive
and objective evaluation in line with the essence of ESG. Furthermore, the research will
assess whether the abnormal fluctuations caused by the COVID-19 pandemic impact the
predictive accuracy of these models. The research objectives can be summarized as follows:
(1) Develop robust machine learning models for predicting the Taiwan ESG score in non-
financial industries using historical ESG data, financial indicators (e.g., ROE and ROA),
and corporate governance data. (2) Compare the predictive performance of four machine
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learning models, namely RF, SVM, ELM, and XGBoost, for ESG scores. By evaluating
the accuracy and other relevant metrics of different models, identify the most suitable
model for ESG rating prediction. (3) Assess whether market changes during the COVID-19
pandemic will impact the accuracy of ESG machine learning models and evaluate the
applicability of these models. (4) Provide insights for investment decision-making: The
results of this study can help investors to comprehensively assess a company’s sustainable
development capabilities and long-term value, enabling them to make more informed
investment decisions. It can also assist companies in understanding their strengths and
weaknesses in ESG aspects, enhancing sustainability and competitiveness, and meeting the
needs of investors and consumers.

2. Materials and Methods
2.1. Variables

The dependent variable in this study is the ESG score of listed and over-the-counter
non-financial companies in Taiwan that comply with ESG standards. The data source
is the Taiwan ESG Sustainable Development Index (TESG) developed by the Taiwan
Economic Journal (TEJ), covering the period from 2018 to 2021. TEJ, established in 1990, is
currently one of Taiwan’s largest financial and economic databases, providing information
essential for fundamental analysis of securities and financial markets. It specializes in
selling domestic and foreign securities, financial, industry, and macroeconomic data and
offers consultation services in economic analysis, model design, and database construction.
The TESG Sustainable Development Index includes a total of 16 issues under the three
pillars of ESG, with over 60 variables. In addition to variables primarily included in
corporate sustainability reports, it also encompasses information from annual shareholder
meetings, public information such as labor laws, ISO or GMP certifications of products,
and negative news related to social responsibility, aiming to supplement information gaps
from companies without disclosed sustainability reports. The TESG scores are announced
within one month of the public release of corporate sustainability reports. TEJ incorporates
the above variables into the internationally recognized ESG framework authorized by
the Sustainability Accounting Standards Board (SASB) to generate Taiwan-specific TESG
indicators, representing the annual ESG rating results. This study collected all variable
data from the TEJ+ database. Specifically, ESG data were extracted from the TEJ ESG
database module.

As for the independent variables, this study collected the relevant literature [52–55] to
identify potential variables that may influence ESG scores. Among these, financial data
for companies were obtained from the “TEJ Company” module and the “TEJ Finance”
module, while corporate governance data were sourced from the Taiwan CSR module. The
researchers then used factor analysis to select appropriate variables as input indicators
for the research model, extracting factors with eigenvalues greater than 1 [56]. The re-
searchers further applied the Varimax rotation method to maximize variance and eliminate
irrelevant variables to improve the predictive accuracy of the model. In total, 27 potential
independent variables were selected from the TEJ database, including financial indicators
(11 items) and corporate governance indicators (13 items) of listed and over-the-counter
non-financial companies in Taiwan that complied with ESG standards from 2018 to 2021.
These 27 indicators had a cumulative explanatory load of 76.605%. The suitability test
resulted in a Kaiser-Meyer-Olkin (KMO) value of 0.527, exceeding the minimum acceptable
value of 0.5 suggested by Kaiser (1974) for factor analysis [57]. Bartlett’s test of sphericity
yielded an approximate chi-square value of 53,259.744 with a p-value of 0.000, indicating
that the input variable data of these 27 indicators are suitable for subsequent analysis. The
detailed list of variable indicators is shown in Table 1, and the research variables and the
research framework using machine learning models are illustrated in Figure 1.
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Table 1. Independent Variables.

Category Variables

ESG Indicators
Environmental Aspect Score
Social Aspect Score
Corporate Governance Aspect Score

Financial Indicators

Long-term capital adequacy ratio (%)
Current ratio (%)
Quick ratio (%)
Fixed assets turnover ratio
Return on Operating Assets (%)
ROA(A) before tax and interest
ROE(A) after tax
Operating profit to paid-up capital ratio (%)
Pre-tax net income to paid-up capital ratio (%)
Net profit margin after tax (%)
Sustainable EPS

Corporate Governance Indicators

Stock Earnings Deviation (%)
Stock Seats Deviation Ratio (%)
Earnings Seats Deviation Ratio (%)
Seats Earnings Deviation Multiplier
Total Shares Held by Directors
Shares Held by Directors’ Relatives
Shares Held by Supervisors
Supervisor Ownership Ratio (%)
Shares Held by Managers
Shares Held by Managers’ Relatives
Manager Pledged Shares
Number of Regular Directors
Number of Independent Supervisors
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Figure 1. Research Framework.

In addition, to investigate whether the prediction of ESG scores would be affected
by the abnormal market volatility during the pandemic, this study divides data into
three periods for comparison and analysis: the pre-pandemic period (2018–2019), the
pandemic period (2020–2021), and the entire period (2018–2021). Data processing involves
the following seven steps, as illustrated in Figure 2:

1. Data Preprocessing: If there are any missing data or other reasons that make it
impossible to obtain trading information in the TEJ database, the entire dataset is
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excluded. After removing the missing values, a total of 5829 data points were used in
this study (see Table 2).

2. Model Building: This study utilizes the ESG scores of listed and over-the-counter
non-financial companies in Taiwan that comply with ESG standards from 2018 to
2021 to establish four commonly used machine learning models for predicting TESG
scores. The models include random forest (RF), Elaboration Likelihood Model (ELM),
support vector machine (SVM), and eXtreme Gradient Boosting (XGBoost).

3. Setting Training and Testing Parameters: These data are split into a 70–30 ratio, where
70% is used for the training phase and 30% for the testing phase.

4. Normalization of Data: The variables are normalized to a range between 0 and 1.
The normalization process is performed using the maximum (Xmax) and minimum
(Xmin) values of these sampled data within a specific range. Depending on whether
the variable’s initial value is greater than or equal to 0 or has negative values, two
different formulas, (1) and (2), are utilized to obtain the normalized value (Xnom).
These normalized values are input variable data for the deep learning models in
this study.
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Table 2. Number of datapoints by different TESG Categories.

TESG Category Pre-Pandemic Pandemic Entire Period

Chemical Industry 64 95 159
Cultural and Creative Industry 17 86 103
Cement Industry 14 14 28
Semiconductor 148 381 529
Biotechnology and Medical Care 100 390 490
Optoelectronics Industry 103 301 404
Automobile Industry 32 69 101
Other Electronic Industry 89 194 283
Oil, Electricity, and Gas Industry 8 28 36
Building Materials and Construction 108 164 272
Glass and Ceramics 8 10 18
Food Industry 49 61 110
Textile and Fiber Industry 94 110 204
Shipping Industry 37 62 99
Communication and Networking Industry 87 198 285
Paper Industry 12 13 25
Trade and Department Stores 35 83 118
Plastic Industry 42 52 94
Information Services Industry 38 103 141
Agricultural Technology 3 16 19
E-commerce 3 22 25
Electronic Retailing 43 74 117
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Table 2. Cont.

TESG Category Pre-Pandemic Pandemic Entire Period

Electronic Components 230 449 679
Computers and Peripherals 122 235 357
Electrical Equipment and Cables 30 38 68
Electrical Machinery 110 227 337
Rubber Industry 21 25 46
Steel Industry 68 101 169
Tourism Industry 26 109 135
Electronic Industry 0 4 4
Others 62 312 374

If all variable initial values are greater than or equal to 0:

Xnom =
X− Xmin

Xmax − Xmin
(1)

If there are negative initial values in the variable:

Xnom =
X

max|X| (2)

(where the denominator is the maximum value of X after taking its absolute value)

5. Train the Model.
6. Validate the Predictions.
7. Model Comparison: Compare RMSE, MAE, MAPE, and r2 of the different models

from step 6).

2.2. Machine Learning Models

This study selects four machine learning models that are potentially applicable for
predicting ESG scores: SVM, ELM, RF, and XGBoost, and describes each of them as follows:

2.2.1. SVM

SVM is a supervised learning tool proposed by Cortes et al. [58]. It constructs a
collection of classification hyperplanes in high-dimensional or infinite-dimensional space.
The fundamental concept is quite simple: to find a decision boundary that maximizes the
margins between two classes, allowing for perfect separation of the classes. The formula
for handling non-linear problems in SVM is as follows (3):

f (x) = sign

(
n

∑
i=1,j=1

αiyi ϕxi ϕxj + b
)

(3)

where ϕxi and ϕxj are the mapping functions, and the formula can be rewritten using the
kernel function as follows (4):

f (x) = sign

(
n

∑
i=1,j=1

αiyiK
(
xi, yj

)
+b) (4)

Commonly used kernel functions include the linear kernel, polynomial kernel, and ra-
dial basis function (RBF) kernel, among others. In this study, we adopt the most commonly
used RBF kernel (5):

K
(
xi, yj

)
= exp(

∥∥xixj
∥∥2

2σ2 ) (5)
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2.2.2. ELM

ELM is a feedforward neural network proposed by Professor Guang-Bin Huang of
Nanyang Technological University, Singapore. Unlike traditional artificial neural networks
(e.g., BPN) that require setting a large number of network training parameters, ELM
only requires the setting of the network structure without the need for other parameters.
Therefore, it is known for its simplicity and ease of use [32]. In this study, we adopt the
single-layer feedforward neural network (SLFN) structure for ELM, which consists of an
input layer, a hidden layer, and an output layer. The output function FL of the hidden layer
is defined as (6):

fL =
l

∑
i=1

βihi(x) = h(x)β (6)

In the equation, x represents the input variable, and there is one hidden layer node. β
is the output weight, and h(x) is the activation function, which maps data from the input
layer to the feature space of ELM. The formula is shown as (Equation (7)):

h(x) = G(ai, bi, x) (7)

In the equation, ai and bi are feature mapping parameters, also known as node param-
eters. Moreover, ai is the input weight (input weights). This study adopts the common
Sigmoid function, as shown in (8):

G(ai, bi, x) =
1

1 + exp(a·x + b)
(8)

The objective of learning in a single-hidden-layer neural network is to minimize the
output error, and through learning and training, we can obtain the values of β that result in
the minimum and unique error.

2.2.3. RF

RF was proposed by Breiman [59]. It utilizes the principle of ensemble learning,
combining multiple decision trees to construct a more robust learning model, thus reducing
the problem of overfitting and improving prediction accuracy as a machine learning method.
Breiman defined RF as a set of tree-like structures forming a classifier, as shown in (9):

{h(x, k), k = 1, . . .} (9)

where {k} is a set of independently and identically distributed random vectors, and the
convergence of RF is given by a combination of classifiers as shown in (10):

h1(x), h2(x), . . . , hk(x) (10)

Randomly creating the training set from the distributions of random vectors X and Y,
the margin function is defined as (11):

mg(X, Y) = αvk I(hk(X) = Y)−max
j 6=Y

avkαvk I(hk(X) = j) (11)

where I is the indicator function, which is used to correctly classify X and Y. The larger
the margin function, the higher the correct classification score. The generalization error is
defined as (12):

PE* = PX,Y(mg(X, Y) < 0) (12)

The X and Y in this context represent the probabilities. The superiority or inferiority
of the RF model is usually determined by the following factors: (1) The more vigorous
the growth of each tree, the better the overall performance of the forest. (2) The better the
independence and the worse the correlation between each tree in the forest, the better the
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classification performance. (3) The number of decision trees is the only parameter for RF
execution and the key determining factor for the RF model with the minimum error.

2.2.4. XGBoost

XGBoost is a supervised machine-learning model similar to RF. In XGBoost, decision
trees not only randomly select features but also reference the parameters of the previous tree
as a basis for building the new decision tree. This study adopts the framework proposed
by Chen and Guestrin [38], where the objective function consists of a training loss function
and a regularization term. Let xi be the i th sample and yi be the predicted value for the
i th sample in the dataset D = (xi, yi|i = 1, 2, . . . , n), with k decision trees applied to the
training model. The formula for ŷi is given by (13):

ŷi =
k

∑
k=1

fk(xi), fk ∈ F (13)

where F is the collection of decision trees and fk represents the k th decision tree within the
set of trees. The result of the t th iteration is given by (14):

ŷt
i = ŷt−1

i + ft(xi) (14)

The objective function is given by (15):

J( ft) =
n

∑
i=1

L
(

yi, ŷt−1
i + ft(xi)

)
+ Ω( ft) (15)

where L is the loss function, and Ω( ft) represents the model complexity. The formula is as
follows (16):

Ω( ft) = γ1·Tt + γ2
1
2

T

∑
j=1

ω2
j (16)

where Tt and ω represent the leaf nodes and their corresponding weights, and γ1 and γ2
are the regularization coefficients for L1 and L2 regularization, respectively. By applying
the second-order Taylor expansion and simplifying the equation, we obtain the following
Formula (17):

J( ft) =
n

∑
i=1

L
(

yi, ŷt−1
i + gi f t(xi) +

1
2

hi f 2
t (xi)

)
+ Ω( ft) (17)

where gi =
∂L(yi ,ŷ

t−1
i )

∂ŷt−1
i

; hi =
∂2L(yi ,ŷ

t−1
i )

∂ŷt−1
i

after the calculations, the objective function is as follows (18):

J( ft) = ∑n
i=1 L

(
giωq(xi)

+
1
2

h
i
ω2

q(xi)

)
+ γT + λ

1
2∑T

j=1 ω2
j (18)

The smaller the value of J( ft), the better the structure of the tree.

2.3. Evaluation Index

The evaluation indices used in this study to measure the performance of the trained
models are RMSE, MAPE, and MAE. The formulas are as follows (19–21):

RMSE =

√
1
n
×

n

∑
i=1

(
Ŷi −Yi

)2 (19)
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MAPE =
100%

n

n

∑
i=1

∣∣∣∣∣ Ŷi −Yi
Yi

∣∣∣∣∣ (20)

MAE =
∑
∣∣Ŷi −Yi

∣∣
n

(21)

Yi: Actual value
Ŷi: Predicted output value from the network
n: Number of test examples
The above indicators, RMSE and MAPE, are commonly used to evaluate model

accuracy. RMSE is useful for comparing the prediction errors of different models for
specific variables, but it is sensitive to the scale of these data. On the other hand, MAPE is a
relative measure that assesses the difference between predicted values and actual values
without being influenced by the unit of measurement. Generally, a MAPE% value less than
10 is considered highly accurate, between 10 to 20 is considered good accuracy, between 20
to 50 is considered reasonable accuracy, and values above 50 are considered inaccurate [60].
MAE, on the other hand, represents the average absolute difference between the target
values and predicted values. It measures the average length of prediction errors, regardless
of their direction, and its values range from 0 to positive infinity. In addition, we also use
the r2 to evaluate the model. The r2 value, also known as the “coefficient of determination”
or “goodness of fit”, can be understood as the percentage of reduced error (PRE) and reflects
the extent to which the predicted values explain the actual values. Its value typically ranges
between 0 and 1, where an r2 closer to 1 indicates that the predicted values are closer to the
true values.

3. Results
3.1. Model Parameters

This study implemented the ELM, RF, and SVM models using Matlab 2021 and the
XGBoost model using Python 3.10. The ELM model is a single hidden layer neural network
that offers advantages over traditional BPN models by requiring fewer parameters and
having strong learning capabilities. The parameters for the ELM model were set as follows:
one hidden layer with an optimal number of 30 hidden nodes determined through trial and
error and the commonly used Sigmoid activation function as the feature mapping function.
The remaining parameters were set to their default values.

For the RF classification model, the number of decision trees was set to 20 using the
TreeBagger function. RF was specified to perform regression, and the feature selection
method was set to ‘curvature’ to select split points based on feature curvature. The other
parameters were set to their default values.

In the SVM model, the fitrsvm function in Matlab was used, and the linear kernel func-
tion was specified to perform dot product operations in the feature space. The remaining
parameters were set to their default values.

Due to the unavailability of XGBoost’s Toolbox in Matlab, the XGBoost model was
implemented in Python. The booster type was specified as ‘gbtree,’ the learning rate was
set to 0.1, and max_delta_step was set to 5, limiting the maximum increment of weight
updates to aid convergence. The number of trees (iterations) was set to 500, and the
parallel construction of trees was set to 1, indicating the use of a single tree. Regarding the
parameter settings for the four machine learning models in this study are listed in Table 3.
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Table 3. Parameter Settings for Each Model in the Study.

ELM

Hidden Layer 1 layer
Hidden Layer Nodes 30
Feature Mapping Function Sigmoid Function
Other Parameters Default settings for the program

RF

Number of decision trees 20
Decision Tree Function TreeBagger Function
Feature Splitting Method Curvature
Other Parameters Default settings for the program

SVM

Feature Function Linear Kernel Function
Other parameters Default settings for the program

XGBoost

Booster Type gbtree
Learning Rate 0.1
Max_delta_step 5
Number of Iterations 500
Parallel Tree Construction 1

3.2. Empirical Prediction Results

As previously mentioned, these empirical data were divided into training and testing
samples in a 7:3 ratio. Additionally, due to the impact of the COVID-19 pandemic, the
number of samples used for each empirical model is shown in Table 4:

Table 4. Independent Variables.

Period Training Sample Testing Sample

Entire Period (2018–2021) 4080 1749
Pre-Pandemic (2018–2019) 1262 541
Pandemic (2020–2021) 2818 1208

After conducting the empirical analysis using both MatLab and Python programs,
the first step is to conduct a t-test to assess the statistical significance of the four machine-
learning models in this study.

To further validate the effectiveness of the four machine learning models employed
in this study for predicting ESG scores, we conducted a one-sample t-test for statistical
significance using empirical data from 2018–2021. This was aimed at assessing how closely
each model’s predictions align with target values. Under a 95% two-tailed confidence level,
the null hypothesis (H0) assumes no significant difference between the predicted and target
values (p-value greater than 0.05), whereas the alternative hypothesis (H1) posits that there
is a significant difference (p-value less than 0.05). If H0 is not rejected, it implies that the
empirical findings of this study indicate no significant discrepancies between the predicted
and target values.

According to Table 5, it can be observed that at a 95% two-tailed confidence level, all
p-values are greater than 0.05. In other words, these models not only demonstrate effec-
tive learning outcomes but also exhibit significant predictive capabilities in the statistical
significance tests. Based on the results of the statistical tests, it can be concluded that the
predictive data generated by the four machine learning models employed in this study
closely align with the target data.
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Table 5. Statistical Significance Test Results-Entire Period (2018–2021).

Predicted Values Mean SD t
p-Value

/Significance
(Two-Tailed)

ELM
Training 54.2511 8.4078 0.007 0.995

Testing 52.8998 8.7541 −0.468 0.640

SVM
Training 54.2305 8.4123 −0.149 0.881

Testing 52.9746 8.6652 −0.102 0.919

RF
Training 54.2468 8.0846 −0.027 0.978

Testing 53.2124 7.9197 1.145 0.252

XGBoost
Training 54.2502 8.4551 0.000 1.000

Testing 53.0388 8.5801 0.210 0.833

This study conducted a single-sample t-test to assess the statistical significance of four
machine-learning models during the pandemic period (2018–2021). After performing the
statistical comparisons, it was found that none of the four machine-learning models rejected
the null hypothesis (H0), indicating that there were no significant differences between their
predicted values and the target values. In other words, the predictions of all four models
were similar to the actual values, demonstrating good learning performance. Furthermore,
by further comparing the models using metrics such as MAE, RMSE, MAPE, and r-square
values, the relevant training and testing results are presented in Table 6:

Table 6. Training and Testing Empirical Results.

Period Index Stage ELM SVM RF XGBoost

Entire Period
(2018–2021)

RMSE
Training 0.9022 0.8364 0.9344 0.1854
Testing 1.1411 0.7985 1.5602 0.8802

MAE
Training 0.6085 0.5505 0.6269 0.1365
Testing 0.6100 0.5309 1.1178 0.6359

MAPE
Training 1.1183 1.0110 1.1783 0.2542
Testing 1.1591 1.0053 2.1923 1.2156

r2 Training 0.9886 0.9902 0.9878 0.9995
Testing 0.9828 0.9916 0.9678 0.9898

Pre-Pandemic
(2018–2019)

RMSE
Training 0.8995 0.8250 1.2095 0.0517
Testing 0.9003 0.8104 2.1609 0.9995

MAE
Training 0.5914 0.5354 0.8391 0.0364
Testing 0.5967 0.5193 1.5345 0.7035

MAPE
Training 1.0821 0.9802 1.5655 0.0679
Testing 1.0622 0.9333 2.7273 1.2584

r2 Training 0.9868 0.9889 0.9762 0.9999
Testing 0.9898 0.9918 0.9414 0.9995

Pandemic
(2020–2021)

RMSE
Training 0.9036 0.8089 1.0106 0.1258
Testing 1.1151 0.8827 1.6205 0.8745

MAE
Training 0.6120 0.5400 0.6868 0.0914
Testing 0.6722 0.5702 1.1655 0.6331

MAPE
Training 1.1380 1.0033 1.2979 0.1716
Testing 1.2721 1.0794 2.2705 1.2166

r2 Training 0.9895 0.9916 0.9868 0.9998
Testing 0.9817 0.9885 0.9613 0.9887
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Based on Table 6, it can be observed that all four ML models utilized in this study,
regardless of the entire four-year period or the periods during and outside of the pandemic,
achieved r2 above 0.95 when the RMSE, MAE, and MAPE values converged. This indicates
that the ML models effectively predicted the TESG scores with high accuracy during
the research period. Among them, the XGBoost and SVM models demonstrated better
predictive performance in most cases. Figures 3 and 4 compare the r2 of the four different
ML models in both the training and testing samples, further demonstrating their excellent
predictive capabilities, especially for the XGBoost model, which performed the best. The
empirical results show that all four ML models applied in this study effectively learned
and predicted the TESG scores mechanism.
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The line charts (Figure 5) below display the actual values and predicted values of ELM,
RF, SVM, and XGBoost models for both the training and testing datasets over the entire
period from 2018 to 2021. Due to the large sample size, only the first 300 data points were
selected for observation.
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The results demonstrate that all four models (ELM, RF, SVM, and XGBoost) generated
predictions that closely matched the actual values for both the training and testing datasets.
The close alignment between the predicted values and actual values indicates that the four
models performed well in capturing the underlying patterns and trends in these data. This
suggests that the models have a strong ability to accurately predict the TESG scores during
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the period from 2018 to 2021, both for data used during training and for previously unseen
data used during testing.

4. Discussion

In recent years, environmental protection and social responsibility have been receiv-
ing significant attention, and ESG (Environmental, Social, and Governance) sustainable
development goals have become a global consensus. Relevant organizations in Taiwan
have also followed suit. The Taiwan Economic Journal (TEJ), a reputable company in
Taiwan that regularly publishes important financial and application analysis information,
has developed the TESG (Taiwan ESG) sustainable development indicators for Taiwanese
companies. It aims to evaluate and compare the sustainability performance of listed and
over-the-counter companies in Taiwan, enabling relevant decision-makers such as company
management teams, stock investors, and government agencies to effectively manage or
assess the companies’ sustainability performance through a professional and reasonable
evaluation mechanism. Therefore, this research aims to utilize four machine learning
models, ELM, RF, SVM, and XGBoost, to learn and predict the TESG evaluation model
developed by the TEJ. Finally, this study compares the predictive performance of these four
models using RMSE, MAE, MAPE, and r2, and the conclusions are as follows:

1. Overall, all four machine learning models, whether during the pandemic or non-
pandemic periods or for the entire period from 2018 to 2021, have an r2 value greater
than 0.975 in the training stage and greater than 0.94 in the testing stage. Generally, an
r2 value ranges from 0 to 1, where an r2 value greater than 0.75 indicates a well-fitted
model with high interpretability, while an r2 value less than 0.5 indicates poor model
fitting. The results of this study show that all four models have good predictive
capabilities for ESG scores in both the training and testing stages. Especially for ELM,
XGBoost, and SVM models, their testing stage r2 values are all above 0.98, indicating
excellent performance. Therefore, it can be inferred that, in terms of supervised
learning models, machine learning is faster and more suitable for predicting complex
problems than traditional mathematical models. For predicting ESG scores, machine
learning is highly suitable and effective.

2. Regarding ESG prediction, the accuracy is consistently high, regardless of whether
during the pandemic or non-pandemic periods, with no significant differences. In
the testing stage, ELM and SVM show better predictive performance during non-
pandemic periods, while RF performs better during pandemic periods. As for XG-
Boost, although its r2 value during non-pandemic periods is better, the RMSE, MAPE,
and MAE metrics show the opposite result. Although the differences are not signif-
icant, the inconsistent performance among different metrics still warrants further
research and investigation. Therefore, this study concludes that the predictive perfor-
mance of RF and XGBoost models is inferior to that of ELM and SVM models.

3. While the extensive and widespread use of artificial intelligence and machine learning
has become a trend in recent years, challenges such as overfitting and the “black box”
nature of learning algorithms still exist. Specifically, the ELM model’s limitation lies
in its random initialization of input weights and biases, making it effective only for
simple functions and small labeled datasets. The SVM model also encounters similar
issues, including a tendency to overfit, limitations in handling large samples, and
complex clustering problems. Future research could explore the integration of genetic
algorithms in the preliminary training phase to enhance and refine the parameter
optimization processes for ELMs and SVMs.

4. Since the outbreak of COVID-19 in 2020, global attention to sustainability issues
has become more intense than ever. The rise in ESG awareness poses challenges
to traditional business models, impacting various aspects such as economic factors
(investment trends in financial markets), social considerations (expectations from
stakeholders such as investors and the general public for increased focus on sus-
tainability), technological advancements (sustainable innovation in fields such as
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environmental protection and carbon reduction), environmental considerations (in-
corporating environmental factors into supply chain planning), as well as legal and
political aspects. While this study mainly examines the correlation between ESG
scores and financial performance and corporate governance, future research could
consider incorporating technical, social, and policy-related dimensions to strengthen
the overall ESG rating criteria, thereby improving the comprehensiveness of ESG
evaluation mechanisms.
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