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Abstract: This study aims to predict vital soil physical properties, including clay, sand, and silt, which
are essential for agricultural management and environmental protection. Precision distribution of soil
texture is crucial for effective land resource management and precision agriculture. To achieve this,
we propose an innovative approach that combines Geospatial Artificial Intelligence (GeoAI) with
the fusion of satellite imagery to predict soil physical properties. We collected 317 soil samples from
Iran’s Golestan province for dependent data. The independent dataset encompasses 14 parameters
from Landsat-8 satellite images, seven topographic parameters from the Shuttle Radar Topography
Mission (SRTM) DEM, and two meteorological parameters. Using the Random Forest (RF) algorithm,
we conducted feature importance analysis. We employed a Convolutional Neural Network (CNN),
RF, and our hybrid CNN-RF model to predict soil properties, comparing their performance with
various metrics. This hybrid CNN-RF network combines the strengths of CNN networks and
the RF algorithm for improved soil texture prediction. The hybrid CNN-RF model demonstrated
superior performance across metrics, excelling in predicting sand (MSE: 0.00003%, RMSE: 0.006%),
silt (MSE: 0.00004%, RMSE: 0.006%), and clay (MSE: 0.00005%, RMSE: 0.007%). Moreover, the hybrid
model exhibited improved precision in predicting clay (R2: 0.995), sand (R2: 0.992), and silt (R2:
0.987), as indicated by the R2 index. The RF algorithm identified MRVBF, LST, and B7 as the most
influential parameters for clay, sand, and silt prediction, respectively, underscoring the significance of
remote sensing, topography, and climate. Our integrated GeoAI-satellite imagery approach provides
valuable tools for monitoring soil degradation, optimizing agricultural irrigation, and assessing soil
quality. This methodology has significant potential to advance precision agriculture and land resource
management practices.

Keywords: machine learning; deep learning soil texture; satellite imagery; geospatial analysis; land
resource management

1. Introduction

Soil is a crucial component of climate and ecosystem regulation and a fundamental
factor in producing 97% of human food [1]. Soil also significantly impacts agricultural
productivity, watershed protection, the environment, and wildlife [2]. Soil texture is
critical in soil erosion, water transfer, quality control, and productivity. The particle size
classification of soil texture includes sand (2–0.05 mm), silt (0.05–0.002 mm), and clay
(<0.002 mm) [3]. Among the significant challenges facing soil are soil erosion and rainfall
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erosion at different scales, which can alter soil properties, and particularly its texture [4].
Therefore, spatial prediction of soil properties is crucial for evaluating soil quality that
human use affects [2].

Remote sensing (RS) data are a globally available and abundant source of informa-
tion that is highly valuable in agriculture. Advances in RS technology have significantly
improved data processing at large spatial and temporal scales [4]. Aerial images and
digital image processing were previously used to monitor agricultural land. However,
RS now allows for reducing collected field data while improving estimates’ accuracy and
efficiency [5]. In conjunction with Geographic Information Systems (GIS), RS can increase
the efficiency of collection, storage, analysis, and modeling in terms of cost, time, and
human resources [6].

Additionally, GIS provides various tools for combining spatial information and en-
vironmental parameters to aid spatial prediction. It is also an effective analysis tool for
mapping, data management, and spatial analysis [7]. RS and GIS data can be used as
predictive variables for the spatial modeling of a phenomenon [8]. Recent years have seen
significant advancements in using spatial information systems and RS tools or features in
predicting soil properties [9].

Various statistical and geostatistical methods, such as kriging [10], multiple stepwise
regression [11], partial least squares regression [12], and cokriging [11], have been pre-
viously used to predict the spatial distribution of soil texture. However, these methods
heavily rely on statistical assumptions and become computationally intensive with in-
creasing data size [13]. Machine Learning (ML) algorithms have been applied to predict
soil texture properties to overcome these limitations. ML algorithms, such as regression
trees [14], Boosted Regression Trees (BRT) [15], Random Forest (RF) [16], and Support
Vector Machine (SVM) [15], have demonstrated their capability in mapping soil texture
properties. ML algorithms offer significant advantages in managing high-dimensional and
multi-variable data by discovering and identifying implicit relationships [17]. However,
despite their benefits, these algorithms are prone to problems such as providing only locally
optimal solutions, decreased performance when training time is extended, and difficulty
finding the optimal learning rate [18].

While some ML algorithms may exhibit saturation in performance as the data volume
increases, the relationship between data volume and algorithm performance is influenced
by various factors, including the heterogeneity and relevance of the data. In cases where
data are diverse and contain valuable information across different scales and contexts,
increasing data volume can enhance model performance. However, it is essential to
carefully curate and preprocess the data to ensure that the additional volume contributes
meaningfully to model training and generalization. Moreover, ML algorithms cannot detect
irrelevant and redundant information, which negatively impacts their performance [17].
While ML can handle complex data, excessive hidden layers can lead to issues such
as overfitting and vanishing gradients [19,20]. DL, with its strong predictive accuracy,
outperforms ML in spatial prediction. To tackle intricate soil challenges, sophisticated
algorithms such as Convolutional Neural Network (CNN), rooted in DL, are used to
boost accuracy and reduce uncertainty [21,22]. Additionally, DL networks offer automatic
information extraction capabilities not present in ML models [23]. Overall, DL addresses
the shortcomings of ML by providing enhanced performance, automatic feature extraction,
and improved scalability. Various researchers have utilized DL models to address soil
science problems such as predicting soil texture [24,25] and soil salinity [26] using the CNN
algorithm and predicting soil moisture using the LSTM algorithm [27]. While DL models
have several advantages, they are also associated with drawbacks such as computational
complexity [28] and overfitting [29]. Researchers have proposed combining DL models with
ML algorithms to overcome these limitations. In such combined networks, the hierarchical
nature of DL models enables them to automatically extract essential features from raw data,
while ML algorithms process regression operations more efficiently than DL models, thus
solving the disadvantages of each [30,31]. Despite the pros and cons associated with ML
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and DL models, the amalgamation of these two approaches has been widely employed
across various research domains. For instance, CNNs and RF combinations have been
applied in early earthquake warning systems [32] and poverty estimation using satellite
imagery [33].

Additionally, ML algorithms have been integrated with DL neural networks to estimate
flood potential [34], while CNNs have been combined with support vector machine, RF, and
logical regression to evaluate landslide susceptibility [35], leading to improved performance
and accuracy of results. Therefore, in this research, a combination of two algorithms, RF
and CNN, has been utilized to enhance the accuracy in the spatial prediction of soil texture
properties. In addition to overcoming overfitting, the RF algorithm exhibits acceptable
accuracy compared to other ML algorithms in spatial modeling [36]. On the other hand,
the CNN algorithm can automatically extract various features, particularly spatial features,
by processing information through convolution layers [37,38].

2. Materials and Methods
2.1. Study Area

The study area in the Golestan province of Iran spans from latitude 36◦56′ to 37◦35′

and from longitude 54◦58′ to 55◦42′ (Figure 1). Most of the region, including its central and
northwestern parts, is dedicated to wheat cultivation, while the southern and northeastern
areas are primarily used for grazing. The highest and lowest elevations in the area are
1722 and 0 meters above sea level, respectively. The average annual rainfall and air
temperature in the study area are 456 mm and 21 ◦C, respectively. Our study aims to
predict soil physical properties using a fusion of methods and data sources, focusing on the
unique challenges the study area poses. The target spatial resolution for our predictions is
30 × 30 m, which reflects the scale at which we aim to generate predictive maps.

2.2. Soil Samples

This study’s soil sample data consist of 317 samples (0–30 cm) collected by the Iran
Water and Soil Research Institute, including the three properties of clay, sand, and silt.
The sampling was conducted using the grid sampling method, with each grid covering
an area of 1 km2 and the precise coordinates of the soil samples determined using the
Global Positioning System (GPS). In total, 317 soil samples were distributed across various
landcover classes (Figure 2). Specifically, 73% of the samples belonged to agricultural land,
13% to range land, 9% to uncovered plain, 3% to residential areas, 1% to forest, and 1% to
water bodies. Out of all the soil samples, approximately 75% were situated at altitudes
below 200 m, while the remaining 25% were located at altitudes above 200 m.

The hydrometer method [39] was used to analyze soil texture properties, including
sand, silt, and clay. Table 1 presents the soil texture properties’ minimum, maximum, mean,
and standard deviation values.

Table 1. Statistical summary of soil texture.

Soil Texture Clay (%) Silt (%) Sand (%)

Minimum 0 0 0

Maximum 44 80 58

Mean 22.322 64.457 12.867

Standard deviation 6.920 9.249 9.115
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Figure 1. Study area location, distribution of soil samples, and meteorological stations.

Table 2 presents a summary of the statistical data for each type of soil texture after
removing any outliers from the dataset using Theil–Sen regression. The original dataset
consisting of 317 soil samples was reduced to 179, 144, and 155 samples for sand, silt, and
clay, respectively.

Table 2. Statistical summary of soil texture after outlier removal.

Soil Texture Clay (%) Silt (%) Sand (%)

Minimum 12 50 4

Maximum 36 76 26

Mean 22.182 65.74 11.056

Standard deviation 4.199 4.567 3.705



Sustainability 2023, 15, 14125 5 of 25
Sustainability 2023, 15, x FOR PEER REVIEW 5 of 26 
 

 
Figure 2. Landcover classes in the study area. 

2.3. Environmental Parameters 
Based on previous studies [22,40,41], expert opinions, and the specific conditions of 

the studied area, three groups of environmental parameters were used. These included 
RS variables such as Band 1 (B1) to Band 5 (B5) and Band 7 (B7) of Landsat-8, Brightness 
Index (BI), Coloration Index (CI), Clay Index (CLI), Enhanced Vegetation Index (EVI), 
Land Surface Temperature (LST), Hue Index (HI), Normalized Difference Vegetation In-
dex (NDVI), Redness Index (RI), and Saturation Index (SI). Climate variables such as air 
temperature and rainfall were also included, along with topographic variables including 
aspect, elevation, slope, duration radiation (DR), the Multi-Resolution index of Valley Bot-
tom Flatness (MRVBF), the Multi-Resolution Ridgetop Flatness index (MRRTF), and the 
Topographic Wetness Index (TWI). In this study, dependent parameters represent soil tex-
ture properties, which are treated as target variables, and independent parameters encom-
pass various environmental parameters (Table 3). 

Table 3. The parameters that impact the properties of soil texture. 

Soil Texture Effective Parameters Number  of Parameters 

Clay 
NDVI, Elevation, B7, B5, B1, B2, B3, B4, MRRTF, MRVBF, 

 Rainfall,  SI, CI, LST, Temp, Aspect, RI, TWI 18 

Silt 
NDVI, Elevation, B7, B5, B3, B4, MRRTF, MRVBF,  

SI, BI, CLI, CI, Slope, EVI, DR, Aspect, RI, TWI 18 

Sand 
NDVI, Elevation, B7, B5, B1, B2, B3, B4, Rainfall, SI, BI, CLI,  

MRRTF, MRVBF, CI, Slope, LST, DR 18 

2.3.1. RS Parameters 
For this study, 14 RS parameters were extracted from Landsat 8 satellite images, as 

listed in Table 4. The RS images utilized were collected between 1 January and 30 Decem-
ber 2020. The image locations correspond to path 162, row 34, path 162, row 35, and path 

Figure 2. Landcover classes in the study area.

2.3. Environmental Parameters

Based on previous studies [22,40,41], expert opinions, and the specific conditions of
the studied area, three groups of environmental parameters were used. These included RS
variables such as Band 1 (B1) to Band 5 (B5) and Band 7 (B7) of Landsat-8, Brightness Index
(BI), Coloration Index (CI), Clay Index (CLI), Enhanced Vegetation Index (EVI), Land Sur-
face Temperature (LST), Hue Index (HI), Normalized Difference Vegetation Index (NDVI),
Redness Index (RI), and Saturation Index (SI). Climate variables such as air temperature
and rainfall were also included, along with topographic variables including aspect, eleva-
tion, slope, duration radiation (DR), the Multi-Resolution index of Valley Bottom Flatness
(MRVBF), the Multi-Resolution Ridgetop Flatness index (MRRTF), and the Topographic
Wetness Index (TWI). In this study, dependent parameters represent soil texture properties,
which are treated as target variables, and independent parameters encompass various
environmental parameters (Table 3).

Table 3. The parameters that impact the properties of soil texture.

Soil Texture Effective Parameters Number of Parameters

Clay
NDVI, Elevation, B7, B5, B1, B2, B3, B4,

MRRTF, MRVBF,
Rainfall, SI, CI, LST, Temp, Aspect, RI, TWI

18

Silt NDVI, Elevation, B7, B5, B3, B4, MRRTF, MRVBF,
SI, BI, CLI, CI, Slope, EVI, DR, Aspect, RI, TWI 18

Sand
NDVI, Elevation, B7, B5, B1, B2, B3, B4, Rainfall,

SI, BI, CLI,
MRRTF, MRVBF, CI, Slope, LST, DR

18

2.3.1. RS Parameters

For this study, 14 RS parameters were extracted from Landsat 8 satellite images, as
listed in Table 4. The RS images utilized were collected between 1 January and 30 December
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2020. The image locations correspond to path 162, row 34, path 162, row 35, and path 163,
row 34 of the Landsat global reference system. The Landsat 8 OLI sensor images were
radiometrically and geometrically corrected in Google Earth and projected to WGS84-Zone
40 N.

Table 4. RS parameters.

Covariate Name Definition Reference

Coastal aerosol (B1) 0.43–0.45 µm

[41]

Blue (B2) 0.45–0.51 µm

Green (B3) 0.53–0.59 µm

Red (B4) 0.64–0.67 µm

Near-infrared (B5) 0.85–0.88 µm

Short-wave infrared-2 (B7) 2.11–2.29 µm

Brightness Index (BI)
(
B32 + B42)0.5 [42,43]

Clay Index (CLI) B6/B7 [22]

Coloration Index (CI) (B4− B3)/(B4 + B3) [42,44]

Enhanced Vegetation Index (EVI) 2.5×
(

B5−B4
B5+(6×B4)−(7.5×B2)+1

)
[45]

Land Surface Temperature (LST)

Normalized Difference Vegetation Index (NDVI) (B5− B4)/(B5 + B4) [46]

Redness Index (RI)
(
B42)/(B2×

(
B33)) [44]

Saturation Index (SI) (B4− B2)/(B4 + B2) [47]

2.3.2. Topographic Parameters

The topographic parameters used in this study were extracted from the Shuttle Radar
Topography Mission (SRTM) digital terrain model, with a spatial resolution of 30 × 30 m,
using the Google Earth Engine system and ArcGIS 10.8 and SAGA 8.2.1 software. These
parameters included aspect, elevation, slope, Duration Radiation (DR), Multi-Resolution
index of Valley Bottom Flatness (MRVBF), Multi-Resolution Ridgetop Flatness index (MR-
RTF), and Topographic Wetness Index (TWI). TWI was calculated using Equation (1),

TWI = ln
As

tan β
(1)

where As is the catchment area index and β is the slope angle [48].

2.3.3. Climatic Parameters

The climatic parameters used in this study were obtained from the annual average
(2014–2020) data of 10 Meteorological stations in Golestan province, as shown in Figure 1.
Various interpolation methods were applied to the data using ArcGIS 10.8 software. The
local polynomial method was the most accurate for generating maps of air temperature
and rainfall, based on the RMSE index.

2.4. Prediction Models
2.4.1. RF Algorithm

The RF algorithm, developed by Breiman, is an ensemble learning technique that
combines the prediction results of multiple decision trees to achieve higher accuracy [49].
This algorithm has been widely used in various fields and has shown excellent performance
in solving classification, regression, and unsupervised learning problems [50]. In an RF,
a set of tree predictors h(x; θk), k = 1, . . . , K is used, where x represents the input vector
of observations (variables) and θk are independent and identically distributed random
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vectors [51]. Each θk, which replaces the original data set, is fitted into a regression tree. A
small set of input variables is randomly considered for each node in each tree. The tree
division criterion is based on selecting the input variable with the lowest Gini index [52].
Finally, the output of the RF prediction in regression problems is the unweighted average
of the entire set of decision trees (Equation (2)) [53].

h(x) =
(

1
k

) K

∑
k=1

h(x; θk) (2)

The overall flowchart of the RF is shown in Figure 3.
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2.4.2. CNN

A CNN is an architecture for DL inspired by living organisms’ visual perception
mechanism [54]. It consists of several layers: convolution, maximum pooling, dropout,
concatenate, and fully connected [55]. The convolution layer contains several kernels
that calculate different features from the input data [54]. The top pooling layer sends
the maximum number of features of each region as input to the next layer, reducing the
dimensionality of the matrix and avoiding overfitting [56]. Dropout is another way to
prevent overfitting [57]. Equation (3) calculates the output Cj of the convolution layer,
where xi is the ith feature of the input vector of the CNN network, Wij is the weight
between xi and the jth kernel of the convolution layer with bias b, and k and n are the
number of kernels and the number of features of the input vector to the convolution layer,
respectively [58]. The activation function f can be sigmoid, tanh, or ReLU, among others.

Cj = f

(
b +

n

∑
i

conv1D
(
Wij, xi

) )
, j = 1, 2, . . . , k (3)

Figure 4 depicts the CNN architecture.
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2.4.3. CNN-RF

In this study, a hybridized network of DL and ML is used to leverage the capabilities
of both CNN networks and the RF algorithm to achieve higher performance in the spatial
prediction of soil texture and overcome the limitations of these stand-alone models. The
hybrid CNN-RF network architecture is shown in Figure 5. The input matrix assumes
an m × n structure, where m signifies the quantity of soil samples and n represents the
number of parameters influencing each soil texture property. The input information is first
processed through the hidden layers of the CNN model, which extracts the relevant features
including the spatial patterns and contextual information from the input dataset [59]. These
features are then fed into the RF algorithm for regression analysis. Finally, the output layer
returns the predicted value.
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2.5. Models Evaluation

The efficiency of the model is evaluated using three metrics: Root Mean Squared Error
(RMSE), Mean Squared Error (MSE), and coefficient of determination (R2) (Equations (4)–(6)).
Lower MSE and RMSE values indicate a higher modeling accuracy. R2 illustrates the
goodness of fit between the data and the regression model. The value of R2 ranges from 0
to 1, with values closer to 1 indicating better model performance [60,61].

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

R2 = 1− MSE
1
n ∑n

i=1(yi − y)2 (6)

In these equations, yi represents the measured value, ŷi represents the predicted value,
y represents the mean of the actual values, and n is the number of observations. Another
effective way to display the relationship between statistical indicators and to visualize the
difference in model performance in predicting soil properties is to use a Taylor diagram [62].
Taylor diagrams show the degree of agreement between predicted and observed values
regarding correlation and the standard deviation error. Additionally, a box plot is used to
compare the minimum and maximum values of the range, the upper and lower quartiles,
and the median of the predicted values and the actual data. This set of values provides a
concise summary of the distribution of the dataset [63].

2.6. K-Fold Cross-Validation

Cross-validation is a technique used to assess the performance of a machine and
deep learning models in a robust and unbiased manner [64]. In 10-fold cross-validation,
the dataset is divided into 10 folds of approximately equal size. The dataset is randomly
divided into 10 subsets, each containing an equal number of samples. This ensures that
the distribution of data across the folds is representative of the entire dataset [64]. The
cross-validation process is then performed iteratively, with each fold being used as the
testing set while the remaining nine folds are used for training the model. The performance
metrics are calculated for each iteration based on the model’s predictions.

2.7. Workflow for Soil Texture Prediction

The workflow for spatial prediction of soil texture properties is illustrated in Figure 6.
The first step involves creating a spatial database using parameters extracted from satellite
images and data collected from the study area. In the second step, the extracted parameters
are used as independent data to determine feature importance through the RF algorithm.
In the third step, soil texture properties are modeled using the RF, CNN, and CNN-RF
algorithms. In the fourth step, prediction maps of soil texture properties are generated
using the models. Finally, the results are evaluated using five metrics: MSE, RMSE, R2, box
plot, and Taylor diagram.
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3. Results
3.1. Correlation Analysis

In this study, the Pearson correlation coefficient was used to investigate the relationship
between soil texture and environmental parameters (Figure 7). According to Figure 7,
The correlation coefficient of 0.2 between MRVBF and clay suggests a comparatively
stronger relationship between these variables compared to other parameters, while the
correlation coefficient of −0.26 between B7 and clay indicates that their relationship in the
opposite direction is also relatively stronger than that of other parameters. By contrast, the
association between clay and RI, as well as clay and aspect, was considered weak, with
absolute correlation coefficients of 0.021 and −0.034, respectively. Based on Figure 7, the
correlation coefficients of −0.18 between sand and LST, and 0.12 between sand and B5,
demonstrate a comparatively stronger association compared to other parameters. Among
all the parameters, MRVBF and CI exhibited the weakest correlation with sand. The
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Pearson correlation coefficient matrix in Figure 7 shows that the correlation coefficient of
0.2 between elevation and silt indicates a relatively stronger positive relationship compared
to other parameters. Additionally, the correlation coefficient of −0.17 between NDVI and
silt suggests a relatively stronger negative relationship. However, the associations between
silt and B5, as well as silt and RI, were considered weak, with correlation coefficients of
0.013 and −0.033, respectively.
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3.2. Feature Importance

An RF algorithm was utilized to determine features importance in the modeling
process. The importance of parameters is demonstrated in Figure 8. The results indicate
that B7 (0.123), CI (0.089), and TWI (0.084) are among the parameters that show a higher
association with silt content (Figure 8a). In the case of Sand, LST (0.164), B5 (0.089),
and elevation (0.084) exhibit relatively higher importance (Figure 8c). Similarly, MRVBF
(0.119), B7 (0.140), and TWI (0.096) are identified as significant factors influencing soil clay
(Figure 8e).
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According to Figure 8, the model input parameters for clay and sand are mainly
influenced by RS, topography, and climatic parameters. Among these parameters, RS
parameters significantly impact soil texture more than topography and climatic parameters.
However, as illustrated in Figure 8f, climatic parameters do not play a role in determining
soil silt. Among the climatic parameters, rainfall, while among the RS parameters, NDVI
and B7 have the most significant impact on soil texture. In addition, among the topographic
parameters, TWI, MRVBF, and MRRTF have the most significant effect on soil texture
properties.
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3.3. Model Development

Using the Python programming language for spatial modeling, the ML and DL models
were employed in the Google colab environment (colab.research.google.com, 20 March
2020). The computer for developing models and processing information had an Intel Core
with i7 CPU @2.80 GHz and 16 GB of RAM. Various libraries such as Keras, TensorFlow,
Numpy, CSV, Scikit-learn, and Matplotlib were utilized for implementing models and
generating graphs. The data pre-processing step involved normalization, followed by
cross-validation and determination of hyperparameters using the GridSearch method.
Equation (7) was employed for normalization, with X denoting the value of each feature.
The optimized hyperparameters and layers for the models are listed in Table 5. Data were
split using 10-fold cross-validation. The data were split into 10 equal parts, and then one
fold was used for the validation set and nine remaining folds were used for the training
set. For each fold, the models were trained using the training set and evaluated by the
testing set.

Table 5. The optimized hyperparameters and layers for each model. “3” signifies the inclusion of
specific layers in the model.

Filter/
Number of

Trees
Filter Size Activation

Function CNN RF CNN-RF

Layers

L1 Convolutional 32 3 ReLU 3 - 3

L2 Flatten - - - 3 - 3

L3 Fully connected 64 2 ReLU 3 - 3

L4 Fully connected 1 - - 3 - 3

L5 RF 100 - - - 3 3

Other parameters

Batch_size - - - 10 - 10

Epochs - - - 20 - 20

Optimizer - - - Adam - Adam

Loss - - - MSE - MSE

min_samples_split - - - - 2 2

max_features - - - - ‘auto’ ‘auto’

max_depth - - - - ‘None’ ‘None’

bootstrap - - - - ‘True’ ‘True’

For modeling, the CNN, RF, and CNN-RF models were used. The input matrix for
each model was an m × n matrix, where m represents the number of soil samples and n
indicates the number of parameters affecting each soil texture property.

Xnew = (Xi −Min(X))/(Max(X)−Min(X)) (7)

3.4. Comparison of Prediction Models

To spatially model soil texture, a combination of the CNN DL model and the RF ML
algorithm was utilized. To evaluate the performance of these models, three evaluation
metrics, namely MSE, RMSE, and R2, were employed, and the evaluation results are
presented in Table 6. The results indicate that for clay, the CNN, RF, and CNN-RF algorithms
yielded MSE values of 0.00016%2, 0.00079%2, and 0.00005%2, RMSE values of 0.013%,
0.028%, and 0.007%, and R2 values of 0.981, 0.910, and 0.995 in the training phase, and
MSE values of 0.00038%2, 0.00407%2, and 0.00010%2, RMSE values of 0.019%, 0.064%,
0.010%, and R2 values of 0.966, 0.636, 0.982 in the testing phase. Regarding sand, the CNN
model produced MSE values of 0.00029%2 and 0.00046%2, RMSE values of 0.017% and
0.022%, and R2 values of 0.928 and 0.908 in the training and testing phases, respectively.
Additionally, for this property, the RF algorithm generated MSE values of 0.00034%2 and
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0.00135%2, RMSE values of 0.018% and 0.037%, and R2 values of 0.917 and 0.683, while the
combined CNN-RF model produced MSE values of 0.00003%2 and 0.00007%2, RMSE values
of 0.006% and 0.008%, and R2 values of 0.992 and 0.976 in the training and testing phases,
respectively. Furthermore, for silt, the CNN model yielded MSE, RMSE, and R2 values
of 0.00024%2, 0.016%, and 0.920, respectively, during the training phase, and 0.00040%2,
0.020%, and 0.913, respectively, during the testing phase. Moreover, the RF algorithm
generated MSE values of 0.00022%2 and 0.00060%2, RMSE values of 0.00060% and 0.024%,
and R2 values of 0.935 and 0.676 for this property during the testing and training phases,
respectively. In comparison, the combined CNN-RF model produced MSE, RMSE, and R2

values of 0.00004%2, 0.006, and 0.987 during the training phase and 0.00009%2, 0.010%, and
0.980 during the testing phase, respectively.

Table 6. Evaluation results.

Properties Models
Train Test Runtime

(s)MSE (%2) RMSE (%) R2 MSE (%2) RMSE (%) R2

Clay
CNN 0.00016 0.013 0.981 0.00038 0.019 0.966 2.67

RF 0.00079 0.028 0.910 0.00407 0.064 0.636 0.23
CNN-RF 0.00005 0.007 0.995 0.00010 0.010 0.982 0.21

Sand
CNN 0.00029 0.017 0.928 0.00046 0.022 0.908 1.36

RF 0.00034 0.018 0.917 0.00135 0.037 0.683 0.44
CNN-RF 0.00003 0.006 0.992 0.00007 0.008 0.976 0.29

Silt
CNN 0.00024 0.016 0.920 0.00040 0.020 0.913 2.73

RF 0.00022 0.015 0.935 0.00060 0.024 0.676 0.196
CNN-RF 0.00004 0.006 0.987 0.00009 0.010 0.980 0.215

The runtime analysis of the three models (Table 6) revealed varying performance when
fitting the dataset. Specifically, the CNN model for clay and sand exhibited the longest
runtime, followed by RF and CNN-RF. Conversely, when fitting the silt data, the runtime
of CNN-RF was found to be longer compared to RF, with CNN once again exhibiting the
longest runtime among all soil texture models.

Overall, the results indicate that the hybrid CNN-RF algorithm performs better than
the other models in both the testing and training phases for all soil texture properties. After
the hybrid CNN-RF algorithm, the CNN model is more accurate than the RF algorithm.
Based on the MSE evaluation metric, the sand, silt, and clay properties of soil texture are
the most accurate.

The prediction error plots for the testing and training phases are presented in Ap-
pendix A. Across all three soil texture properties, the CNN-RF model exhibits lower error
rates or differences between the observed and predicted values than the stand-alone mod-
els. The RF and CNN models demonstrate a better fit between the actual and predicted
value plots.

Figure 9 displays box plots that compare the values predicted by all three prediction
models, namely CNN, RF, and CNN-RF, with the actual soil sample values in terms of
statistics and data distribution. The lines outside the boxes extend up to 1.5 times the
interquartile range to identify any outliers (hollow circles) that lie beyond this range [63].
The median is depicted using a yellow line in the center of the box. As shown in Figure 9,
the box plot of values predicted by the CNN-RF model for all three soil texture properties
is more similar to the box plot of the observed values. The distribution of actual values of
all data is nearly symmetrical, and the predicted values for all three prediction models are
also symmetrically distributed. Furthermore, the CNN-RF and CNN models are better at
detecting and predicting outlier data than the RF model.
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Taylor diagrams were employed to assess the accuracy of the CNN, RF, and CNN-RF
models, as depicted in Figure 10. A smaller distance from the purple reference point in
Taylor diagrams indicates a higher model accuracy [62]. Consequently, a model’s accuracy
is determined based on the distance of the corresponding point from the purple reference
point. According to the Taylor diagrams in Figure 10, the hybrid CNN-RF model exhibits
the most accurate prediction for all three soil texture properties followed by the CNN and
RF models, sequentially.

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 26 
 

 
Figure 10. Taylor diagrams for comparison of model performance: (a) clay, (b) sand, (c) silt. 

3.5. Spatial Prediction of Soil Properties 
The modeling results for each soil texture parameter were generalized to the entire 

study area, and prediction maps with a spatial resolution of 30 × 30 m were generated 
using ArcGIS 10.8 software. Figure 11 illustrates the prediction maps for all three models 
for each soil texture property. 

The amount of clay in the RF model prediction map decreases with increasing eleva-
tion. The prediction maps of the CNN and CNN-RF models are similar, with the central 
and southwestern points exhibiting higher amounts of clay in the CNN and CNN-RF 
models, respectively. The range of variation in clay content in the RF prediction map is 
smaller than that of the other models. 

The prediction maps of the RF and CNN models are generally similar, except that the 
CNN map predicts slightly higher amounts of sand in the southwest and central regions 
than the RF model. Additionally, the range of sand content variation in the CNN-RF 
model prediction map is closer to the range of observed values compared to other models. 

The amount of silt in the CNN prediction map decreases with decreasing elevation. 
In contrast to the RF model, the percentage of sand in the soil of the studied area does not 
exhibit a transparent relationship with elevation. In the prediction map of the hybrid 
CNN-RF model, the silt content is the highest in small parts of the southern and north-
eastern parts of the study area. 

Overall, the range of texture fractions for all soil texture properties is closer to the 
maximum and minimum of actual values in the three prediction maps of the CNN-RF 
model compared to the stand-alone models. Additionally, there are more similarities be-
tween the prediction maps of RF and CNN than between the CNN-RF and RF models or 

Figure 10. Taylor diagrams for comparison of model performance: (a) clay, (b) sand, (c) silt.



Sustainability 2023, 15, 14125 16 of 25

3.5. Spatial Prediction of Soil Properties

The modeling results for each soil texture parameter were generalized to the entire
study area, and prediction maps with a spatial resolution of 30 × 30 m were generated
using ArcGIS 10.8 software. Figure 11 illustrates the prediction maps for all three models
for each soil texture property.

Sustainability 2023, 15, x FOR PEER REVIEW 18 of 26 
 

 
Figure 11. Digital maps of soil properties: (a–c) clay, (d–f) sand, (g–i) silt. 

Table 9. The statistical parameters of the modeled soil texture on residential areas and uncovered 
plains. 

  Residential Areas Uncovered Plains 
Properties Models Min Max Mean Std Min Max Mean Std 

Clay 
CNN 0.00 40.11 32.51 2.37 0.00 43.90 30.64 3.18 

RF 0.00 29.92 26.87 1.26 0.00 29.75 25.01 1.46 

Figure 11. Digital maps of soil properties: (a–c) clay, (d–f) sand, (g–i) silt.

The amount of clay in the RF model prediction map decreases with increasing elevation.
The prediction maps of the CNN and CNN-RF models are similar, with the central and
southwestern points exhibiting higher amounts of clay in the CNN and CNN-RF models,
respectively. The range of variation in clay content in the RF prediction map is smaller than
that of the other models.
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The prediction maps of the RF and CNN models are generally similar, except that the
CNN map predicts slightly higher amounts of sand in the southwest and central regions
than the RF model. Additionally, the range of sand content variation in the CNN-RF model
prediction map is closer to the range of observed values compared to other models.

The amount of silt in the CNN prediction map decreases with decreasing elevation. In
contrast to the RF model, the percentage of sand in the soil of the studied area does not
exhibit a transparent relationship with elevation. In the prediction map of the hybrid CNN-
RF model, the silt content is the highest in small parts of the southern and northeastern
parts of the study area.

Overall, the range of texture fractions for all soil texture properties is closer to the
maximum and minimum of actual values in the three prediction maps of the CNN-RF
model compared to the stand-alone models. Additionally, there are more similarities
between the prediction maps of RF and CNN than between the CNN-RF and RF models
or between the CNN-RF and CNN models, except for clay, which exhibits slightly more
similarity between the CNN-RF and CNN models.

Soil samples that were not utilized during the training phase were employed for the
purpose of external validation. The soil texture maps were generated, and then the values
extracted from each soil map were compared with the corresponding observed values to
calculate the MSE. The evaluation results are presented in Table 7.

Table 7. Maps evaluation result.

Properties Models MSE (%)

Clay

CNN 0.076

RF 0.0679

CNN-RF 0.1027

Sand

CNN 0.095

RF 0.094

CNN-RF 0.078

Silt

CNN 0.178

RF 0.137

CNN-RF 0.569

The statistical assessment of predicted values for each soil property across various
land cover categories is documented in Tables 8–10.

Table 8. The statistical parameters of the modeled soil texture on agricultural and forest land.

Agricultural Areas Forest Land

Properties Models Min Max Mean Std Min Max Mean Std

Clay

CNN 0.00 47.24 32.13 2.73 0.00 41.72 31.61 2.00

RF 0.00 30.06 25.52 1.42 0.00 29.02 23.10 1.04

CNN-RF 0.00 33.80 30.99 2.19 0.00 33.80 30.77 1.69

Sand

CNN 3.3 28.7 27.6 2.4 3.20 28.70 25.50 3.33

RF 0.00 17.47 11.70 0.46 0.00 18.30 10.64 0.80

CNN-RF 0.00 22.93 5.07 1.32 0.00 23.41 4.15 0.47

Silt

CNN 0.00 72.21 49.26 3.71 0.00 78.80 64.72 4.31

RF 0.00 67.96 63.04 1.45 0.00 68.23 63.63 2.59

CNN-RF 0.00 72.71 52.86 2.09 0.00 74.73 65.01 4.32
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Table 9. The statistical parameters of the modeled soil texture on residential areas and uncovered
plains.

Residential Areas Uncovered Plains

Properties Models Min Max Mean Std Min Max Mean Std

Clay

CNN 0.00 40.11 32.51 2.37 0.00 43.90 30.64 3.18

RF 0.00 29.92 26.87 1.26 0.00 29.75 25.01 1.46

CNN-RF 0.00 33.80 31.37 1.92 0.00 33.80 29.78 2.68

Sand

CNN 3.34 28.70 26.27 2.77 3.20 28.70 24.21 2.97

RF 0.00 15.77 11.68 0.36 0.00 16.72 11.65 0.57

CNN-RF 0.00 21.26 4.47 0.83 0.00 21.25 4.88 1.11

Silt

CNN 0.00 69.74 47.45 2.81 0.00 74.17 49.61 5.07

RF 0.00 66.81 62.82 0.84 0.00 67.77 63.53 1.45

CNN-RF 0.00 69.78 52.41 1.05 0.00 72.68 53.36 2.62

Table 10. The statistical parameters of the modeled soil texture on water bodies and range land.

Water Bodies Range Land

Properties Models Min Max Mean Std Min Max Mean Std

Clay

CNN 0.00 40.70 32.67 2.47 0.00 42.78 30.04 2.92

RF 0.00 29.91 26.18 1.32 0.00 30.02 24.04 1.62

CNN-RF 0.00 33.80 31.40 1.95 0.00 33.80 29.31 2.45

Sand

CNN 5.50 28.70 28.06 1.48 3.20 24.34 22.34 4.77

RF 0.00 13.40 11.68 0.37 0.00 18.21 11.03 0.99

CNN-RF 0.00 11.84 5.76 1.82 0.00 23.33 4.44 0.88

Silt

CNN 0.00 63.94 48.44 3.00 0.00 77.30 55.87 6.64

RF 0.00 66.94 62.79 1.23 0.00 68.41 64.23 1.92

CNN-RF 0.00 63.94 52.43 1.29 0.00 75.00 57.33 5.02

4. Discussion
4.1. Analysis of Parameters Affecting Soil Texture

In the RFE algorithm, the most influential parameter for soil clay was found to be
MRVBF, which provides a better description of the region by identifying valley bottoms
of various sizes and slopes [65]. MRVBF contains information about the location of the
area that is directly related to clay [66], where the clay content increases from highlands to
plains, similar to MRVBF.

For soil sand, the most effective parameter was found to be LST, which depends
on the amount of solar energy absorbed by land cover types and local environmental
conditions [67]. Sandy and agricultural areas absorb the highest temperatures due to the
structure of the land cover [68]. The second parameter affecting sand was found to be
B5, where areas with water dams had the highest amount of sand, and the amount of B5
reflection was the lowest. This is because water absorbs near-infrared the most [69], thus
causing an opposite relationship between the B5 parameter and the amount of sand in the
studied area.

The study’s results indicate that B7 was the most important environmental parameter
in predicting soil silt. SWIR bands play a crucial role in predicting and estimating soil
texture properties, and particularly silt [70]. Furthermore, silt is one of the factors that
influence the intensity of reflection and absorption of SWIR bands [71].
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After determining feature importance, it was found that RS parameters had the most
significant contribution to predicting each soil texture property. RS provides these parame-
ters with proper spatial and temporal accuracy [72]. The selected RS parameters included
seven parameters, including RI, B7, SI, CI, B5, NDVI, and CLI, with B7 and NDVI having
the most significant influence. NDVI is one of the most widely used vegetation indices that
reduces the influence of atmosphere and soil background in spectral measurements [5].
SI, CI, and RI are parameters extracted from the three visible bands of Landsat 8 (B2, B3,
and B4) (Table 4) and have a significant impact on predicting soil properties [73]. These
parameters are obtained from Landsat 8 data with advantages such as short periodicity,
good spatial resolution and coverage, and a wide range of spectral ranges including visible,
B5, and SWIR [74]. Several studies have demonstrated that incorporating RS variables
improves prediction accuracy [40,75,76].

4.2. Model Comparison and Analysis

Based on the findings, the hybrid CNN-RF model exhibited greater precision com-
pared to the individual CNN and RF models. The convolutional layers employed at the
outset of the modeling process enabled the extraction and organization of input data
features [77]. Conversely, a CNN’s employment of a fully connected layer for the final
regression decision often leads to overfitting [78]. Consequently, incorporating the RF
algorithm enhanced the accuracy of the results [79]. In recent years, numerous studies
have applied CNN and RF algorithms across different domains. For instance, the fused
CNN-RF model has been employed to detect electricity theft [80], yielding improved accu-
racy in comparison to the individual CNN and RF models. Furthermore, for tree species
classification, a fusion of CNN and RF algorithms outperformed stand-alone CNN, SVM,
and RF models [81]. Additionally, for product classification using satellite images, the
combined one-dimensional CNN approach with RF achieved greater accuracy in contrast to
the CNN-1D networks and the fused LSTM-RF network [78]. Li et al. (2022) demonstrated
the superiority of the CNN-RF hybrid model for estimating actual evapotranspiration
compared to the CNN-SVM and individual CNN an RF models [82].

4.3. Strengths and Weaknesses

The current study exhibits several strengths, including the hybridization of the RF ML
algorithm and CNN DL neural network for the spatial prediction of soil texture, leading to
increased accuracy compared to the individual CNN and RF models. Moreover, the use
of RS data has enabled the extraction of multiple variables that influence soil texture at a
suitable scale and with reduced costs. However, the lack of soil samples at high altitudes
and the use of feature importance instead of a meta-heuristic algorithm or the wrapper
method for feature selection are limitations of this research.

5. Conclusions and Recommendations

The objective of the present study was to compare and evaluate the performance of
CNN, RF, and CNN-RF algorithms for spatial prediction of soil texture properties. Satellite
images were employed due to their appropriate spatial and temporal accuracy in preparing
indicators that impact soil texture. The study yielded the following outcomes: (1) The RF
algorithm identified MRVBF, LST, and B7 as the most effective parameters for clay, sand,
and silt, respectively. (2) Among the effective parameters, the RS variables had the largest
contribution to the modeling input. Specifically, NDVI, B7, SI, B5, CI, RI, and CLI were
found to be the critical RS parameters influencing soil texture. (3) The hybrid CNN-RF
model demonstrated the highest accuracy in predicting soil texture properties, as indicated
by the evaluation results. (4) Sand, silt, and clay exhibited greater accuracy based on the
MSE evaluation metric.

The prediction maps generated via the hybrid CNN-RF model can aid agricultural
management, soil erosion monitoring, and irrigation. Potential areas for future research
include: (1) Utilizing a meta-heuristic algorithm in lieu of the RFE algorithm to improve
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modeling accuracy. (2) Extracting variables such as homogeneity, contrast, dissimilarity,
and entropy in the studied area using the gray-level cooccurrence matrix to enhance soil
texture prediction accuracy. (3) Exploring the integration of additional ML and DL models.
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3. Polakowski, C.; Ryżak, M.; Sochan, A.; Beczek, M.; Mazur, R.; Bieganowski, A. Particle size distribution of various soil materials

measured by laser diffraction—The problem of reproducibility. Minerals 2021, 11, 465. [CrossRef]
4. Liakos, L.; Panagos, P. Challenges in the Geo-Processing of Big Soil Spatial Data. Land 2022, 11, 2287. [CrossRef]
5. Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of remote sensing in agriculture—A Review. Int. J. Curr.

Microbiol. Appl. Sci 2019, 8, 2270–2283. [CrossRef]
6. Shafapour Tehrany, M.; Shabani, F.; Neamah Jebur, M.; Hong, H.; Chen, W.; Xie, X. GIS-based spatial prediction of flood prone

areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomat. Nat.
Hazards Risk 2017, 8, 1538–1561. [CrossRef]

7. Mousavi, S.Z.; Kavian, A.; Soleimani, K.; Mousavi, S.R.; Shirzadi, A. GIS-based spatial prediction of landslide susceptibility using
logistic regression model. Geomat. Nat. Hazards Risk 2011, 2, 33–50. [CrossRef]

https://doi.org/10.21608/ejss.2022.144794.1508
https://doi.org/10.3390/su12124859
https://doi.org/10.3390/min11050465
https://doi.org/10.3390/land11122287
https://doi.org/10.20546/ijcmas.2019.801.238
https://doi.org/10.1080/19475705.2017.1362038
https://doi.org/10.1080/19475705.2010.532975


Sustainability 2023, 15, 14125 23 of 25

8. Zeraatpisheh, M.; Garosi, Y.; Owliaie, H.R.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the spatial
prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates.
Catena 2022, 208, 105723. [CrossRef]

9. Ye, C.-M.; Wei, R.-L.; Ge, Y.-G.; Li, Y.; Junior, J.M.; Li, J. GIS-based spatial prediction of landslide using road factors and random
forest for Sichuan-Tibet Highway. J. Mt. Sci. 2022, 19, 461–476. [CrossRef]

10. Dobarco, M.R.; Orton, T.G.; Arrouays, D.; Lemercier, B.; Paroissien, J.-B.; Walter, C.; Saby, N.P. Prediction of soil texture using
descriptive statistics and area-to-point kriging in Region Centre (France). Geoderma Reg. 2016, 7, 279–292. [CrossRef]

11. Liao, K.; Xu, S.; Wu, J.; Zhu, Q. Spatial estimation of surface soil texture using remote sensing data. Soil Sci. Plant Nutr. 2013, 59,
488–500. [CrossRef]

12. Costa, J.J.F.; Giasson, E.; da Silva, E.B.; Coblinski, J.A.; Tiecher, T. Use of color parameters in the grouping of soil samples produces
more accurate predictions of soil texture and soil organic carbon. Comput. Electron. Agric. 2020, 177, 105710. [CrossRef]

13. Wadoux, A.M.-C. Using deep learning for multivariate mapping of soil with quantified uncertainty. Geoderma 2019, 351, 59–70.
[CrossRef]

14. Ließ, M.; Glaser, B.; Huwe, B. Uncertainty in the spatial prediction of soil texture: Comparison of regression tree and Random
Forest models. Geoderma 2012, 170, 70–79. [CrossRef]
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