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Abstract: In this article, we introduces a model based on big data analysis to characterize the travel
times of buses in public transportation systems. Travel time is a critical factor in evaluating the
accessibility of opportunities and the overall quality of service of public transportation systems. The
methodology applies data analysis to compute estimations of the travel time of public transportation
buses by leveraging both open-source and private information sources. The approach is evaluated
for the public transportation system in Montevideo, Uruguay using information about bus stop
locations, bus routes, vehicle locations, ticket sales, and timetables. The estimated travel times from
the proposed methodology are compared with the scheduled timetables, and relevant indicators are
computed based on the findings. The most relevant quantitative results indicate a reasonably good
level of punctuality in the public transportation system. Delays were between 10.5% and 13.9% during
rush hours and between 8.5% and 13.7% during non-peak hours. Delays were similarly distributed
for working days and weekends. In terms of speed, the results show that the average operational
speed is close to 18 km/h, with short local lines exhibiting greater variability in their speed.

Keywords: intelligent transportation systems; travel time characterization; public transportation;
urban data analysis

1. Introduction

Mobility is crucial in modern cities, ensuring that citizens can participate in both
social (e.g., education, healthcare, culture) and economic (e.g., access to housing, jobs,
commerce, etc.) activities [1]. Public transportation is recognized as the most efficient and
equitable means of transportation [2]. An efficient public transportation system is essential
for providing access to urban services such as employment, education, and healthcare for a
broad range of people regardless of their socioeconomic status or geographic location. It is
estimated that an average person spends about 14 months of their life commuting [3]. This
time is even longer for people living in major metro areas or in cities with poorly designed
transportation systems. Proper understanding and correct characterization of travel times
are essential inputs to determine the quality of service provided to citizens. Managers and
decision-makers can use the results of such analysis to identify inequalities in access to
service and situations that affect mobility. Then, specific strategies and policies can be con-
ceived to improve the accessibility and quality of the service offered to passengers. These
actions are recognized as being effective for developing and promoting the environmental
and social sustainability of public transportation [4,5].

Travel time is an intuitive metric to characterize the quality of service of public trans-
portation systems. Although several other metrics and indicators have been proposed

Sustainability 2023, 15, 14561. https://doi.org/10.3390/su151914561 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151914561
https://doi.org/10.3390/su151914561
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-8146-4012
https://orcid.org/0000-0002-0040-3681
https://orcid.org/0000-0002-4448-0435
https://orcid.org/0000-0002-4500-8028
https://orcid.org/0000-0001-5029-5212
https://doi.org/10.3390/su151914561
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151914561?type=check_update&version=1


Sustainability 2023, 15, 14561 2 of 26

for the purpose, the perceived effectiveness of a transportation system is closely tied to
the duration of travel [6]. Furthermore, travel times correctly model the geographical
phenomenon of friction of distance [7], which states that every movement has an associated
cost in the form of physical effort, energy, time, and/or resources. Costs are modeled as
proportional to the time and distance traveled.

Although public transportation systems operate on predefined routes and subject to
predefined schedules [8], travel times notoriously vary due to traffic-related issues such as
traffic jams, road conditions, detours, and other aspects related to passenger demand and
system operation. These variations mean that the hypothesis that assumes a constant speed
of buses is impractical, potentially leading to significant discrepancies between estimates
and results computed through models and the real situation in practice [9]. In addition to
in-vehicle travel time, trips on public transportation typically involve several other stages,
such as walking to and from stops, waiting at stops for buses traveling through the network,
and potentially transferring between buses of different lines. Thus, a comprehensive and
realistic model for travel time characterization in public transportation systems must
consider all of these factors in order to compute accurate and robust results. Estimating
delays in public transportation is crucial for both administrators and users of the system [10].
For administrators, proper evaluation of the performance of the transportation system is
essential for implementing active management and proactive operation techniques. The
reliability of a transportation system in terms of punctuality along its routes is crucial for
users, as it directly impacts their satisfaction with the service. Therefore, accurate delay
estimation is essential for improving the overall performance and user experience of public
transportation systems.

In this article, we present a model for the characterization of travel times of buses in
public transportation systems. Data analysis [11,12] is applied using three main sources
of data: (i) open source data from ticket sales, usually available from authorities and
transportation companies, with identifying information removed to ensure anonymity;
(ii) real location information from GPS units installed in vehicles, which usually consists
of proprietary data; and (iii) open-source data describing the routes, schedules, and bus
stops of the public transportation system and the road infrastructure. Parallel-distributed
computing techniques are then applied to efficiently solve the related computationally
intensive data processing tasks using multiple computing resources such as datacenters
and supercomputing platforms. The proposed methodology demonstrates the viability of
characterizing the travel time of public transportation systems using both open-source and
and private data.

A case study of the public transportation system in Montevideo, Uruguay is analyzed
to demonstrate the viability and usefulness of the proposed approach. The case study
demonstrates that the presented approach is effective for computing accurate estimations
of travel times in the city. The methodology applied to calculate the travel times using
public transportation is reliable. Additionally, the methodology is useful for detecting
situations that may negatively affect the user experience when using public transportation.
This information is important for the city administration to improve the quality of the
public transportation system. Overall, the results suggest that the proposed approach is a
valuable tool for improving the overall experience of public transportation users in the city.
Further studies can be conducted by the city administration to identify specific issues that
affect user experience and take appropriate actions to address them.

The organization of the remainder of this manuscript is as follows. Section 2 offers an
overview of travel time characterization in public transportation systems. Related works
are reviewed in Section 3. The proposed methodology for travel time characterization is
described in Section 5. The application of the proposed methodology to the case study is
presented in Section 7. Finally, the conclusions of this research and proposals for future
work are presented in Section 8.



Sustainability 2023, 15, 14561 3 of 26

2. Travel Time Characterization in Public Transportation Systems

The quality of service and accessibility provided by public transportation is a crucial
matter with a significant impact on vulnerable people, including low-income individuals,
the elderly, and persons with disabilities [13,14]. A thorough analysis of public transporta-
tion can enable the development and implementation of sustainable mobility strategies,
such as incorporating electric mobility and other nonpolluting alternatives.

Calculating indicators that measure the impact of the means of transportation is
essential in modern cities. One of the most relevant indicators is the travel time of public
transportation. This metric assesses the duration of a trip taken by a citizen using public
transportation. In addition, it is a relevant indicator of mobility, which refers to the degree
of ease of traveling in a community [15]. Travel time is a useful tool for assessing both the
user experience of passengers and the overall quality of service provided by a particular
bus route or the whole public transportation system. Additionally, travel time enables
the computation of comparative metrics, e.g., the additional travel time compared to the
same trip made by automobile, as well as other metrics that measure route directness.
In summary, travel time is a critical indicator that provides valuable insights into the
quality of service and accessibility of public transportation. It is essential for evaluating the
performance of the system and identifying areas for improvement, particularly in terms
of sustainability and mobility. Indeed, travel time is a useful metric for determining the
reliability of public transportation, which is defined as the ability to adhere to schedules,
keep regular headways, and provide consistent travel times [16]. By analyzing travel
time data, it is possible to determine if the system is meeting its scheduled times. This
information is critical for evaluating the overall reliability and performance of the system
and identifying areas for improvement. Improving reliability often has a positive impact on
the user experience of passengers by reducing wait times and ensuring a more predictable
and efficient travel experience.

The main goal of this article is to quantify the provision of public transportation
by computing accurate estimations of travel times of vehicles along their routes within
the system. The studied problem involves estimating travel times based on the actual
schedules established by administrators for the bus lines, which provides a static view of
mobility times. However, relying solely on fixed schedules to estimate travel times may
not capture the dynamic nature of the public transportation system, which may be affected
by issues such as traffic, weather conditions, and passenger demand [17,18]. Therefore, it is
important to complement the static view provided by the schedules with real-time data to
obtain a more accurate and comprehensive understanding of travel times and the quality
of service offered to passengers.

Furthermore, to obtain a more accurate and comprehensive understanding of travel
times and the quality of service of public transportation, the static view provided by fixed
schedules must be complemented with real-time data from open data sources, such as ticket
sales data and data about specific infrastructure for public transportation (e.g., bus stops,
roads, and bus lines) [19]. These data sources offer valuable information that provides
insights into passenger demand and usage patterns, whereas infrastructure data can pro-
vide information on the condition and availability of bus stops and routes. By combining
these real-time data with the fixed schedules, a more accurate picture of travel times and
the quality of service of the system is obtained. Finally, using private information such
as the real GPS data of buses can further improve the precision of the computed metrics
and indicators, providing a comprehensive performance characterization of the public
transportation system [20,21]. These data provide real-time information on the location
and movement of buses, which can be used to calculate more accurate travel times, wait
times, and transfer times.

Insights gained from travel time analysis are useful to improve public transportation
systems [22]. Specific applications include: (i) route optimization through identifying areas
with frequent delays or congestion, where route changes can potentially reduce travel
times and improve overall system efficiency; (ii) scheduling adjustments to reduce wait
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times for passengers on specific bus lines; (iii) infrastructure improvements, e.g., widening
roads or implementing traffic management strategies to reduce congestion; (iv) improving the
maintenance of vehicles or increasing the number of buses on specific routes; and (v) increasing
accessibility for different groups of people (e.g., access to healthcare or education). Overall,
the insights gained from travel time analysis can be used to make data-driven decisions that
improve the public transportation system and enhance passengers’ experience.

The applied methodology demonstrates the viability of developing intelligent ap-
proaches for travel time characterization in public transportation systems using both
open-source and private data. The proposed methodology can be used to develop predic-
tive models that anticipate delays and make scheduling adjustments accordingly, thereby
further improving the reliability and efficiency of the public transportation system.

3. Related Work

The analysis of big data from urban sources has been applied in many works oriented
towards characterizing the mobility behavior of citizens, as well as to evaluate the efficacy
of the service provided by public transportation systems [23,24]. The application of big
data analysis for studying public transportation systems has been presented in reviews by
Zheng et al. [25] and Welch et al. [26].

A relevant subject in this context is analyzing the types of data provided by different
information sources used to analyze public transportation. Two of the main sources
of data in modern cities are Automated Passenger Counting and Automated Vehicle
Location. These systems gather information about the mobility of vehicles (GPS coordinates,
speed) and the real demand (tickets sold). Many other important sources of data are often
available via open data portals or accessible via agreements with institutions, companies,
and administrations. Additional information includes cell phone information (Bluetooth,
GPS, and WiFi signals), vehicle onboard sensors, data from traffic cameras, social media
reports and comments, and crowdsourced information from mobile apps [27,28].

Regarding quality of service, Lei and Church [29] reviewed proposals for evaluat-
ing the accessibility of public transportation systems. They concluded that a common
approach involves assessing physical features of the system (for example, the distance
that a passenger must walk to access a bus stop) rather than evaluating the travel time
between the origin and destination. Previous works focused on travel times have gener-
ally formulated unrealistic assumptions, which has a significant impact on the accuracy
of the resulting estimations of the considered metrics. Common assumptions include
constant transfer and wait times, average values for bus speed, and even disregarding
bus schedules entirely. One case study of Santa Barbara, California, USA analyzed the
temporal dimension of public transportation systems using an extended data structure to
store geographical information.

Salonen and Toivonen conducted a study [7] that compared various measures of
travel time. Their study examined the travel times of private and public transportation.
With regard to public transportation, the authors outlined three models and applied them
to a case study conducted in Finland. These models included a simple model that did not
consider vehicle schedules, an intermediate model that used schedules to estimate wait
times, and a more complex model that utilized an interface from the government with
updated schedules and a routing method to compute travel times. The models revealed
discrepancies in travel times between different modes of transportation, particularly noting
a lesser impact in areas close to the city center.

The public transportation system in Montevideo, Uruguay, which serves as the focus
of this article, has been the subject of investigation in prior studies. An analytical approach
was proposed by Massobrio and Nesmachnow utilizing various sources of urban data
to gain insights into mobility within the city [12]. To analyze mobility patterns, origin–
destination matrices were constructed using data from ticket sales. Later studies evaluated
the service provided by the public transportation system in Montevideo by examining GPS
bus location data [30,31].
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The study conducted by Hernández et al. [32] examined the accessibility of employ-
ment opportunities in Montevideo, Uruguay. To achieve their research objective, a matrix of
travel times was created using the timetables of operating bus lines. In their methodology,
a graph representing the public transportation network was used to calculate travel times
between different locations within the city. The model allowed for the customization of
factors such as the maximum permissible walking distance and maximum number of
allowed transfers during a route. To validate the accuracy of the obtained travel time
matrix, the authors compared it with data from a government web application as well as
with results obtained from a mobility survey.

The above literature review indicates that a limited number of prior studies have used
a systematic methodology for travel time estimation of public transportation systems such
as that in Montevideo, Uruguay. In the present article, we introduce a model that integrates
multiple information sources from both public and private repositories. By incorporating
real GPS bus location data, the proposed methodology expands upon static proposals
that solely rely on fixed timetable data to calculate travel times. These real-time data
can accurately reflect the operation of buses across the entire network, capturing the true
dynamics of the transportation system.

4. The Proposed Case Study: Public Transportation in Montevideo, Uruguay

This article focuses on a case study involving big data analysis for estimating delays
in the Metropolitan Transportation System (STM). The STM serves as a unified public
transportation system for Montevideo and the surrounding metropolitan area.

The STM has implemented new technologies to enhance the efficiency and safety
of public transportation. One notable technology is the introduction of smart cards for
fare payment [12]. This technology enables the collection of valuable data and extrac-
tion of useful insights regarding trips and transfers by the residents of Montevideo [33].
Through analysis of data from these smart cards, the STM can compute various indicators
to more effectively plan, operate, and enhance the quality of service provided to passengers.
This automated processing of large amounts of STM data has facilitated the development
of important studies, such as the creation of origin–destination matrices, understanding of
travel demands, and analysis of sociodemographic mobility patterns.

Previous publications by our research group [12,30,31,34–36] have explored the STM
extensively and proposed the utilization of smart card records for specific analyses. In ad-
dition to smart card data, various other data sources, including geospatial information,
details about bus lines and stops, and sociodemographic data, have been incorporated into
these studies.

5. Methodology

This section describes the proposed methodology for processing data and characteriz-
ing travel times in public transportation systems.

5.1. Data Repositories

The considered data repositories are described in the following paragraphs.

5.1.1. Ticket Sales

The ticket sales dataset includes information from bus tickets sold in specific months.
This information is gathered from the use of the smart card in the STM and from registered
sales, both of which use the on-board vending machine. The dataset includes several fields,
the most relevant of which for the automatic estimation of delays are:

• tripId, an identifier for specific trips within a given month. A trip is defined as the
trajectory made by a given passenger with a single smart card or cash payment;

• withCard, identifying whether or not the trip was paid for using a smart card;
• dateTime, the date and time the ticket was sold;
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• tripType, discriminates between trip types, e.g., one hour, two hours, etc.) and user
groups (e.g., normal users, students, retirees, etc.);

• originStop, identifies the bus stop of origin;
• line, identifies the bus line;
• variant, identifies the line variant.

The data utilized for the study were sourced from the National Catalog of Open
Data in Uruguay, which provides access to open data from public institutions, academia,
and private companies within the country.

5.1.2. GPS Location Data

GPS location data from buses in the public transportation system are not usually
made available for research. For our research, an agreement with the municipality of
Montevideo allowed us to use bus GPS location data. The presented analysis makes
use of GPS location data for buses operating in August 2022. August is a normal and
representative month for the characterization of public transportation in Montevideo,
as it is a fully working month with only one holiday (Declaration of Independence,
on 25 August) and no education holidays.

The bus location dataset included records containing information gathered using the
onboard GPS unit in the buses. The sampling interval for measurements was between
20–30 s. Each record provides the following specific information:

• line_id, the identifier of the bus line;
• trip_id, the identifier of the trip, allowing trips within a line to be differentiated;
• departing_time, the time of departure (fixed schedule);
• (lat, long), the GPS coordinates of the registered measurement in the EPSG 32721

reference system;
• timestamp, the timestamp of the measurement in YYYY-MM-DD HH:MM:SS format.

Certain records in the dataset were corrupted, e.g., the GPS coordinates were not
within Montevideo or the timestamps were not coherent with the studied period. Thus,
a data cleansing procedure was performed to discard all trips with a duration was longer
than four hours. This decision was taken considering that the longest line in Montevideo
extends for 38 km and the route is traveled in about two hours. Thus, any trips longer than
four hours are clearly outlier values caused by incorrect measurements.

After the data cleansing process, the GPS location dataset had a volume of 2.9 million
records, including data from 8224 trips on 258 bus lines.

5.1.3. Infrastructure and Current Timetable Data

Infrastructure and operation data were gathered from the National Open Data Catalog.
The dataset containing information about bus stops includes several fields and metadata.
Among the most relevant for this research are:

• stopUbicCode, a unique identifier for each bus stop;
• street and corner, which establish the geographical location of each bus stop;
• coordinates (X,Y), the latitude and longitude of the bus stop in the EPSG 32721

coordinate system.

The fixed timetable dataset includes the time at which each bus must pass by each stop
for each line and variant. Different information is provided for linear (i.e., non-circular)
lines and circular lines. The reported information for linear trips includes:

• dayType, a numerical code indicating the day, with 1 representing Monday–Friday,
2 representing Saturday, and 3 representing Sunday);

• variantCode, a code identifying each variant of the line;
• headway, the time between consecutive departures of buses (in minutes);
• stopUbicCode, a code to identify each a bus stop;
• hour, the scheduled time at which the bus passes by each stop.
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The information for trips on circular lines includes all of the same attributes as that for
linear trips along with cod_circular, a code that identifies the trip as being a circular one.

The available data sources were preprocessed. The set of visited stops (in order)
and their corresponding locations was calculated using the location data and the geograph-
ical information of each bus line. The scheduled arrival time was stored for each bus
stop considered in the study. Data cleansing was applied to correct anomalies and wrong
records, for example, bus lines and bus stops that changed during the analyzed period,
updates and modifications to fixed schedules, etc.

5.2. Metrics

A comprehensive set of important metrics are computed in the characterization of
travel times and analysis of delays. The applied metrics evaluate diverse features of public
transportation. The metrics considered in the present study are described below.

5.2.1. Delay: Difference between the Scheduled and Real Travel Times

Delay is a measure of the difference between the scheduled time and the actual
travel time for each trip [37]. This metric is critical for determining the punctuality of a
transportation system, as it reflects the degree to which the transportation system adheres
to its schedules. The delay metric is closely related to user perceptions of the quality of
service provided by the public transportation system, as passengers tend to associate delays
with poor service quality [38]. The optimal value for the delay metric is zero, which would
occur in an ideal (though unrealistic) perfectly synchronized system. However, in practice
delays are a natural consequence of numerous factors, such as changing traffic conditions,
unexpected demand variations, and infrastructure problems. These factors can result in
deviations from the scheduled arrival times, leading to delays and reduced punctuality.
A positive value of delay means that the bus arrives late to the bus stop, which causes
undesirable wait times for passengers. Conversely, a negative delay means that the bus
passes through the bus stop too early, possibly preventing passengers from boarding and
leaving them likely to miss connections on multi-leg trips. In either case, minimizing delays
(deviations) to provide a proper and steady quality of service is a crucial operating goal of
any public transportation system.

5.2.2. OTAR: On-Time Arrival Rate

This metric quantifies the number of trips that do not suffer from a significant delay
according to the perceived quality of service provided to passengers. It considers a buffer
time, i.e., a predefined threshold, to characterize significant delays. OTAR is computed as
the quotient between the number of trips arriving on time at their destination and the total
number of trips in a given studied period. The buffer time parameter must account for
all unexpected factors that may cause delays. One proposal for defining the buffer time
parameter is to use a quotient of the values of the time difference between the 95th percentile
and the mean value for travel times, then divide this by the mean travel time [39]. The
OTAR metric is additionally used to evaluate the impact of peak-hour traffic by computing
the ratios of the OTAR values in the peak and off-peak periods (OTARP), and can be used
similarly to evaluate the differences between weekdays and weekends (OTARW).

5.2.3. OS: Operational Speed

OS is a measure of the efficiency of a bus route, and is defined as the quotient of
the length of the route and the mean travel time for a complete trip that covers all of the
route [40]. This metric represents the average speed of vehicles operating on a route, and is
a useful indicator of the efficiency and effectiveness of the transportation system. Larger
values of the OS metric characterize efficient transportation systems, as buses are able to
cover more distance in less time, resulting in shorter overall travel times for passengers.
Because travel times vary for different trips due to traffic conditions and unexpected events,
the scattering of the values must be computed. The dispersion OS (dOS) is a holistic variant
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proposed by Deng and Yang [41] that measures the dispersion of the OS metric considering
all the lines in a public transportation system. The main goal of this metric is to evaluate the
steadiness of the different bus lines in the public transportation system. This assessment is
in line with the proposed shift from a view of connectivity based on “the more the better”
to one based on “the less the better” when designing or redesigning a public transportation
system). This metric is defined by dOS = max(OSl)−OSl .

5.2.4. ATToA: Additional Travel Time Over Automobile

ATToA evaluates how direct a bus route is by comparing the travel time of a trip
using public transportation to the time required to perform the same trip using a private
automobile. Smaller values of ATToA indicate a more direct route, which is associated with
a more efficient transportation system [42].

6. Data Processing

The algorithmic approaches used in processing the two considered datasets are de-
scribed in this section.

6.1. Ticket Sales Data

A parallel computing approach was applied for processing the ticket sales data, charac-
terizing the travel time, and estimating the delay. The parallel computing paradigm allows
for efficient processing of big data in reasonable execution times, and even in real time.

6.1.1. Overall Algorithmic Approach

The general structure of the ticket sales data processing for trips performed in public
transportation is presented in Algorithm 1.

Algorithm 1 General processing of ticket sales data

Input: conf_file . Configuration file with parameterization
1: avenues← get_avenues(conf _file) . Get parameters and data
2: bus_stops_set← get_stops_in_avenue(avenues_set)
3: busiest_stops_set← get_busiest_stops(bus_stops)
4: sched_times← get_fixed_schedule(busiest_stops_set)
5: compute_headway(sched_times)
6: trips_set← read_trips(dataset,month)
7: processes_exec = ∅ . Parallel computation
8: for p in range(NUM_PROCESSES) do
9: processes_exec.append(estimate_delay(trips, sched_times, queue_proc))

10: end for
11: for p in processes_exec do
12: p.get_data() . Domain decomposition
13: p.start()
14: end for
15: result_dict← ∅dictionary
16: for p in processes_exec do
17: result_dict← result_dict.append(p.get(queue_proc)) . Store results
18: end for

Algorithm 1 allows for the study and characterization of travel times and the es-
timation of delay for relevant avenues indicated in the configuration file. The configu-
ration file defines proper variables for the computation, including the number of paral-
lel processes for computation (NUM_PROCESSES), buffer time for positive significant
delays (POSITIVE_SIGNIFICANT_BUFFER), buffer time for negative significant delays
(NEGATIVE_SIGNIFICANT_BUFFER), bus lines to be considered in the computation
(BUS_LINES_TO_BE_ANALYZED), number of bus stops to be considered in the computa-
tion (NUMBER_OF_BUS_STOPS), and default margin for the estimation of bus headways
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(DEFAULT_MARGIN). The applied algorithm for data processing is described and com-
mented on in the following subsections.

6.1.2. Parallel Computation

A very large repository of data must be processed for any scenario. For example,
in the considered case study (public transportation system of Montevideo) the number of
tickets sold is higher than 25 million per month. Thus, parallel computation techniques
were applied to efficiently compute the relevant metrics in different scenarios.

The parallel algorithm follows the master–slave model. A master process guides the
computation, and a pool of parallel slave processes is used. The pool is initialized and
configured in lines 7–10 of Algorithm 1. A data-parallel approach is applied, taking advan-
tage of the travel time characterization and delay estimation for each trip being computed
independently of other trips. The applied data-parallel schema consists of dividing the
whole set of tickets among the slave processes used for the calculation. The monthly tickets
sold are split by the master process and assigned in order to each slave process following
a round-robin strategy. The domain decomposition for data assignment if performed in
line 12 of Algorithm 1, just prior to the start of execution (line 13). A partition of the
monthly tickets is assigned to each process in the pool, which performs the travel time and
delay computation independently without sharing its state or information with the other
parallel processes.

Each process returns a dictionary with the computed metric (i.e., the mean delay) for
each assigned partition. After each process completes execution, the master process joins all
partial dictionaries to obtain a single result set (data structure) for the studied period. The
features that implement the parallel computing approach and the master–slave model were
successfully developed using the multiprocessing Python library. This library provides a
convenient and efficient way to implement parallel processing, allowing for the execution
of multiple tasks simultaneously on multiple processors or cores.

6.1.3. Algorithmic Details: Logic for Processing

The first stage of the computation consists of obtaining the set of avenues to be in-
cluded in the computation. The get_avenues function acquires the avenues to be processed
by reading from the configuration file (line 1). After that, the get_stops_in_avenue function
receives as input the set with the considered avenues and returns the bus_stops located on
those avenues (dictionary). The returned dictionary has the following format:

. “bus_stop_code”: {“tickets_sold”, “main_st”, “secondary_st”}.

A filtering pattern is applied to select those bus stops located on the studied avenues
from among the full set of bus stops. The pseudocode is presented in Algorithm 2.

Algorithm 2 Auxiliary get_stops_in_avenue function

Input: avenues_set: set of avenues considered in the analysis
Output: result_dict: key is the bus stop code and values are the number of tickets sold,

the street where the stop is located, and the secondary street
1: bus_stops_set← read_stops(dataset)
2: bus_stops_avenue← join(bus_stops_set,avenues_set, key=street)
3: result_dict← ∅dictionary
4: for stop in bus_stops_avenue do
5: result_dict[stop[code]]← [0, stop[main_street], stop[secondary_street]]
6: end for
7: trips_set← read_trips(dataset,month)
8: for trip in trips_set do
9: actual_stop_code← stop_code(current trip)

10: result_dict[actual_stop_code][1] ++
11: end for
12: return result_dict
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The get_stops_in_avenue function begins by reading the information from the bus
stops dataset. Then, a join operation is performed between the avenues_set and the
bus_stops_set datasets, using the street as the key. Finally, the function processes the
monthly trips and computes the number of tickets sold in that month or for each bus stop.

After determining the bus stops for each relevant avenue, the main algorithm executes
the get_busiest_stops_set function. Stops in each avenue are listed in descending order
by number of tickets sold. For each avenue, the number of stops with the most tickets
sold is determined; this number is defined in the configuration file by the variable NUM-
BER_OF_BUS_STOPS. The computation of delays focuses on the busiest stops in each av-
enue, as many bus stops are located close to each other and some experience low passenger
flow. This behavior can be modified by adjusting the value of NUMBER_OF_BUS_STOPS
to perform the delay computation for a different number of stops regardless of the level of
passenger flow or location.

After that, the get_fixed_schedule function is applied to determine the trips scheduled
for the busiest stops per week, taking into account the dayType field (line 4 in Algorithm 1).
The format of the output dictionary is as follows:

“bus_stop_code”: { “bus_line”: { [“day_type”, “scheduled_time”,
“main_street”, “secondary_st”] } }.

Following the generation of the fixed schedule for each day of the week, the headway
of buses operating along the same line is computed (line 5 in Algorithm 1). The headway is
computed using Algorithm 3.

Algorithm 3 Function compute_headway

Input: weekly scheduled trips for the busiest stops (dictionary)
Output: input dictionary expanded with the headway, an extra field that indicates the

time interval between consecutive trips of buses of each line (dictionary)
1: for target_schedule_time in weekly scheduled trips for the busiest stops do
2: select_closest_schedule_times(target_schedule_time,3)
3: headway←mean difference of the four considered schedule times
4: append (dictionary entry of target_scheduled_time, headway)
5: end for

The headway of lines is needed to establish the correspondence of tickets sold with
a specific scheduled trip. For the scheduled time of a bus line at a stop, Algorithm 3
computes the mean difference for the closest three scheduled times for the same line and
stop. The averaging process is needed because headways are not always constant in any
studied period. Algorithm 3 returns a new dictionary after appending a field to the entry
defined by bus_line and bus_stop, indicating the estimated headway. The format of the
resulting dictionary is as follows:

“bus_stop_code”: { “bus_line”: { [“day_type”, “scheduled_time”,
“main_street”, “secondary_street”, “estimated_headway”] } }

The delay computation is performed in lines 8–14 of the main algorithm. Delays are
computed by each parallel process over the assigned subset of monthly tickets sold. The
estimate_delay function (Algorithm 4) iterates over the tickets sold in the studied period
while filtering by stop and line. After that, the delays are computed. A specific challenge
for this computation is finding the correct bus trip and scheduled time for each ticket sold.
The primary difficulty relates to identifying whether the bus arrived ahead of schedule
for the next trip or behind schedule from the previous one. For example, if a bus line runs
every 5 min at a given bus stop, and a bus arrives 8 min late, it can be difficult to determine
whether this indicates that the previous bus arrived late or the next bus arrived early. This
issue can lead to inaccuracies in matching tickets with scheduled trips, which can have
implications for the analysis of delays.
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To deal with this issue, we compare the day of the week of the sold ticket to the day of
the scheduled time. If these agree, the delay is calculated as the time difference between the
moment the ticket was sold and the scheduled time of the trip. Special cases for tickets sold
in intervals that include the change of day (0:00 h) are not taken into account, as they are
not part of the developed study (only a few tickets are included in this border case). If the
bus arrives at the stop after 2/3 of the scheduled headway or before 1/3 of the scheduled
headway, the tickets issued for the bus in question are not valid for the scheduled trip. The
threshold considered for defining the interval for the computation (DEFAULT_MARGIN) is
a parameter of the algorithm specified in the configuration file. The considered value (2/3)
was determined after analyzing the distribution of arrivals to bus stops for a representative
working day.

Algorithm 4 Function estimate_delay

Input: monthly trips
Input: dictionary with weekly scheduled trips for the busiest stops
Output: dictionary storing the computed delay for each trip

1: result← ∅dictionary
2: for ticket in trips do
3: if ticket.stop() ∈ schedule_busiest_stops then
4: if ticket.line() ∈ schedule_busiest_stops then
5: for time in schedule_busiest_stops[stop][line] do
6: if ticket.day() == schedule.day() then
7: delay = ticket.time() − schedule.time()
8: if delay > (2/3)× headway or delay < −headway× (1/3) then
9: return null

10: else
11: return delay
12: end if
13: end if
14: result← result.append(delay)
15: end for
16: end if
17: end if
18: end for

The mean value of the computed delays is stored in a nested dictionary, the key to
which consists of the day of the week, time of day, stop, and line.

6.1.4. GPS Data

The GPS dataset was processed on a per-trip basis to calculate travel times within
each vehicle. This processing produced a sequential list of the time required to travel from
the origin stop of the trip to each subsequent stop on the same line. GPS-based vehicle
locations are susceptible to errors caused by various factors, and several methods have
been suggested to handle this issue [43]. To tackle this problem, we implemented a buffer
zone of 25 m in all directions around each bus stop. Any measurements outside these buffer
zones were discarded.

During the processing of GPS records for a given bus trip, a timestamp was assigned
to each stop based on the earliest record within the buffer zone of that stop. This procedure
was applied to all stops except for the first in the trip. For the first stop, the latest timestamp
was chosen, as buses typically activate their GPS devices before departing, resulting in
multiple records falling within the buffer zone.

In certain instances, drivers failed to update the GPS device after finishing a trip,
leading to trip the identification being retained for at least two trips (e.g., consecutive
inbound/outbound trips on a given line). A validity check was implemented to mitigate
this issue, guaranteeing that consecutive measurements assigned to bus stops were sep-
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arated by less than 30 min. Furthermore, integrity validation was performed to verify
that timestamps and stop identifiers consistently increased over time while ensuring that
the bus line and trip identifiers did not change. If any of these assertions were untrue,
the processing of that particular trip was halted.

The aforementioned processing steps allow the proposed approach to calculate travel
times for each bus stop along the bus line as measured from the first stop. However, certain
stops on the processed bus line may lack information. In such cases, interpolation was
applied for bus stops situated between others with computed travel times. The interpolation
process considered the distance between stops on the bus route. The same procedure was
used to estimate travel times for departing or destination stops by extrapolating the travel
times specified in the timetable for that particular bus line.

7. Analysis and Discussion of Results

This section presents and analyzes the results and findings of our processing of the
available datasets, open ticket sales data, and non-open data from GPS records for the
public transportation system in Montevideo, Uruguay.

7.1. Analysis of Ticket Sales Data

To validate the processing of ticket sales data, exemplary results are showcased for
trips conducted around the major avenues of Montevideo during May 2022. The selected
routes are considered to be significant in terms of passenger demand, and the presented
results can provide a representative sample of the overall performance of the transportation
system. The delay was computed by applying the process described in Section 6.1. Two
relevant bus lines were studied: (i) line 109, traveling through 18 de Julio, 8 de Octubre,
and Camino Carrasco avenues, and (ii) line 181, traveling through Luis Alberto de Herrera,
Bulevar Artigas, and Bulevar España avenues.

7.1.1. Delay in Rush Hours vs. Delays in Non-Peak Hours

The first study consisted of finding the rush hours for the public transportation system
of Montevideo in May 2022. Figure 1 presents the results of the study.

Figure 1. Histogram of trips on the public transportation system of Montevideo in May 2022.

The histogram in Figure 1 shows three peaks: in the morning (7:00 to 9:00), in the mid-
day (12:00 to 14:00), and in the evening (16:00 to 18:00). Early morning hours (00:00–06:00)
were not considered in the study because the demand is negligible.

The mean delay values (in seconds) for all bus lines traveling through each of the
studied avenues are reported in Table 1. The number of lines traveling through each avenue
is reported in the second column in both directions, i.e., outward and inward from the city
center. Then, the delay values for both rush and non-peak hours are reported, along with
the mean headway of the lines and the percentage of the delay over the mean headway.
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Table 1. Comparison of delays for rush and non-peak hours.

Avenue Lines
Delay (s) Mean

Headway
Percentage

Rush Hours Non-Peak Rush Hours Non-Peak

18 de Julio 38 116.91 115.77 842.86 13.9% 13.7%
8 de Octubre 28 111.38 95.17 883.63 12.6% 10.8%
Camino Carrasco 14 95.60 77.69 913.59 10.5% 8.5%
Luis Alberto de Herrera 12 79.34 66.21 608.66 13.0% 10.9%
Bulevar Artigas 34 91.48 85.33 691.85 13.2% 12.3%
Bulevar España 12 92.77 75.17 882.77 10.5% 8.5%

The values presented in Table 1 indicate that the public transportation system in
Montevideo exhibits a reasonably good level of punctuality considering the medium to
high traffic levels of the city. The mean delays reported here suggest that the transportation
system operates properly in terms of adhering to the scheduled arrival times at the busiest
bus stops along the major avenues of the city. In the six main avenues of Montevideo,
the mean delays are all under two minutes. Considering the mean headway of the lines
traveling through these avenues, the delay represents between 8.5% and 13.9% of the
headway. These values are deemed acceptable for the public and show a reasonable level
of punctuality and efficiency in the public transportation system.

Comparison of the mean delays shows that although rush hours have longer delays,
the differences are not especially relevant. In certain locations, the difference between
the delays at rush and non-peak hours is negligible; the best case is 18 de Julio, with a
difference of just 1.14 s. The avenue with the highest delay value is Bulevar España, with a
difference of 17.6 s. However, these differences are not considered significant; they indicate
stable and reasonable performance on the part of the public transportation system and
effective operation of the bus lines considered in this study.

7.1.2. Delay on Weekdays vs. Delay on Weekends

Table 2 displays the mean delays during weekdays (Monday to Friday) and weekends
(Saturday and Sunday) as well as the corresponding mean headways for reference.

Table 2. Comparison of delays on weekdays and weekends.

Avenue Lines
Delay (s) Mean

Headway
Percentage

Weekend Weekdays Weekend Weekdays

18 de Julio 38 115.51 115.11 1051.88 11.0% 10.9%
8 de Octubre 28 101.32 110.50 1081.22 9.4% 10.2%
Camino Carrasco 14 84.96 111.97 1154.76 7.4% 9.7%
Luis Alberto de Herrera 12 71.91 74.91 707.75 10.2% 10.6%
Bulevar Artigas 34 87.59 75.44 847.61 10.3% 8.9%
Bulevar España 12 83.72 70.95 956.66 8.8% 7.4%

Overall, Table 2 shows that the mean delays are greater on weekdays than on weekends.
Notably, Camino Carrasco and 8 de Octubre avenues exhibit the most significant differences
in delay patterns between weekdays and weekends. These avenues are common ways
for people to travel eastwards on working days. Bulevar España and Bulevar Artigas
experience more considerable delays on weekends, which can be attributed to the high
traffic volume on those avenues during weekends. For instance, Bulevar España is situated
near the seafront, a popular and usually crowded place on weekends, leading to increased
traffic and delays. However, delays on the other avenues do not display a significant
difference between weekdays and weekends.
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7.1.3. Distribution of Delays over the Course of the Day for Weekdays and Weekends

Another relevant analysis involves studying the distribution of delays throughout a
day while differentiating between working days and weekends. This analysis can provide
a deeper understanding of the punctuality patterns within the public transportation system
of Montevideo, building upon the characterization provided in the previous subsection.

Figures 2 and 3 presents the histograms of delays throughout the 24 h period of one
day for working days and weekends, respectively. The study was performed for all lines
operating in the six major avenues in Montevideo described in the previous subsections.
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Figure 2. Histogram of delays over the course of 24 h for weekdays.
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Figure 3. Histogram of delays over the course of 24 h for weekends.

The distributions of the delay values per hour in Figures 2 and 3 highlight similar
patterns for both weekdays and weekends. Two peaks can be observed, differing slightly
in terms of their timing. On weekdays, the morning peak of delays occurs around 9:00,
whereas for weekends it takes place at 8:00. Similarly, the afternoon peak is shifted,
happening at 17:00 on working days and at 16:00 on weekends. During non-peak hours,
the distribution of delays is more evenly spread on weekends. The highest recorded delay
values were 14.8% for working days (during the morning peak) and 15.0% for weekends
(during the afternoon peak).

7.1.4. Analysis of Specific Bus Lines

The developed analysis is a useful tool for studying the efficiency and punctuality of
specific bus lines. This subsection analyzes two relevant bus lines in Montevideo: line 109
and line 181. Line 109 travels from Plaza Independencia (Downtown) to Parque Roosevelt
(East) and vice versa. Line 181 travels from Paso Molino (Northwest) to Pocitos (South)
and vice versa. These two lines are considered representative, as they connect the most
densely populated neighborhoods in the city.
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The study was performed for trips during peak hours on weekdays. The delay values
(in seconds) for lines 109 and 181 are reported in Table 3.

Table 3. Mean delay values for lines 109 and 181.

Line 109 Line 181

Avenue Delay (s) Headway Avenue Delay (s) Headway

18 de Julio 134.82 804.55 Luis Alberto de Herrera 53.24 384.83
Camino Carrasco 105.85 915.67 Bulevar Artigas 60.39 378.97
8 de Octubre 93.09 936.53 Bulevar España 57.52 372.65

Table 3 indicates that line 109 experiences significantly greater delays throughout the
entire trip compared to line 181, with delays exceeding two minutes on 18 de Julio Avenue.
However, when considering the mean headway, the delays of line 181, which are about
one minute on the three studied avenues, are about 15% of the headway, representing a
more significant relative delay than for line 109, which has delays of about 10% in Camino
Carrasco and 8 de Octubre. On average, line 109 spends the most time on 18 de Julio
Avenue compared to other avenues. This finding confirms previous analysis of public
transportation speeds on the main avenue of Downtown Montevideo [31]. The observed
delay on 18 de Julio is attributed to the high traffic volume on this busy thoroughfare,
which impacts the speed and efficiency of public transportation in the area. The maps
in Figures 4–6 highlight the bus stops with the highest delays along each studied avenue
for bus line 109. The legends for the corresponding maps provide the scales for the
observed delays.

Figure 4. Line 109: mean delays on Avenue 18 de Julio.

The graphic analysis in Figure 4 shows that the highest delays (almost three minutes)
are concentrated at the middle and eastern trams of 18 de Julio Avenue. Lower delays were
obtained for the westernmost section of 18 de Julio Avenue, the starting or ending stops
for line 109. This behavior is explained by the reduced impact of traffic and significantly
lower passenger demands in those trams for both outward and return trips. In Camino
Carrasco, Figure 6 shows that the most significant delays for line 109 were observed in the
central section of the avenue. In turn, Figure 5 shows that delays are reasonably evenly
distributed throughout 8 de Octubre, which is characterized by a mostly balanced and
steady passenger demand. The only exception is the northernmost bus stop for outward
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trips, located in the upper right sector of Figure 5, which is the only bus stop with a delay
higher than two and a half minutes.

Figure 5. Line 109: mean delays on Avenue 8 de Octubre.

Figure 6. Line 109: mean delays on Camino Carrasco.

Figures 7 and 8 display the stops of line 181 that have the highest delays along Luis
Alberto de Herrera, Bulevar España, and Bulevar Artigas avenues.
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The delay results reported in Figures 7 and 8 indicate that line 181 experiences rela-
tively low and uniformly distributed delays across all stops on the three studied avenues.
Differences between the actual and scheduled times are not significant, i.e., always lower
than one minute. These results confirm more steady and better quality service on line 181
in comparison with line 109.

Figure 7. Line 181: mean delays on Avenue Luis Alberto de Herrera.

(a) (b)

Figure 8. Line 181: mean delays on Bulevar España and Bulevar Artigas: (a) Bulevar España
(b) Bulevar Artigas.

7.1.5. On-Time Arrival Rate

A very relevant metric for evaluating the quality of service of public transportation is
the real time that a passenger waits for the bus after the fixed time of arrival at each bus
stop. This tardiness is important, as it is the most well appreciated subjective consideration
for passengers based on empirical evidence. The time that passengers spend waiting for
the bus is perceived as significantly more onerous than the time they spend traveling [44].
Steadiness is highly regarded by passengers, who find waiting less disagreeable when they
know how long they will be waiting. Thus, uncertainty and variations in bus arrival times
are perceived as negative by passengers [44,45].

The focus of this analysis is to examine the punctuality as characterized by the
OTAR metric. In this study, three different relevant values of the buffer time parame-
ter (OTAR buffer) are considered: two minutes, four minutes, and more than five min-
utes. For the purpose of this analysis, trips with a significant delay are defined as those
where buses arrived more than five minutes after or more than three minutes before
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the scheduled time. These specific thresholds (POSITIVE_SIGNIFICANT_BUFFER and
NEGATIVE_SIGNIFICANT_BUFFER, respectively) are defined as the parameters for the
calculation algorithm. The selected values are derived from the analysis of mean wait
times for passengers [33,46]. The values state that wait time limits that are considered
unacceptable if a public transportation system is to operate efficiently.

Table 4 reports the OTAR values (i.e., the percentage of trips experiencing a delay
exceeding the defined buffer values) and the percentage of significant delays for the studied
avenues in Montevideo.

Table 4. OTAR and percentage of trips with significant delays.

Avenue
OTAR Buffer

Significant Delay
2 min 4 min 5 min

18 de Julio 84.97% 95.51% 98.79% 2.21%
Camino Carrasco 87.08% 95.65% 98.50% 1.50%
8 de Octubre 89.44% 96.26% 98.83% 1.17%
Luis Alberto de Herrera 88.74% 95.53% 98.81% 1.19%
Bulevar Artigas 84.78% 94.80% 97.76% 2.24%
Bulevar España 91.04% 96.96% 98.90% 1.10%

The OTAR values in Table 4 show that the percentage of trips suffering from a two-
minute delay was between 8.96% (for Bulevar España) to 15.22% (for Bulevar Artigas).
Avenue 18 de Julio had a considerable number of trips (more than 15%) delayed more than
two minutes. The number of delays significantly decreases when considering a buffer of
four minutes, with values from 3.03% to 5.09%. Again, Bulevar Artigas and 18 de Julio
account for the higher number of delayed trips.

In turn, low overall percentages of significant delays (more than five minutes) were
obtained for all studied avenues. Bulevar Artigas (2.2%) and 18 de Julio (2.21%) exhibit a
higher incidence of delayed trips compared to the other avenues, with less than 1.5% of
trips experiencing a significant delay.

7.1.6. Analysis of GPS Records

Figure 9 illustrates the methodology for processing data to determine in-vehicle travel
times by associating GPS records with bus stops. The example focuses on stops along
bus line 2, a representative bus line that runs from Hospital Saint Bois, situated in the
northwestern part of the city, to Playa Malvín, located near the coastline in the southeastern
region. The blue dots on the figure represent GPS measurements, while the gray circles
indicate the buffered stops along the line. For each stop located within the proximity of at
least one GPS measurement (i.e., one or more blue dots lie within the corresponding gray
circle), the timestamp of the earliest GPS measurement is assigned.

When there are no GPS measurements available near a particular bus stop, the times-
tamp for that stop is estimated through interpolation. This method involves using times-
tamps for the previous and next stops that have GPS records as well as considering the
distance between stops along the route. Figure 9 highlights these special cases in yellow.

In certain cases, the last bus stop (depicted in orange) may not have GPS data associ-
ated with it. This can happen if the driver turns off the GPS unit too early, causing the end
of the trip to go unrecorded. When this occurs, the time required to travel to each stop is
estimated using the theoretical timetable and the GPS timestamp most recently assigned to
stops on the line.

The data processing yielded travel time estimates for a total of 8224 trips, correspond-
ing to 257 distinct bus lines. In most cases (67.5%), the travel times for individual bus
stops were directly estimated when there was a corresponding GPS measurement available.
For 21.3% of travel times, interpolation was utilized using nearby GPS measures, while
11.2% of travel times were extrapolated using timetable data.
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Figure 9. Assignment of travel times to stops on the final stretch of line 2 from Hospital Saint Bois to
Playa Malvín.

7.2. Deviations from the Scheduled Travel Times

By comparing the estimated travel times obtained from bus location data with the
scheduled timetables, it is possible to evaluate the deviations that may arise due to various
factors such as passenger demand variations, unforeseen route changes, traffic congestion,
and other influences.

The histograms in Figure 10 illustrate the variation (delay) between the actual travel
time, estimated as explained in the previous subsection, and the theoretical scheduled travel
time. The results correspond to each individual trip within the dataset under study (a) and
the median of the travel time differences for each line (b). Trips or bus lines with a total
travel time exceeding the scheduled one are indicated by positive values, while negative
values represent trips or lines with a travel time shorter than the scheduled time.

(a) (b)
Figure 10. Differences between the real and scheduled travel times (a) per trip and (b) median per line.

The findings suggest that the majority of trips stay close to the scheduled travel time
from origin to destination, with a mean difference of under two minutes from the timetable.
When examining the first quartile (25th percentile) and third quartile (75th percentile),
the variances are 3 and 4.3 min, respectively. Although these variances may seem minor,
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they can have an impact on passengers, who might miss their bus and then have to wait for
the next one (even almost a full headway), especially for those performing multi-leg trips
involving several bus lines. Notably, there were extreme cases where trips arrived 29.6 min
before the scheduled time or 25.6 min after the schedule. These cases can be attributed to
special events happening on those particular bus lines.

The analysis of the median difference values categorized by bus line indicates that
whereas most lines adhere to the total travel time in the schedule, certain lines exhibit
notable schedule deviations. For instance, line 137 (origin: Paso de la Arena) consistently
arrives at Plaza de los Treinta y Tres twelve minutes ahead of its scheduled time on average.
Another is line L1, which covers a short distance between Paso de la Arena and Pajas
Blancas and tends to arrive 13 min later than its scheduled time on average.

In addition to examining the general variances in travel duration across various trips
and lines within the system, it is possible to evaluate the specific travel times of individual
trips. Figure 11 illustrates the variance between estimated and scheduled travel times for
a trip on line 181. The same data are presented in Figure 12 overlaid on the street map of
Montevideo, showing the bus stop locations. Each bus stop is color-coded based on the
difference (absolute value) between the time to travel to each stop and the time specified in
the schedule.

Figure 11. Comparison of travel times (estimated vs. scheduled) for line 181.

Figure 12. Absolute difference of travel times (estimated vs. scheduled) for a trip on line 181.

This scenario clearly shows that using GPS data allows for more precise estimation
of travel times and delays/deviations from the theoretical schedule than only using ticket
sales data. In the studied example, the time gap between stops for the trip on line 181 when
averaged across all stops is 5.3 min away from the scheduled time. This value is significantly
greater than the one computed using ticket sales data. Furthermore, the difference grows as
the route progresses until reaching a maximum value of almost 16 minutes late compared
to the schedule. The results computed during the morning peak period are more in line
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with those computed using ticket sales data. Consequently, in this scenario a significant
occurrence of bus bunching takes place, negatively impacting the service quality and
reliability provided to the public.

7.3. Operational Speed

The estimated travel times can be utilized to calculate various indicators; one partic-
ularly valuable indicator for transport operators and authorities is the operational speed.
The computed operational speeds are presented in Figure 13 for all trips in the considered
dataset. The figure shows statistical values along with a chart showcasing the distribution
of operational speeds. All results are expressed in km/h.

metric value

count 8195.00

minimum 7.70
25% percentile 15.56
50% percentile 17.23
75% percentile 19.55
maximum 40.06

mean 17.79
std. deviation 3.40

(a) (b)

Figure 13. Operational speed: (a) descriptive statistics and (b) histogram.

The results depicted in Figure 13 demonstrate that the operational speed at which the
analyzed trips were conducted is almost 18 km/h. This finding aligns with performance
metrics disclosed by authorities for 2018 and 2021 (pre- and post-pandemic).

Among the trips observed, the highest operational speed was 40 km/h for line L13,
traveling in the city suburbs. Conversely, the slowest value was 7.7 km/h for line L31.
Notably, for that line a particular trip required nearly 17 min to cover approximately just
two kilometers of the route. It is worth mentioning that short local lines exhibit greater
operational speed variability. The median value was 17.23 km/h for a trip on line 147,
a route with 75 stops. In this specific trip, it took approximately 75 min to cover the
entire route.

Figure 14 presents descriptive statistics and the histogram of the dispersion OS.

indicator dOS

count 8195.00
mean 22.27
std. deviation 3.40
minimum 0.00
25% percentile 20.51
50% percentile 22.83
75% percentile 24.50
maximum 32.36

(a) (b)

Figure 14. OS dispersion: (a) descriptive statistics and (b) histogram.

The results in Figure 14 reveal that the majority of lines exhibit substantial dispersion
of OS values, with a mean of 22.27 km/h. This outcome is primarily influenced by high OS
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values observed for shorter lines, which contribute to extreme (maximum and minimum)
OS values.

7.4. On-Time Arrival Rate

To calculate the OTAR metric, the buffer time first needs to be computed. The buffer
time establishes the allowable delay limit for performing a trip based on the scheduled
time. Table 5 reports the statistical values for the buffer time of the bus lines in the analyzed
case study. This analysis shows that the mean acceptable delay value is 11%.

Table 5. Buffer coefficients for OTAR: descriptive statistics.

Indicator Buffer

count 257.00

min 0.00
25% 0.08
50% 0.11
75% 0.14
max 0.38

mean 0.11
std 0.06

OTAR values were calculated for the bus lines in the considered scenario using the
computed buffer coefficients. The results and histogram are shown in Figure 15.

indicator OTAR

count 257.00
mean 0.64
std. deviation 0.27
minimum 0.00
25% percentile 0.50
50% percentile 0.74
75% percentile 0.84
maximum 1.00

(a) (b)

Figure 15. OTAR results for bus lines: (a) indicators and (b) histogram.

Based on the reported information, the mean OTAR for the bus lines is 0.64 (standard
deviation 0.27). A considerable number of lines have OTAR 0.6, indicating that no trips
for those lines were able to complete their trips within the scheduled time even when
taking into account the tolerance time. These extreme cases emphasize the importance of
authorities reviewing and adjusting the predefined schedules in order to accurately reflect
operational realities. These results showcase the efficacy of our proposed methodology for
identifying abnormal situations that affect public transportation.

7.5. Additional Travel Time over Automobile

Figure 16 displays the ATToA metric values for a trip taken on line 185. This line
exhibits an operational speed that is above the average speed of all lines in the city. This
analysis is indicative of similar assessments conducted on other “fast” bus lines within the
city. The calculated ATToA values are reported for 17 stops spaced evenly along the route.
The travel times for automobiles were determined using the Google Maps API.
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Figure 16. ATToA of line 185 (origin Casabó, destination Pocitos).

The results presented in Figure 16 demonstrate a consistent pattern. The bus proves to
be highly efficient in terms of travel time when moving between close stops, as evidenced
by an ATToA below 1.0. This suggests that the bus travels faster than an automobile in these
situations. As the trip distance increases, the values gradually rise to a reasonable range
of 1.5× to 1.6× longer travel time compared to driving. However, there are exceptions at
stop #46, where the ATToA approaches 2.0, with the worst ATToA of 2.2 observed for a trip
originating at stop #21. This outcome is influenced by two primary factors. First, the route
takes a significant detour between stops #21 and #46, affecting its directness, whereas using
an automobile on a direct avenue (Bulevar Artigas) would be faster. Additionally, stop #46
is situated after a lengthy red light, allowing the left turn of buses onto Bulevar Artigas.
Despite suffering from this delay, the line was able to return to a typical operational speed,
with the ATToA decreasing to a reasonable time factor of 1.6× over automobile beyond bus
stop #46.

In general, the reported ATToA values align with those found in other bus networks
within comparable cities such as Amsterdam, The Netherlands and Stockholm, Sweden.
The values are lower than ATToAs reported in larger cities such as Sydney, Australia and
São Paulo, Brazil, where mean ATToA up to 2.6× have been reported.

8. Conclusions

In this article, we have proposed an urban data analysis methodology for characteriz-
ing the travel times of buses in public transportation systems.

The proposed methodology combines three main sources of data to estimate bus
travel times. The first is open-source data describing the routes and stops in the public
transportation system and the road infrastructure. These data allow a comprehensive map
of the public transportation system to be created and potential bottlenecks or other issues
that may affect travel times to be identified. The second source of data is open-source
data from ticket sales, which are typically available from authorities and transportation
companies. In out case, these data were anonymized to ensure that they contained no
user-specific information. The ticket sales data are used to analyze patterns of usage and
demand in the public transportation system. The third source of data are real-time bus
location data obtained from GPS units installed on buses, which are typically proprietary.
These data are used to track the location and movement of public transportation vehicles in
real time, allowing for the estimation of travel times between different stops along a route.
By combining these three sources of data, the proposed model is able to provide precise
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travel time estimates and to identify potential issues that may negatively affect the quality
of the public transportation system.

To efficiently solve computationally intensive data processing tasks involving millions
of records, our proposed methodology uses parallel-distributed computing techniques.
Data processing tasks are broken down into smaller and more manageable pieces, then
processed simultaneously using multiple computing resources on a supercomputing plat-
form. The processing time for large datasets is significantly reduced, allowing for faster and
more efficient analysis of the data, which is particularly important when dealing with huge
amounts of data that need to be processed in real time. This parallel processing additionally
provides scalability, meaning that the model can easily handle increasing amounts of data
as the transportation system grows and more data become available.

The most relevant quantitative findings in the case study of the public transit system
in Montevideo, Uruguay indicate a reasonably good level of punctuality in the system.
Delays are between 10.5% and 13.9% during rush hours and between 8.5% and 13.7%
during non-peak hours. Delays are distributed similarly for working days and weekends.
In terms of speed, our results show that the average operational speed is close to 18 km/h,
which is consistent with figures reported by the city authorities. The data show that short
local lines tend to have greater variability in their operational speeds.

Overall, the use of computed metrics provides valuable information for operators
and policy-makers, allowing them to make informed decisions about enhancing the public
transportation system and providing better service to citizens. The proposed methodology
represents a promising approach for future research in this area.

The future work involves expanding the data analysis process and utilizing the
methodology and calculated results to address pertinent problems in public transportation.
To improve the data analysis process, future work could consider data from different peri-
ods and process larger amounts of historical data to identify patterns. The application of
estimated travel times and metrics presents several areas for future work, such as synchro-
nization of timetables and transfers [33,46,47], bus network analysis and redesign [48,49],
developing plans for sustainable mobility plans [50,51], multi-objective optimization of
transportation processes [52,53], public transportation and health issues [54], and comput-
ing accessibility indicators for opportunities in the city using public transportation [55].
Overall, our future work around the proposed model will aim to enhance its usefulness in
solving relevant issues in public transportation while improving its accuracy and efficiency.
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