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Abstract: Air pollution is one of the major problems in today’s urban areas. With increasing develop-
ment and the need for the transport of goods and people, it has become imperative to seek sustainable
urban mobility solutions. The impact of restrictive COVID-19 pandemic measures provides a unique
insight into the possible reductions in air pollution. This paper presents a case study on the city
of Skopje, North Macedonia, and attempts to identify the effect of traffic emissions on air quality.
Resultant correlation analysis and linear regression models show the impacts of multiple factors
contributing to air pollution. Finally, a discussion on the impact of COVID-19 measures on air
pollution is provided. The main findings of this research are the observed drop in air pollution levels
during COVID-19 measures, the effects on air pollution models, and the identification of primary
pollutants in the city of Skopje.
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1. Introduction

The mobility of goods and people is one of the major contributors to the development
and prosperity of urban areas. In countries without developed sustainable public transport
infrastructure, most people commute by using private vehicles, thereby causing increased
levels of congestion. With increased congestion, vehicles spend more time in intersection
queues with their engines turned on and emitting pollutants. With increasing pollution
levels, the air quality and living conditions continuously degrade. Obvious solutions to
this growing problem are investment in sustainable modes of public transport, switching
to alternative fuels, and improving the existing transport infrastructure. Unfortunately, it is
challenging to persuade both the public and regulatory officials to act on this matter. One
obstacle is the difficulty in estimating the actual amount of air pollutants that are directly
caused by traffic, as multiple other factors, such as industry and meteorological conditions,
can affect the measured pollution levels. With proper assessment of traffic-induced air
quality degradation, future sustainable mobility concepts can be developed. With the
identification of key problem areas or problematic time intervals, possible solutions will be
easier to develop.

Since the year 2019, a global pandemic of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) causing the coronavirus disease of 2019 (COVID-19) has
severely affected all industrial and social elements of human life. Various restrictive
measures have been imposed to differing degrees throughout the world to deal with the
pandemic. The imposed measures range from simple recommendations to increase hygiene
levels to even full national lockdowns and restrictions on movement and mobility. The
full impact of both the pandemic and the imposed measures is yet to be determined,
but the effect of restrictive measures on air quality in urban areas can be analyzed. This
took place in the city of Skopje, North Macedonia, using existing traffic and air-quality-
measurement instruments, and with highly restrictive measures on mobility. The main
goal and research objective of this paper is to model air pollution with respect to traffic

Sustainability 2023, 15, 1370. https://doi.org/10.3390/su15021370 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15021370
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4437-4525
https://orcid.org/0000-0002-2083-0672
https://orcid.org/0000-0002-3832-6845
https://orcid.org/0000-0001-8675-5778
https://doi.org/10.3390/su15021370
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15021370?type=check_update&version=1


Sustainability 2023, 15, 1370 2 of 21

flow and meteorological conditions. A research question arose on how the COVID-19-
related restrictive measures impacted the air quality and what their impact was on the
model’s coefficients.

This paper is comprised of six sections. After the introductory section, the relevant
literature is reviewed in section two. Section three explains the methodology and data
used for processing, correlation, and regression analysis. In section four, the results are
presented, followed by a discussion in section five. The final section concludes the paper
with a commentary on possible improvements and future work.

2. Literature Review

In the available literature, the transport sector has long been associated with rising
air pollution in urban areas [1]. The chemical properties of internal combustion engines
are to blame for rising CO and NOx levels, as those gasses are byproducts of their general
operation. In addition, a lot of particulate matter (PM) has also been attributed to the
transport sector. Many adverse health effects are attributed to rising air pollution levels,
such as respiratory problems, cardiovascular health decline, and even cancer [2]. The
technological and technical development of engines eventually allowed reduced emissions,
but it remains unlikely that the zero emissions goal will ever be met while combustion
engines are in operation [3]. With increasing norms and regulations in developed countries,
a switch toward the electrification of transport has started [4]. Unfortunately, developing
countries are not only slow to introduce electric vehicles, but also, the vehicles in those
countries tend to be older, generating increased emissions.

The city of Skopje, the capital of North Macedonia, which is a developing country, is
known for high levels of air pollution. Multiple studies on air quality in Skopje have been
conducted supporting this situation. The research in [5] identified air pollution as a major
environmental health problem in Skopje. In addition to health problems, the economic
and social costs of pollution were also considered to be very high. Studies of Skopje air
pollution [5–7] identified two key components of pollution in Skopje. The first component
is the human influence in the form of heavily congested traffic flow, residential heating
systems, and industrial activity in the city. The second component is the geographical
nature, since the city is located in a river-shaped valley surrounded by mountains. This
has the side-effects of a low wind speed, high humidity during winter, and temperature
inversions which trap air pollutants in the city.

Since the start of the COVID-19 pandemic, the lockdown’s effects on air pollution
have been closely monitored by researchers. The impact of COVID-19 measures in Qatar
was discussed in [8], and it was observed that overall, the traffic demand was reduced
by 30% while measures were active. Side-effects of this reduction the reductions in traffic
violations and crashes, by 73% and 37%, respectively. In [9], the impact of COVID-19
measures on air quality in Almaty, Kazakhstan, was analyzed. The paper noted that there
were substantial reductions in CO, PM2.5, and NO2 concentrations during the lockdown.
However, it is noted that even in traffic-free conditions, during the lockdown, the overall
air quality remained low, as there were many other sources of pollution in the city. In [10],
the authors discussed a comprehensive study of private vehicle restrictions policies in
49 cities in China. A noticeable effect on air pollution was observed, and it is discussed
that policies implemented for COVID-19 spread reduction could also be implemented for
the purpose of air pollution improvement. The research in [11] observed reductions in
congestion, mobility, and NO2 during the lockdown across 22 US cities using regression
models. The research was also conducted in smaller cities, as reported in [12], where the
city of Maribor, Slovenia, was observed during COVID-19 lockdowns. It was reported that
the reduction in NO2 was smaller than the reduction in traffic volume due to a shift to
more NO2-dominant traffic sources, such as diesel-powered heavy-goods vehicles, which
remained in operation even during the lockdown. A study in [13], which also focused on
the city of Maribor, observed a similar reduction in PM particle concentration.
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In the available literature, only two papers focused on the effects of COVID-19 mea-
sures on air quality in Skopje. The first paper [14] provides an early analysis of air quality
state following the most restrictive part of 2020’s COVID-19 measures. The results show
that there was an reduction in air pollution during the lockdown period, but there is no
direct comparison with traffic and meteorological data. The second paper [15] analyzed the
impact of COVID-19 measures in Skopje on noise pollution levels, observing reductions.
The reduced noise levels were in part caused by the reduced road traffic, but a direct
correlation or further analysis was not provided.

A systematic review of COVID-19 measures on air quality presented in [16] revealed
that in most study areas around the world, there was a general improvement in air quality
during the imposed lockdowns. In general, it was observed that the values of NO2 and
PM10 concentrations decreased significantly. The value of O3 concentration usually showed
a small increase. The CO levels were more diverse, depending on the study location.
In [16], the authors also identified that more studies are needed, as each study location had
a unique combination of policies, meteorological conditions, geography, and air pollution
levels. In addition, an analysis of the imposed restrictions impact on air quality beyond the
first lockdown should be conducted.

Considering the literature review above, several research gaps were found that are
addressed in this paper. The first identified research gap is that most research on the impact
of COVID-19 on air quality has focused on brief periods of strict lockdowns, usually at
the beginning of 2020. Our study included data from two years before COVID-19 and the
entirety of 2020. The second identified research gap is that there has been no analysis of
how regression models, frequently used in periods before COVID-19 to model the relation
of traffic and air pollution, were affected by COVID-19. In our study, a comparison is
made between regression models created from data before COVID-19 measures and after.
The main contribution of this paper is the analysis of the correlation between air quality
and traffic flow, with a special emphasis on outlier behavior caused by COVID-19-related
restrictive measures using real data collected in the city of Skopje, North Macedonia.
For the analysis, the traffic, air quality, and meteorological data were collected from the
beginning of 2018 until the end of 2020. While this paper deals with the impacts of COVID-
19 measures on traffic and air quality, it should be noted that other effects of COVID-19
measures (political, economic, and social) are beyond the scope of this paper and will not
be discussed.

3. Data and Methodology

In this section, the used data sets with initial observations and methodology are presented.

3.1. Data Sources

The data collected for the purpose of this research consisted of several datasets com-
prising data about traffic flow, air quality, and meteorology. In addition, characteristic dates
of COVID-19-related restrictive measures in North Macedonia were also recorded.

3.1.1. Traffic-Flow Dataset

The first dataset is related to the measured traffic flow through intersections in the city
of Skopje obtained with the courtesy of the Centre for Traffic Management and Control—
Skopje. The dataset consists of the number of vehicles at each intersection with one-
hour resolution for one full week in each month of 2018, 2019, and 2020. The initial
preprocessing was used to remove data on days with missing measurements. After the
initial preprocessing, four intersections out of X available were selected for further analysis.
The four selected intersections were chosen according to the following selection criteria:
(i) measuring sensors in operation above 80% of the time; (ii) intersections on crucial city
transport corridors or with significant traffic flow; (iii) the intersection’s distance from
the air quailty measurement station. Locations of the chosen intersections are shown in
Figure 1. The measurements of intersection I1 only include measurements from three
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intersection inputs, as the measuring sensor for the fourth input was not operational for
most of the data collection period. Summary statistics of the filtered traffic dataset are
shown in Table 1. In addition to the traffic-flow dataset, the general statistics of registered
road vehicles regarding their fuel type and age are shown in Table 2.

Figure 1. Map of North Macedonia (left) and the city of Skopje (right), with micro-locations of traffic
and pollution measurements. Orange roads indicate main city corridors, yellow roads are main streets.

Table 1. Traffic-flow dataset summary.

Intersection Unit Number of
Measurements Mean Min Max Std. Dev.

I1 veh/h 5535 2224.4 7 5514 1524.9
I2 veh/h 5015 1569.6 2 3921 1023.5
I3 veh/h 5483 1731.1 2 3878 1280.2
I4 veh/h 5588 2470.2 5 6191 1622.9

Table 2. Fuel type and average age of registered vehicles in Skopje per year.

Fuel Type Registered Vehicles per Year
2018 2019 2020

Gasoline 92,232 87,044 87,236
Diesel 78,836 82,591 89,513
Gasoline-gas 2205 1938 1856
Electricity 49 77 92
Alcohol 1 1 0

Total 173,421 171,731 178,778
Average age [years] 19.1 19.3 19.4

3.1.2. Air-Quality Dataset

The data regarding air-quality measurements were obtained from the Ministry of
Environment and Physical Planning of North Macedonia. The data were recorded on a site
several meters away from intersection I1, which is one of those featured in the traffic-flow
dataset. The dataset consists of measurements of air pollutants: carbon monoxide (CO),
nitrogen dioxide (NO2), ozone (O3), and particulate matter of 10 µm (PM10). The data were
collected at one-hour resolution every day in 2018, 2019, and 2020. The summary statistics
of the air-quality dataset are shown in Table 3.
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Table 3. Air-quality dataset summary.

Pollutant Unit Number of
Measurements Mean Min Max Std. Dev.

CO mg/m3 23,533 0.7344 0.0116 10.5444 0.8102
NO2 µg/m3 19,132 41.1042 0.0191 252.8439 26.0108
O3 µg/m3 25,786 29.9701 0.2600 149.1398 26.7427

PM10 µg/m3 23,689 60.0136 0.2300 816.7890 58.6379

3.1.3. Meteorological Dataset

The third dataset used was for the meteorological measurements. The data were ob-
tained from the Copernicus project. The dataset consists of measurements of meteorological
conditions in the city of Skopje: wind speed, the temperature at two meters, precipitation,
snow depth, and snow cover. The data were collected in one-hour resolution for all days of
the years 2018, 2019, and 2020. The summary statistics of the meteorological dataset are
shown in Table 4.

Table 4. Meteorology dataset summary.

Measurement Unit Number of
Measurements Mean Min Max Std. Dev.

U Wind m/s 26,087 0.3258 −3.3958 3.5667 0.8421
V Wind m/s 26,087 −0.3468 −5.4112 3.9750 1.0495

Temperature ◦C 26,087 13.6590 −20.8945 38.1836 9.4748
Precipitation m 26,087 0.0869 0.0000 3.2916 0.2487
Snow depth m 26,087 0.0099 0.0000 0.2686 0.0335
Snow cover % 26,087 7.5728 0.0000 100.0000 21.3042

3.1.4. COVID-19 Data and Measures

In addition to the collected data about traffic, air quality, and meteorology, a record
was made of all characteristic events regarding the spread of COVID-19 in Skopje during
the year 2020; some important global events were also included for clarity. Key dates and
measures are presented in Table 5. The most important COVID-19 events in the scope of
this paper are the imposed curfews and restrictions on mobility, as those directly impacted
the measured traffic flow and emission of air pollutants from vehicles.

Table 5. Major COVID-19 events and measures in North Macedonia and the world.

Date Event/Measure

30 January 2020 World Health Organization (WHO) declares COVID-19 a pandemic
26 February 2020 First reported COVID-19 case in North Macedonia

16 March 2020 International airports Skopje and Ohrid closed
Borders closed for foreigners

18 March 2020 State of emergency declared
22 March 2020 First reported COVID-19 fatality in North Macedonia

Curfew from 9 p.m. to 6 a.m.
8 April 2020 Curfew from 4 p.m. to 5 a.m. with a complete ban on movement on weekends
22 April 2020 Curfew from 7 p.m. to 5 a.m.
27 May 2020 Curfew lifted
8 June 2020 Curfew from 9 p.m. on Thursday to 5 a.m. on Monday

16 June 2020 Curfew lifted

3.2. Methodology

To create a linear regression model of air pollution, the methodology consisted of
several steps. The first step was to perform data preprocessing and initial observations
of data trends, including correlation analysis between all collected variables. Following
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the initial observations, a frequency analysis in the frequency domain was used to identify
underlying high amplitude frequencies in data. Finally, several regression models are
suggested, considering the identified trends in the data. The entire methodology can be
summarized with the flowchart shown in Figure 2.

Traffic flow
dataset

Air quality
dataset

Metorological
dataset

Pre-processing

Pre-processing

Intersection
selection

Combined
dataset (Traffic,

Air, and
Meteorology)

Correlation
analysis

Frequency
analysis

Covid-19
dataset

Regression
modelling

Pre-processing

Figure 2. Flowchart of the methodology.

3.2.1. Initial Observations and Preprocessing

The general behavior of monthly mean traffic flow is shown in Figure 3. The data show
the clear impact of the COVID-19 curfews shown in Table 5 on the traffic flow at all four
intersections. It is also noted that for intersections I1 and I3, the general monthly behavior
of traffic remained the same for all three observed years, excluding the period from April to
June during which the curfews were in effect. For intersections I2 and I4, a significant drop
in traffic flow was seen during the year 2020. Considering the data in Table 2 showing that
the number of registered vehicles was higher in 2020, it is the opinion of the authors that
a redistribution of traffic flows occurred between years 2019 and 2020, which caused the
drop in mean traffic flow through intersections I2 and I4. The cause for this redistribution
could either be due to COVID-19’s effects on driving behavior or infrastructure changes.
This possible redistribution is beyond the scope of this paper but should be explored in
future analysis. Finally, it can be observed that, in general, the traffic flow tends to decrease
from July until September during the summer season.

Monthly mean air-quality measurements are shown in Figure 4. From the figure,
it can be observed that there are strong seasonal patterns in air-quality measurements.
The concentration significantly increases during winter periods for CO and PM10. This is
probably due to emissions from heating systems. The values of O3 are significantly higher
during summer months which is expected since ground-level O3 generation is primarily
caused by the decomposition of NO2 and Volatile Organic Components (VOC) under the
effects of sunlight. The same effect is the probable reason why NO2 levels are somewhat
higher during winter periods. Considering the impact of COVID-19 curfews, the CO and
PM10 levels are slightly below average during 2020, but since there is a high variance in
the data measurements, this effect is hardly visible. The NO2 levels do show a significant
drop during curfew periods and a gradual return to previous levels near the end of the
year 2020. The concentration of O3 was increased in 2020, which is expected considering
the usual inverse correlation with NO2 [17]. The same increase in O3 concentrations in 2020
was observed in [18,19] where the increase in O3 is attributed to lower O3 titration by NO
as a consequence of large reductions in NOx. Readers more interested in the interaction of
O3 and NO2 are referred to [20].
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Figure 3. Mean monthly traffic flows on intersections for years 2018, 2019 and 2020.

To build a regression model, it is useful to identify correlations between all collected
data variables. The correlation matrix of Pearson coefficients is shown in Figure 5. Strong
positive correlations were observed between traffic flows at all four intersections, which
was expected since intersections are geographically close to each other and capture the
same day-to-day human behavior trends. A moderate positive correlation was observed
between the NO2 concentration and traffic flows, indicating a possible causal relationship.
Concentrations of PM10 and CO have a strong correlation, indicating that the sources of their
emissions could be the same. Temperature correlates with O3 concentration, which was
expected, as O3 levels are higher during the day and during summer. Negative correlations
are observed between the Wind U component and traffic flows. Considering the general
wind speed in Skopje, it is unlikely that there is any connection between wind direction
and traffic flows; thus, this negative correlation is not considered significant. Negative
correlations can also be observed between O3 and CO concentrations, which is probably the
result of CO having high winter values and O3 having high summer values. The negative
correlation between O3 and NO2 concentrations is probably the result of their diurnal
patterns and their mutual chemical relationship. No correlation can be observed between
CO concentration and traffic flows, which might indicate that there are no CO emissions
from traffic. This is probably not the case, and the low correlation values are the results of
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high variance in CO measurements and a strong yearly period dynamic. Other variables
mostly have very low positive or negative correlations and are not considered significant.
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Figure 4. Mean monthly concentrations of pollutants for years 2018, 2019 and 2020.

When analyzing any kind of air pollution measurements, it is important to identify
if the pollution source is locally emitted or carried by the wind from an external far away
location. A useful tool to determine the pollution source direction is the bivariate polar
plot of pollutant concentration and wind speed and direction. Such a plot is shown in
Figure 6. The plots in Figure 6 are separated into four quarters of the year to separate the
seasonal influence. It should be noted that regardless of the quarter, the wind speeds in
Skopje are relatively low due to its basin geographical location. Due to this, the effects
of local pollution generators are more intense. From the plots of CO and wind, it can be
observed that the highest values of CO occur in winter periods, particularly when the
wind is blowing from north to east or south–east. The former direction corresponds to
the location of a steel processing plant (2.8 km distance), and the latter corresponds to the
location of a thermal power plant (1.2 km distance). For NO2, there are no visible patterns
present indicating local emissions. For O3, it is observed that at wind very low wind
speeds, the concentration has lower values. This can indicate that either most observed O3
is produced elsewhere or that O3 production is hindered by a local presence of NO2. Some
rare occurrences of high O3 levels could also be the result of stratospheric O3 breaches.
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For PM10, the pattern points to local emissions with a slight influence of north–east and
south–east winds, similarly to CO observations.
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Figure 5. Pearson correlation matrix of all data variables.

3.2.2. Frequency Analysis

Since the collected data are in the form of a time series, frequency analysis can be used
to identify the short and long-term fluctuations in the data. The short-term fluctuations usu-
ally depend on local phenomena such as traffic emissions, and the long-term fluctuations
correspond to seasonal variations. The time-series data need to be complete to perform
the frequency analysis. Hence, the missing values are filled with the nearest not missing
value. Missing values were not filled using interpolation, as there are several wide gaps in
the data, which could possibly introduce false signals in the data. To perform the analysis,
a time series Xt with length N can be represented as a linear combination of harmonic
functions with frequencies f j and amplitudes Aj and Bj, as shown in Equation (1).

Xt = µ +
N/2

∑
j=1

[
Ajcos(2π f jt) + Bjsin(2π f jt)

]
,

t = 1, 2, . . . , N,

(1)

where µ is a constant, N is the length of the time series Xt, and f j are frequencies related to
the N according to:

f j ≡ j/N, 1 ≤ j ≤ N/2. (2)



Sustainability 2023, 15, 1370 10 of 21

Jan-Mar Apr-Jun Jul-Sep Oct-Dec

CO E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

0

0.5

1

1.5

2

C
O

 c
o

n
c
e

n
tr

a
ti
o

n
 [

m
g

/m
3
]

NO2 E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

0

5

10

15

s
q

rt
(N

O
2
) 

c
o

n
c
e

n
tr

a
ti
o

n

O3 E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

-1

0

1

2

3

4

5

lo
g

(O
3
) 

c
o

n
c
e

n
tr

a
ti
o

n

PM10 E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

E

NE

N

NW

W

SW

S

SE

0

2

4

6

WS

-1

0

1

2

3

4

5

6

lo
g

(P
M

1
0
) 

c
o

n
c
e

n
tr

a
ti
o

n
Figure 6. Bivariate polar plots for hourly mean pollutants’ concentration levels. CO concentration
in µg/m3; NO2 concentration shown as sqrt(NO2); O3 concentration shown as log(O3); PM10

concentration shown as log(PM10); WS—wind speed (m/s).

Since all collected data are sampled hourly, the highest frequency that can be analyzed
is a period of 2 h ( f = 0.5 1/h) according to the Nyquist–Shannon sampling theorem,
which states that the data sample rate must be at least twice the highest frequency to
accurately reproduce the signal. To separate the time-series data into a linear combination
of harmonic functions, the fast Fourier transform (FFT) algorithm was used, and the results
are shown in the form of a periodogram in Figure 7 with power spectral densities (PSDs)
for pollution data and Figure 8 for traffic data. To better identify key frequencies, the
periodograms were smoothed using Gaussian smoothing with a window size of 200 data
samples to reduce the effect of noise. In pollution data periodograms, strong amplitudes
were detected for frequencies with periods of 24, 12, 8, and 6 hours. High amplitudes were
also observed in the low-frequency range, which corresponds to a period of one year. Small
peaks were observed in higher frequencies but are not considered significant. In traffic data
periodograms, strong amplitudes were detected for the same frequencies as in the pollution
data. However, higher frequencies in traffic data show significant oscillations for higher
harmonic periods of 4.8, 4, and 3.43 h. The identified peaks show harmonic properties,
which means that a fundamental frequency or the lowest harmonic can be identified with a
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period of 24 h. Since the time series of both pollution and traffic data are composed of a
fundamental frequency with a period of 24 h and corresponding harmonic frequencies, the
phase shift of each frequency can be calculated to identify if there is a time delay between
them. The calculated phase shifts of fundamental frequencies are shown in Table 6. The
phase shift calculated in radians can be translated to a time shift for easier interpretation
of how the signals are delayed from one another. From the table, it can be observed that
intersection data have similar phase shifts, which was expected considering the correlation
analysis in the previous section. The phase shift of O3 data are also similar to intersection
data, which explains the high correlation observed earlier. The phase shift of CO shows
that in regard to intersection data, it was delayed by six to eight hours. A similar delay
was observed between PM10 and intersection data. The phase shift of NO2 shows that it is
delayed by two to four hours in regard to intersection data.
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Figure 7. Power spectral densities (PSDs) for hourly pollution concentration measurements.
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Table 6. Phases and time shifts of time-series data at the fundamental frequency with a period of 24 h.

Time Series Phase Shift [rad] Time Shift [h]

I1 2.2678 8.6622
I2 2.6356 10.0674
I3 2.6238 10.0221
I4 2.4597 9.3953

CO 0.6291 2.4031
NO2 1.7058 6.5159
O3 2.5671 9.8057

PM10 0.7897 3.0165
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Figure 8. Power spectral densities (PSDs) for hourly traffic flow measurements.

3.3. Regression Modeling

Considering the literature review and the initial observations of the data from the
previous section, it should be possible to construct a linear regression model to model
air pollution. Considering COVID-19 restrictions’ impact on traffic flow and possibly air
pollution, three separate groups of regression models were analyzed. The first group only
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used the data from the years 2018 and 2019. The second group used only the data from 2020,
including the periods with COVID-19 restrictions. The third group used all available data.
By comparing the obtained regression model coefficient from the three groups, the impacts
of COVID-19 measures can be analyzed appropriately. The rationale behind this approach
is that values measured during COVID-19 measures would usually fall into an outlier
category and might be overlooked by traditional analysis. In all models, the dependent
variable was one of the observed pollutants. The independent variables was traffic and
meteorological data or their combinations. The impact and significance of independent
variables was analyzed with a t-test with a significance level of 95%.

4. Results

In this section, the results of several proposed linear regression models are presented
with a clear distinction of how the regression coefficients change depending on the three
identified data groups.

4.1. Modeling of CO Pollution

Taking into account the high variance of CO data and possible resultant heteroscedas-
ticity, the CO data were log transformed to reduce the variance of residuals in the regression
model. Since there is a high correlation between traffic flows at all identified intersections,
only the data from one intersection can be included in the model. For this reason, the
data from each intersection were combined using the mean average to obtain the general
behavior of the traffic flow. The results of the proposed linear regression models of ln(CO)
are presented in Table 7. The calculated regression coefficients and associated metrics of
the ln(CO) regression model are presented in detail for each model in Tables A1–A6 in the
Appendix A of this paper.

Table 7. Comparison of ln(CO) linear regression models for hourly data.

Model 2018–
2019 2020 2018–

2020 AR DF R2 Adjusted
R2 RMSE F-Stat p-Value

Model 1 X n.a. n.a. n.a. 3957 0.271 0.270 0.708 294 0.00000
Model 2 n.a. X n.a. n.a. 1553 0.447 0.445 0.707 251 0.00000
Model 3 n.a. n.a. X n.a. 5515 0.312 0.311 0.724 499 0.00000
Model 4 X n.a. n.a. X 3943 0.751 0.750 0.412 1980 0.00000
Model 5 n.a. X n.a. X 1549 0.816 0.816 0.408 1148 0.00000
Model 6 n.a. n.a. X X 5499 0.776 0.776 0.412 3171 0.00000

4.2. Modeling of NO2 Pollution

The NO2 data were transformed to sqrt(NO2) before regression modeling to prevent
heteroscedasticity in the data. Square root transformation was used instead of log trans-
formation, since log transformation was found to be too aggressive for NO2 data. The
same independent variables were used to model sqrt(NO2) as in the ln(CO) model. The
results of the proposed linear regression models of sqrt(CO) are presented in Table 8. The
calculated regression coefficients and associated metrics of the sqrt(NO2) regression model
are presented in detail for each model in Tables A7–A12 in the Appendix A of this paper.

4.3. Modeling of PM10 Pollution

The PM10 data were transformed to log(PM10) before regression modeling to pre-
vent heteroscedasticity in the data. The same independent variables were used to model
ln(PM10) as in the ln(CO) and sqrt(NO2) model. The results of the proposed linear regres-
sion models of sqrt(CO) are presented in Table 9. The calculated regression coefficients
of the log(PM10) regression model and associated metrics are presented in detail for each
model in Tables A13–A18 in the Appendix A of this paper.
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Table 8. Comparison of sqrt(NO2) linear regression models for hourly data.

Model 2018–
2019 2020 2018–

2020 AR DF R2 Adjusted
R2 RMSE F-Stat p-Value

Model 7 X n.a. n.a. n.a. 2486 0.152 0.150 1.89 89 0.00000
Model 8 n.a. X n.a. n.a. 1925 0.327 0.325 1.60 187 0.00000
Model 9 n.a. n.a. X n.a. 4417 0.223 0.222 1.82 253 0.00000
Model 10 X n.a. n.a. X 2484 0.604 0.603 1.29 630 0.00000
Model 11 n.a. X n.a. X 1922 0.741 0.740 0.99 916 0.00000
Model 12 n.a. n.a. X X 4413 0.677 0.676 1.18 1540 0.00000

Table 9. Comparison of ln(PM10) linear regression models for hourly data.

Model 2018–
2019 2020 2018–

2020 AR DF R2 Adjusted
R2 RMSE F-Stat p-Value

Model 13 X n.a. n.a. n.a. 3976 0.151 0.150 0.762 141 0.00000
Model 14 n.a. X n.a. n.a. 1352 0.221 0.218 0.803 77 0.00000
Model 15 n.a. n.a. X n.a. 5334 0.180 0.179 0.780 235 0.00000
Model 16 X n.a. n.a. X 3973 0.664 0.664 0.480 1310 0.00000
Model 17 n.a. X n.a. X 1358 0.595 0.593 0.579 330 0.00000
Model 18 n.a. n.a. X X 5331 0.653 0.652 0.508 1670 0.00000

5. Discussion

Results of the ln(CO) regression models given in Table 7 show that all models were
significant, having p-values well below 0.05. Since time-series data such as pollution
measurements are usually subject to the autoregression of residuals, it is difficult to trust
the obtained p-values. Models 4–6 included the AR component, resulting in much higher
R2 values. In those models, the residuals were no longer autocorrelated, and instead
followed a normal distribution. Hence, the models are considered significant. By looking
at the obtained regression coefficients and associated p-values of each component, it can be
observed that the precipitation component was not significant in all models except model 2,
where it barely passed the significance test. All other components were confirmed to be
significant, except the U wind component in model 4. It was observed that the coefficient
of traffic was positive and significant in all models. This observation suggests that traffic
does have an impact on the CO concentration. However, air temperature has the strongest
influence on CO concentration, which is to be expected, considering the strong negative
correlation between air temperature and CO concentration. The interpretation of this result
nevertheless remains difficult, as the effect of temperature on CO concentration is not direct.
It is the opinion of the authors that for the given case study, the following factors connect
the air temperature and CO concentration:

• Heating systems’ activation during colder periods;
• Formation of inversion layers above the urban areas during colder periods;
• Idling of vehicles with the engine running for defrosting and heating.

Since the factors mentioned above are difficult to measure, and their negative corre-
lation with temperature was expected, the authors deem the inclusion of temperature in
the regression model appropriate. It is observed that the R2 value is somewhat higher for
models with data only from 2020, but the regression coefficients differ only slightly. Since
the coefficients are similar in all models, it is the opinion of the authors that periods with
restrictive COVID-19 measures did not create an outlier.

Considering the results of the sqrt(NO2) regression models shown in Table 8, similar
conclusions in regard to autoregression of residuals can be made as in ln(CO) models. The
primary concern with the sqrt(NO2) models is a large amount of missing data, especially
in years 2018–2019, as can be seen in Figure 4b. The p-values of the sqrt(NO2) model
components show that precipitation does not seem to be a significant factor in the model.
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For models 7 and 10, the p-values of coefficients show that air temperature and precipitation
are not significant. In all sqrt(NO2) models, the traffic component is significant and positive.
The impact of COVID-19 measures on NO2 pollution seems evident, as a large drop in
NO2 levels as found for the same time as most restrictive curfews were imposed. The
obtained regression models also support this, as no outliers were identified in periods with
restrictive COVID-19 measures. However, a direct comparison between the years 2020 and
2018–2019 was difficult, due to missing data.

In the correlation analysis, there was a high positive correlation between CO and
PM10 concentrations. This correlation is high, since both CO and PM10 share strong yearly
periodicity. This high correlation might imply that similar regression models could be used
to model both CO and PM10 concentrations. From the results of ln(PM10) regression models
in Table 9, it is evident that models’ performance levels considering R2 were lower than in
the case of ln(CO) models. The traffic component was significant and positive in all ln(PM10)
models. Unlike the ln(CO) and sqrt(NO2) regression models, the precipitation component
remained significant in all ln(PM10) models. The negative coefficient of precipitation
implies that the presence of rain decreases the concentration of PM10 particles in the air.
The impact of COVID-19 measures is not significant in regard to PM10 concentration. This
is attributed to the fact that many external sources of PM10 other than vehicle emissions are
located in the vicinity of Skopje.

The results of COVID-19’s influence on air pollution mostly comply with other research
on this topic summarized in [16]. In most case studies, the immediate effect was observed
in the reductions in NO2 and PM levels and a smaller increase in O3. In this research the
effect was only noticed for NO2 and O3, and PM10 levels showed only a small decrease.

6. Conclusions

In this paper, air pollution in urban areas was modeled using linear regression. The
research was conducted as a case study in the city of Skopje, North Macedonia. Collected
traffic, air quality, and meteorological data were used to create a regression model of ln(CO),
sqrt(NO2), and ln(PM10) concentrations. The traffic component was found to be significant
in all regression models with a positive coefficient. However, the impact of traffic on air
pollution was strong only in terms of NO2 concentration and low for CO and PM10 due
to strong seasonal influence. Additionally, the impact of COVID-19-related restrictive
measures was analyzed. The results show that a significant drop in NO2 concentration
coincided with the imposed curfews and bans on human mobility. The values of CO and
PM10 did not change significantly during COVID-19 restrictions, indicating that traffic is
not the primary source of CO and PM10 emissions. Finally, to answer the main research
question, it can be concluded that COVID-19-related restrictive measures did not create an
outlier in the regression model and that the regression coefficients mostly remained the
same. From the results, several policy recommendations arise for the identified stakeholders.
For governing officials, the primary concern should be high levels of air pollution, especially
in winter periods. Incentives should be made to reduce unnecessary road traffic and to
switch to newer vehicles, which have reduced emissions. However, it is also evident
that a large contributor to pollution is the industry located in the city. In the short term,
modernization of industry could provide large benefits to reduced air pollution. In the
long term, the industrial sector should be separated from the city to a less-populated area.
The primary limitation of this research was the resolution of the observed data variables,
and there were many missing values, particularly for intersection data, since only a week
of data were available for each month. Adding more air-quality-measurement stations
throughout the city would greatly improve the results and allow for spatial analysis of
data. The regression models could be improved by including more variables, such as air
pressure, as it could explain some of the variability in air pollution data. The COVID-19
measures provided a unique opportunity to observe how the sudden reduction of traffic
might affect air quality. For the city of Skopje, however, the primary pollutants are not the
vehicles, but instead, possibly the steel processing plant and power plant located in the city.
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Future work on this topic should include the collected traffic and pollution data for years
following the COVID-19 pandemic.

Author Contributions: The conceptualization of the study was conducted by M.M., B.A., T.F. and E.I.
The funding acquisition was conducted by E.I. The writing of the original draft and preparation
of the paper was conducted by M.M. All authors contributed to the writing of the paper and final
editing. The supervision was conducted by B.A., T.F. and E.I. Visualizations were conducted by M.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Croatian Science Foundation under the project UIP-2019-
04-1737, and the project IP-2020-02-5042, and by the European Regional Development Fund under
the grant KK.01.1.1.01.0009 (DATACROSS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data regarding air-quality measurements are publicly available from
the Ministry of Environment and Physical Planning of North Macedonia and can be found here:
https://air.moepp.gov.mk/ (Accessed on 20 November 2022). The data regarding meteorological
measurements are publicly available and can be found here: https://cds.climate.copernicus.eu.
(Accessed on 20 November 2022). The data regarding traffic flow measurements were obtained
from the Centre for Traffic Management and Control (CUKS)—Skopje, and are available from them
upon request.

Acknowledgments: This research has also been carried out within the activities of the Centre of
Research Excellence for Data Science and Cooperative Systems supported by the Ministry of Science
and Education of the Republic of Croatia.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
COVID-19 Coronavirus disease of 2019
CO Carbon monoxide
NO2 Nitrogen dioxide
O3 Ozone
PM2.5 Particulate matter of 2.5 [µm]
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Appendix A

The detailed tables of analyzed regression models for ln(CO), sqrt(NO2) and ln(PM10)
are included in this appendix.

The Tables A1–A3 show the calculated regression coefficients of the ln(CO) linear re-
gression models. The associated standard error (SE), t-statistic, and p-values are also shown
in the tables for each model component. Tables A4–A6 show the same regression models
with the autoregression (AR) ln(CO(t − 1)) component included as part of the model.

https://air.moepp.gov.mk/
https://cds.climate.copernicus.eu.
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Table A1. Model 1: ln(CO) linear regression model hourly data 2018–2019.

Coefficients SE t-Stat p-Value

Intercept −0.44777 0.03188 −14.04706 0.00000
Traffic 0.00020 0.00001 18.55800 0.00000
Temperature −0.04124 0.00126 −32.85634 0.00000
Precipitation −0.05794 0.05469 −1.05947 0.28945
U Wind 0.08343 0.01646 5.06833 0.00000
V Wind 0.13757 0.01149 11.97037 0.00000

Table A2. Model 2: ln(CO) linear regression model hourly data 2020.

Coefficients SE t-Stat p-Value

Intercept −0.47425 0.04524 −10.48372 0.00000
Traffic 0.00021 0.00001 14.20153 0.00000
Temperature −0.05993 0.00203 −29.51000 0.00000
Precipitation −0.23848 0.11479 −2.07749 0.03792
U Wind 0.24775 0.02598 9.53464 0.00000
V Wind 0.23902 0.01937 12.34090 0.00000

Table A3. Model 3: ln(CO) linear regression model hourly data 2018–2020.

Coefficients SE t-Stat p-Value

Intercept −0.47948 0.02642 −18.14930 0.00000
Traffic 0.00022 0.00001 24.32205 0.00000
Temperature −0.04653 0.00109 −42.86097 0.00000
Precipitation −0.08443 0.04990 −1.69188 0.09073
U Wind 0.13100 0.01414 9.26285 0.00000
V Wind 0.16150 0.01005 16.06434 0.00000

Table A4. Model 4: ln(CO) linear regression model hourly data 2018–2019 with auto-regression.

Coefficients SE t-Stat p-Value

Intercept −0.09968 0.01900 −5.24732 0.00000
Traffic 0.00005 0.00001 8.32368 0.00000
Temperature −0.00917 0.00082 −11.15764 0.00000
Precipitation −0.06108 0.03187 1.91678 0.05534
U Wind 0.00987 0.00963 1.02441 0.30571
V Wind 0.02569 0.00681 3.77092 0.00017
ln(CO(t − 1)) 0.80217 0.00927 86.53954 0.00000

Table A5. Model 5: ln(CO) linear regression model hourly data 2020 with auto-regression.

Coefficients SE t-Stat p-Value

Intercept −0.08127 0.02703 −3.00702 0.00268
Traffic 0.00004 0.00001 4.62462 0.00000
Temperature −0.01252 0.00145 −8.64623 0.00000
Precipitation −0.05001 0.06653 −0.75170 0.45235
U Wind 0.05686 0.01537 3.69941 0.00022
V Wind 0.06004 0.01163 5.16384 0.00000
ln(CO(t − 1)) 0.80472 0.01441 55.82959 0.00000
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Table A6. Model 6: ln(CO) linear regression model hourly data 2018–2020 with auto-regression.

Coefficients SE t-Stat p-Value

Intercept −0.09354 0.01548 −6.04178 0.00000
Traffic 0.00005 0.00001 9.59341 0.00000
Temperature −0.00962 0.00071 −13.52489 0.00000
Precipitation −0.05537 0.02846 −1.94547 0.05177
U Wind 0.02168 0.00813 2.66720 0.00767
V Wind 0.03203 0.00585 5.47261 0.00000
ln(CO(t − 1)) 0.81270 0.00766 106.14666 0.00000

The Tables A7–A9 show the calculated regression coefficients of the sqrt(NO2) linear
regression models. The associated standard error (SE), t-statistic, and p-values are also
shown in the tables for each model component. Tables A10–A12 show the same regression
models with the autoregression (AR) sqrt(NO2(t − 1)) component included as part of
the model.

Table A7. Model 7: sqrt(NO2) linear regression model hourly data 2018–2019.

Coefficients SE t-Stat p-Value

Intercept 5.00079 0.10844 46.11649 0.00000
Traffic 0.00073 0.00004 20.46105 0.00000
Temperature −0.00340 0.00414 −0.82090 0.41178
Precipitation 0.20843 0.21188 0.98373 0.32534
U Wind 0.40763 0.05534 7.36536 0.00000
V Wind 0.07784 0.03706 2.10062 0.03577

Table A8. Model 8: sqrt(NO2) linear regression model hourly data 2020.

Coefficients SE t-Stat p-Value

Intercept 4.64907 0.09311 49.92990 0.00000
Traffic 0.00088 0.00003 28.94455 0.00000
Temperature −0.05411 0.00431 −12.56638 0.00000
Precipitation 0.15871 0.12101 1.31151 0.18984
U Wind 0.39526 0.05267 7.50431 0.00000
V Wind 0.20393 0.03827 5.32891 0.00000

Table A9. Model 9: sqrt(NO2) linear regression model hourly data 2018–2020.

Coefficients SE t-Stat p-Value

Intercept 4.69737 0.07298 64.36915 0.00000
Traffic 0.00085 0.00002 35.06696 0.00000
Temperature −0.02392 0.00303 −7.88787 0.00000
Precipitation 0.04106 0.11304 0.36320 0.71647
U Wind 0.44506 0.03961 11.23600 0.00000
V Wind 0.12379 0.02742 4.51490 0.00001

Table A10. Model 10: sqrt(NO2) linear regression model hourly data 2018–2019 with auto-regression.

Coefficients SE t-Stat p-Value

Intercept 1.34556 0.10113 13.30503 0.00000
Traffic 0.00026 0.00003 10.18534 0.00000
Temperature −0.00363 0.00283 −1.28077 0.20039
Precipitation −0.23729 0.14512 −1.63515 0.10214
U Wind 0.07690 0.03841 2.00185 0.04541
V Wind −0.00136 0.02539 −0.05374 0.95715
sqrt(NO2(t − 1)) 0.71777 0.01349 53.22452 0.00000
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Table A11. Model 11: sqrt(NO2) linear regression model hourly data 2020 with auto-regression.

Coefficients SE t-Stat p-Value

Intercept 1.03517 0.08720 11.87149 0.00000
Traffic 0.00025 0.00002 11.47203 0.00000
Temperature −0.01395 0.00277 −5.03585 0.00000
Precipitation 0.01771 0.07515 0.23560 0.81377
U Wind 0.10412 0.03311 3.14472 0.00169
V Wind 0.07518 0.02387 3.14919 0.00166
sqrt(NO2(t − 1)) 0.76460 0.01380 55.42396 0.00000

Table A12. Model 12: sqrt(NO2) linear regression model hourly data 2018–2020 with auto-regression.

Coefficients SE t-Stat p-Value

Intercept 1.10413 0.06560 16.83171 0.00000
Traffic 0.00027 0.00002 15.34896 0.00000
Temperature −0.00729 0.00197 −3.70610 0.00021
Precipitation −0.08839 0.07292 −1.21213 0.22553
U Wind 0.09584 0.02595 3.69294 0.00022
V Wind 0.02987 0.01773 1.68475 0.09211
sqrt(NO2(t − 1)) 0.74879 0.00951 78.75035 0.00000

The Tables A13–A15 show the calculated regression coefficients of the ln(PM10) linear
regression models. The associated standard error (SE), t-statistic, and p-values are also
shown in the tables for each model component. Tables A16–A18 show the same regression
models with the autoregression (AR) ln(PM10(t − 1)) component included as part of
the model.

Table A13. Model 13: ln(PM10) linear regression model hourly data 2018–2019.

Coefficients SE t-Stat p-Value

Intercept 3.94380 0.03402 115.93455 0.00000
Traffic 0.00015 0.00001 13.25308 0.00000
Temperature −0.02484 0.00135 −18.45328 0.00000
Precipitation −0.51549 0.05868 −8.78550 0.00000
U Wind 0.14868 0.01763 8.43297 0.00000
V Wind 0.17647 0.01236 14.27321 0.00000

Table A14. Model 14: ln(PM10) linear regression model hourly data 2020.

Coefficients SE t-Stat p-Value

Intercept 3.84819 0.05599 68.73493 0.00000
Traffic 0.00018 0.00002 10.34412 0.00000
Temperature −0.03755 0.00252 −14.88111 0.00000
Precipitation −0.44549 0.06350 −7.01620 0.00000
U Wind 0.14197 0.02920 4.86140 0.00000
V Wind 0.15380 0.02142 7.18150 0.00000

Table A15. Model 15: ln(PM10) linear regression model hourly data 2018–2020.

Coefficients SE t-Stat p-Value

Intercept 3.89823 0.02848 136.89227 0.00000
Traffic 0.00017 0.00001 18.22968 0.00000
Temperature −0.02939 0.00117 −25.12901 0.00000
Precipitation −0.51918 0.04248 −12.22137 0.00000
U Wind 0.15472 0.01500 10.31433 0.00000
V Wind 0.16793 0.01071 15.67994 0.00000
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Table A16. Model 16: ln(PM10) linear regression model hourly data 2018–2019 with auto-regression.

Coefficients SE t-Stat p-Value

Intercept 0.80609 0.04559 17.68078 0.00000
Traffic 0.00007 0.00001 10.04389 0.00000
Temperature −0.00565 0.00088 −6.40866 0.00000
Precipitation −0.17544 0.03719 −4.71812 0.00000
U Wind 0.02990 0.01120 2.66922 0.00763
V Wind 0.03520 0.00799 4.40798 0.00001
ln(PM10(t − 1)) 0.77587 0.00995 77.93967 0.00000

Table A17. Model 17: ln(PM10) linear regression model hourly data 2020 with auto-regression.

Coefficients SE t-Stat p-Value

Intercept 1.12914 0.08701 12.97710 0.00000
Traffic 0.00009 0.00001 6.68386 0.00000
Temperature −0.01115 0.00197 −5.66141 0.00000
Precipitation −0.12139 0.04673 −2.59745 0.00949
U Wind 0.04073 0.02127 1.91486 0.05572
V Wind 0.04402 0.01576 2.79212 0.00531
ln(PM10(t − 1)) 0.69068 0.01957 35.28452 0.00000

Table A18. Model 18: ln(PM10) linear regression model hourly data 2018–2020 with auto-regression.

Coefficients SE t-Stat p-Value

Intercept 0.87330 0.04006 21.79908 0.00000
Traffic 0.00008 0.00001 12.43526 0.00000
Temperature −0.00683 0.00081 −8.46584 0.00000
Precipitation −0.14594 0.02801 −5.21053 0.00000
U Wind 0.03519 0.00987 3.56513 0.00037
V Wind 0.03760 0.00714 5.26758 0.00000
ln(PM10(t − 1)) 0.75641 0.00888 85.17302 0.00000
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