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Abstract: This paper presents a comprehensive model for optimal energy storage system (ESS) design
for an isolated microgrid. The model presented is a mixed integer linear program (MILP) that consid-
ers seasonal varying generation (VG) demand, more specifically seasonal solar cell generator (SCG)
demand, SCG maintenance (failure and restoration) rates, and practical operation of conventional
generation (CG) while satisfying the required demand and reserve. The model is based on unit
commitment (UC) to simulate real operations and physical constraints of CG units, the power balance,
and reserve requirements. The objective function aims at minimizing the associated cost of CG,
namely, production (fuel), costs of startup and shutdown procedures, and the investment cost of
power and energy. The proposed model is assessed on a case study system consisting of multiple
SCGs in addition to CG to meet a specific demand. The proposed model showed that the ESS sizing
when considering Li-Ion technology and a SCG penetration of 25% was on average approximately
3 MWh and 1.70 MW. Meeting the demand and reserve requirements were the two major constraints
when determining the optimal ESS sizing. Moreover, introducing the ESS substantially reduced the
operating cost of the system.

Keywords: energy storage sizing; mixed integer linear programming; microgrid; unit commitment

1. Introduction

A microgrid is defined as “a group of interconnected demands and distributed energy
resources with defined electrical boundaries forming a local electric power system at distri-
bution voltage levels, that acts as a single controllable entity and is able to operate in either
grid-connected or island mode” [1]. Accordingly, the microgrid can be categorized as either
grid-connected or isolated/islanded. Both types can play essential roles in (a) enhancing
the stability of power networks, (b) reducing power flow losses in transmission and distri-
bution networks, (c) reducing harmful emissions when integrating renewable energy (RE),
(d) providing independent, fully or partially, electric power supply, (e) enhancing the power
system reliability and energy quality, and (f) providing back-up supply during outages of
the main grid [2]. Microgrid services may be delivered when there are adequate generation
resources. These resources may be conventional and/or, more preferably, renewable. RE
includes photovoltaic systems (PVs) or solar cell generators (SCGs), wind turbine systems
(WTSs), etc. Even though RE resources bring several benefits to power systems, including
microgrids, they are characterized by intermittency, which may affect the reliability and
economic operation of the power system. Hence, RE is referred to as having variable
generation (VG). When planning for an increase in the penetration of VG, it is vital to inte-
grate energy storage systems (ESSs). In recent years, several energy storage technologies
have been developed, including electrochemical batteries, compressed air, flywheels, etc.
Depending on the technique employed, the ESSs are put forward in different forms and
specifications [3–5]. Most importantly, ESSs have different capital power and energy costs,
which are important factors in determining the required size for use in microgrids. There
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has been a plethora of research work to determine the optimal sizing of microgrid ESSs
depending on whether the microgrid is operating as grid-connected or islanded. Although
this work focuses on ESS optimal sizing for islanded microgrids with VG, ESS optimal
sizing for large power systems and microgrids (both islanded and grid-connected) involves
similar model structures, so those are investigated. The optimal sizing of ESSs is a complex
problem as it encompasses several factors and constraints. The authors in [6] proposed a
technique for sizing ESSs in the context of WTS generation based on probability theory. A
Markov-chain-based stochastic model was used to detect the mismatch between demand
and generation. In [7], the authors proposed the optimal sizing of the ESS in a hybrid
microgrid with VG using a Monte Carlo simulation (MCS) and considered reliability as a
constraint while searching for a pattern optimization model. In [8], the mixed integer linear
programming (MILP) approach was used to design a hybrid power system. The method
was based on the average time of repair and failure rates of the WTSs/SCGs and relied
principally on the MCS to produce their chronological state samples. The non-utilized VG
models were highly penalized to avoid possible curtailment, whereas the VG models that
either charged the ESSs or directly met the demand were maximized. This model used the
deterministic demand forecast. The authors of [9] presented an optimal sizing model for
the ESS in the context of WTS and SCG generation and considered the correlation between
demand and VG output. All these works proposed general techniques for optimal ESS
sizing, rather than specifically for microgrid applications, although they could be used for
microgrid applications.

There have been a few research works focused on the optimal sizing of ESSs for islanded
microgrids. For example, in [10], the authors presented a long-term methodology for the optimal
sizing and planning of the life cycle of the ESS in islanded microgrids, consisting of hybrid
SCG-WTS-diesel generators implemented through a multi-scaled decision-making process to
meet the demand, while considering capacity fading of ESS modules. Meanwhile, the authors
in [11] presented a method to determine the optimal sizing of ESSs in an islanded microgrid
based on a two-step cost. The first step involved a unit commitment (UC) to obtain the operation
of the microgrid, while the second step used the convex optimization principle, considering
different physical and operational constraints, to determine the optimal size of the ESS. Using
the incremental cost method based on economic dispatch, the authors of [12] concluded that
there was a near-linear relationship between the optimal ESS sizing and ESS efficiency, and the
integration of ESS led to a significant reduction in the operation cost. Elsewhere, the authors
of [13] proposed an optimization strategy to determine the optimal size of the ESS. A two-layer
optimal sizing method combining an iterative method with dynamic programming (DP) was
used. Taking a different approach, the authors in [14] used the mixed integer programming
(MIP) technique for optimal ESS sizing and considered the reliability of the system as a con-
straint. The study concluded that a larger size of ESS may have greater costs than benefits
for microgrids. Meanwhile, the authors of [15] proposed a size-optimization method based
on multi-objective grey wolf (IMOGWO) for a hybrid energy system. The proposed method
was aimed at determining the optimal sizes of the different components of systems, including
ESSs, while minimizing the annual cost and loss of power supply. In [16], a two-archive many-
objective evolutionary algorithm (TA-MaEA) was proposed for the optimal sizing of hybrid
microgrids. The aim of this study was to minimize costs, loss of power supply, and emissions,
and to maintain the power balance. Elsewhere, the authors in [17] developed a multi-objective
optimization model to solve the system-sizing problem for a microgrid while considering the
rate of battery degradation, monetary incentives, and PV system azimuth angle. A methodology
for optimal sizing of islanded microgrids, including SCGs and ESSs, was then presented in [18]
based on a deterministic cost model and incorporating local tax benefits, technical constraints of
ESS, and reliability. All aforementioned works proposed different techniques for the optimal
sizing of ESSs for microgrid applications. However, the seasonal correlation between demand
and VG was only considered by [17], and the failure rate of SCG units was only addressed
in [7–10,12,14]. Furthermore, reserve requirement was used in some of the proposed models,
namely [8–11].
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The present research is aims to fill the gaps and address all shortcomings of the
previous works related to ESS sizing for microgrid applications. The proposed ESS optimal-
sizing model considers: (a) SCGs’ unavailability based on their forced outage rates (FORs),
(b) the correlation of seasonal solar radiation with demand, (c) the operational constraints of
the CG units, and (d) demand and requirements. Since the demand and SCGs are the main
factors for the sizing of the ESS, the seasonal variations SCG and demand will represent
the required ESS size accurately in the long term for an isolated microgrid. The approach
considers the optimized sizing of the ESS as a MILP model.

For a specific region, the historical solar radiation data are divided into four ranges,
one for each yearly season. Then, the expected SCG generation is computed on (a) the
generation model, and (b) the availability model, i.e., the collective SCG availability PDFs
based on their FORs. Subsequently, an important step is to compute the correlation between
each demand and expected output pair for the SGSs. The main aim of optimizing the size
of the ESS is to reduce the associated costs with the CG units, namely production (fuel),
start-up and shut-down costs, and capital investment costs in the energy and power for the
ESS. Figure 1 depicts a flowchart of the proposed model.
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2. Research Methodology and Modeling
2.1. Problem Statement

Assuming that the following information is given:

1. Some number (G) of CG units with known specifications.
2. Energy and power capital cost of the ESS, and charging and discharging efficiencies.
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3. Historical solar radiation data (Gh) divided into four groups: summer (GSu), fall (GFa),
winter (GWi), and spring (GSp).

4. Historical demand data (Dh) for the specific region and season.
5. A solar farm (SF) consists of NSCG SCGs, for which the specifications and FORs

are given.

The expected SF power (pSF) values are obtained by interrelating the power with the
availability of the SF’s probabilistic model. Usually, at each instant in time, composite
demand (CD) is taken as the difference between demand and VG. After computing the
CD values for the whole year, these are then used to determine the optimal size of the ESS
based on the proposed sizing model, the solution of which gives the desired ESS charging
and discharging profile.

2.2. Computation of the Expected Output Power of the SF and Composite Demand
2.2.1. Computation of the Expected Output Power of the SF

Once the historical solar radiation, Gh, is partitioned according to seasons, it may be
regenerated as power using the generation model of the SCG [19], as in (1):

pSCG =


pSCG.rated

(
G2

t
GstdRC

)
∀ Gt ∈ [0, RC)

pSCG.rated

(
Gt

Gstd

)
∀Gt ∈ [RC, Gstd]

pSCG.rated ∀Gt ∈ (Gstd, ∞)

(1)

where Gt is the solar radiation at time t (W/m2), PSCG.rated is the SCG unit rated power
(MW), Gstd is the solar radiation in the standard environment (W/m2), and Rc is a certain
radiation point set usually at 150 W/m2.

The SCG is represented as a space–time Markov model that is equal to either the
SCG rated power, pSCG.rated, or to zero, as depicted in Figure 2. The chance of the ith SCG
being unavailable is referred to as the forced outage rate (qSCGi) and is calculated as in
Equation (2) [20]:

qSCGi =
MTTRSCGi

MTTFSCGi + MTTRSCGi
(2)

where MTTRSCG/MTTFSCG is the mean time value to maintain the SCG. Both MTTRSCG
and MTTFSCG are assumed to follow an exponential distribution. For simplicity, qSCG is
taken as identical for all SCGs.
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The total law of probability is used and is mathematically represented by Equation (3)
and illustrated in Figure 3:

ρSG (pSCG)= ρSG (pSCG| SCG is UP)(1− qSCG)+ρSG( pSCG
∣∣ SCG is DOWN)(qSCG) (3)

where ρSG(pSCG) is the PDF of the SCG power output.
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Finally, the probability mass function (PMF) of the SF (ρSFA (cSF)) being available can
be obtained by the binomial distribution, as given by Equation (4) and shown in Figure 4:

ρSFA(cSF) =
NSCG

∑
r=0

(
NSCG

r

)
(1− qSCG)

r(qSCG)
NSCG−rδ(cSF − r pSCG.rated) (4)

where r is an index for the available SCG units in the SF and NSCG is the number of SCGs
in the SF. Thus, after convolving the seasonal partitioned Gh and ρSFA(cSF), the expected SF
output (PSF) is as follows:

pSF = ρSFA(cSF)∗GSeason Season = Wi, Sp, Su, and Fa (5)

where * represents the convolution operator.
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2.2.2. Composite Demand PDF Computation

The composite demand, CD, is the demand seen by the CG. In other words, CD is the
remaining demand after deploying pSF. Hence, seasonal pSF and demand are known, and
CD is:

CD = D − pSF (6)

Then, the seasonal PDF/CDF (ρCD (cd)/FCD (cd)) of CD is computed and samples will
be inputted to the energy sizing model. Note that CD could be negative when there is
higher pSF than demand, e.g., when the demand is low during off-peak hours.
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2.3. Formulation of the Optimized Sizing of the Energy Storage

The model for optimally sizing the ESS is based on the models proposed in [9] and [21–23].
A detailed description is given in the following section. First, it is important to introduce the
variables and parameters that appear in the constraints, as listed in Table 1, for both CG and
ESS, where T is the simulation time (h), and ∆t is the time step (h).

Table 1. Variables and parameters used in the model.

Parameter/Variable Description (unit)

Parameters and variables for CG units:
CTg Cold start time (h)
DTg/UTg Minimum down/up times of a CG (h)
SUg/SDg Startup/shutdown limit of a CG (MWh−1)
SUcost/SDcost gth CG linearized startup/shutdown costs

sg,t
Binary variable of the gth CG startup status (1: turned
on, 0: shut down)

rg,t gth CG reserve provision (MW)
RUg/RDg Ramp-up/down rates of a CG (MW)
Pmax

g /Pmin
g Maximum/minimum generation limits of a CG (MW)

pg,t is gth CG produced power (MW)
pg,t gth CG provided power and reserve (MW)
xg,t Binary variable of the gth CG status (0: off, 1: on)
yg,t gth CG linearized production cost

zg,t
Binary variable of the gth CG shutdown status
(1: turned off, 0: otherwise)

Parameters and variables for ESS:

αt
Binary variable to prevent ESS’s simultaneous
charging and discharging

d ESS energy capacity capital cost ($/MWh)
e ESS power capacity capital cost ($/MW)
EESS Energy capacity of ESS (MWh)
Et ESS energy level or state of charge at time t
ηch/ηdis Charging/discharging efficiency
rESS_DN,t Down reserve provided by the ESS (MW)
rESS_UP,t Up reserve provided by the ESS (MW)
R Reserve requirement (MW)
pch,t Power charging of ESS (MW)
pdis,t Power discharging from ESS (MW)
PESS Maximum discharge/charge rate of ESS (MW)
pESS_DN,t ESS charging power and down reserve (MW)
pESS_UP,t ESS discharging power and up reserve (MW)

The constraints that relate to the operation of the CG are as follows. The first constraint
in (7) determines the CG unit’s on/off status’ variations between time steps. This constraint
is important for the determination of the minimum up and down times in addition to the
committed CG units. The variables sg,t and zg,t determine the start-up shutdown status and
are obtained from determining the binary variables xg,t and xg,t−1. The second constraint in
(8) is to determine the limit of the minimum CG. The constraint in (9) sets the maximum
limit of the power and reserve provision. The constraint in (10) is the minimum up time,
UTg, and (11) is the minimum down time constraint, DTg. The CG unit must be in the
on/off state for a time equal to UTg/DTg once it is on/off. The other constraints in (12) and
(13) for CG define the limits of the power ramp up/down of a CG unit. These constraints
are listed below:

xg,t − xg,t−1 = sg,t − zg,t ∀g ∈ G, ∀t ∈ T\t = 1 (7)

pg,t ≥ Pmin
G xg,t ∀g ∈ G, ∀t ∈ T (8)

pg,t ≤ pg,t ≤ Pmax
G xg,t+( SDg − Pmax

G ) zg,t+1 ∀g ∈ G, ∀t ∈ T (9)
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where pg,t = pg,t + rg,t.

t

∑
i=t−UTg+1

sg,i ≤ xg,t ∀t ∈ T, ∀g ∈ G (10)

t

∑
i=t−DTg+1

sg,i ≤ 1− xg,t−DTg ∀t ∈ T, ∀g ∈ G (11)

pg,t − pg,t−1 ≤ SUg sg,t + RUg xg,t−1 (12)

pg,t−1 − pg,t ≤ SDg zg,t + RDg xg,t (13)

In this model, the CG units are responsible for providing the reserve, rg, and the ESS is
responsible for the reserve (rESS_DN,t\rESS_UP,t). Both the ESS and CG are in the microgrid
to satisfy the demand and reserve requirements at each instant of time t. The required
reserve for the system, R, is derived as a percentage of the annual or system peak demand,
e.g., 10% of the system peak. The ESS reserve provision will be discussed when introducing
the ESS constraints. The constraint in (14) ensures that the CG units and the ESS can satisfy
both the demand and reserve requirements:

∑
g∈G

pg,t+pESS_UP,t ≥ CDt + pESS_DN,t + R ∀t ∈ T (14)

The constraint in (15), related to the power balance, ensures that the available genera-
tion (CG and discharging ESS power) meets the demand (CD and charging ESS power) at
any given time t.

∑
g∈G

pg,t + pdis,t = CDt + pch,t ∀t ∈ T (15)

CDt sampling depends on the season and is calculated by producing random numbers
(~unif(0,1)), at any instant of time, t. Then, the inverse transform method (ITM) is applied
using the ρCD(cd)/FCD (cd) corresponding to the season in which t falls, as shown in (16):

CDt = F−1
CD(U1,t) ∀t ∈ T (16)

This process will be repeated for all seasons.
The ESS set of constraints describes the dynamics of the ESS in addition to accounting

for reserve provision capability. These operating constraints are the main factors for
obtaining the optimal size of the ESS. They determine the ESS charge/discharge schedule
and set the power and energy limits. The constraint given in (17) determines the ESS
state of charge (SOC) while the constraint in (18) sets the maximum and minimum limits
of ESS energy. Then, the constraints in (19) and (20) are the charging and the down
reserve and discharging and up reserve power limits, respectively. The constraints in
(21) and (22), meanwhile, ensure that no charging and discharging of the ESS take place
simultaneously and that there is no simultaneous up and down reserve provision. Finally,
the constraints (23) and (24) make sure that the SOC is not exceeded at time t when the ESS
provides power and a reserve.

Et+1 = Et + ηch pch,t −
pdis,t

ηdis
∀t ∈ T (17)

0 ≤ Et ≤ EESS ∀t ∈ T (18)

0 ≤ pch,t ≤ pESS_DN,t ≤ PESS ∀t ∈ T (19)

0 ≤ pdis,t ≤ pESS_UP,t ≤ PESS ∀t ∈ T (20)

0 ≤ pESS_UP,t ≤ αt M ∀t ∈ T (21)
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0 ≤ pESS_DN,t ≤ (1− αt)M ∀t ∈ T (22)

pESS_UP,t ≤
Et

∆t
∀t ∈ T (23)

EESS − Et

∆t
− pESS_DN,t ≥ 0 ∀t ∈ T (24)

where pESS_UP,t = pdis,t + rESS_UP,t and pESS_DN,t = pch,t + rESS_DN,t.
The linear objective function will minimize the CG production and the capital costs

for power and energy for the ESS. It is given by:

min ∑
t∈T

∑
g∈G

(yg,t + SUcostg,t + zg,tSDcostg) + dEESS + ePESS (25)

where yg,t is the gth CG linearized production cost ($), and SUcost/SDcost are the linearized
startup/shutdown costs, as introduced earlier. The production cost of a CG is nonlinear
and has the following form:

agP2
g,t + bgPg,t + cg (26)

where the parameters ag, bg, and cg are taken as the coefficients cost of the gth CG. For simplicity,
a linear model is used in this work; however, when using the quadratic cost function, it can be
linearized using piecewise segments, as shown in [20] and explained in [9]. In the same manner,
the startup cost will be linearized by an approximate staircase function [9,24–26].

3. Results

The hourly solar radiation data used in this study were collected in the City of Madinah
in Saudi Arabia [27]. Meanwhile, the load demand data consisting of different building
types, e.g., a school and apartment building, were taken from [28]. The demand is fully
described below, and was chosen to represent different residential, commercial, health, and
education services. A full description of the test system is as follows:

1. The parameter values of the CG units are given in Table 2 [29]. Note that all the
parameters of the two CG units are identical except for the cost coefficient. The cost of
CG 1 is less than that of CG 2.

2. An SF has NSCG identical SCGs, the specifications for which are shown in Table 3 [30,31].
3. The ESS specifications are listed in Table 4 [32].
4. Demand data are taken from the Open Energy Data Initiative (OEDI) [28], as shown

in Table 5. Note that the number of units for each demand is assumed.

Table 2. CG units’ characteristics [29].

Unit Cost Coeff. ($/MWh) Min. Capacity
(MW)

Max. Capacity
(MW) Startup Cost ($)

1 27.7 1 5 40
2 39.1 1 5 40

Unit Shutdown Cost ($) Min. Up Time
(h)

Min. Down Time
(MW)

Ramp Up/Down Rate
(MW/h)

1 0 3 3 2.5
2 0 3 3 2.5

Table 3. SCGs’ specifications [30,31].

Specification Description

pSCG.rated 0.05 MW
NSCG 50
Gstd 1000 W/m2

RC 150 W/m2

qSCG 0.1667
MTTFSCG 1500 h.
MTTRSCG 150 h.
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Table 4. CG units’ characteristics [32].

Specification Description

ESS technology Li-Ion
ηch/ηdis 85%

Energy capital cost 600k $/MWh
Power capital cost 400k $/MW

Lifetime 20 years
Discount rate 5%

e 51,814 $/MW
d 77,720 $/MWh

Table 5. Demand data [28].

Demand Type Average (KWh/Day) Average (KW) Peak (KW) Demand Factor #Units

Secondary school 10,086 420.25 1212.2 0.35 1
Primary school 2656 110.67 371.78 0.3 1

Midrise apartment building 749.81 31.24 73.64 0.42 20
Medium office 2022.5 84.27 254.42 0.33 1

Outpatient clinic 3956.2 164.84 360.77 0.46 1
Fast food restaurant 560.48 23.35 41.78 0.56 5

Large office 17,831 742.99 1531 0.49 1
Independent retailer 923.9 38.5 104.83 0.37 5

Incidentally, the VG penetration level is taken as 25% of the total installed capacity
(10 MW). NSCG depends on the penetration level of the VG (for 25% penetration level,
NSCG = 50 SCGs). The ESS technology used in the system is a grid-scale Li-Ion battery. The
parameters for the simulation in this research are a time of 8760 h, an ∆t of 1 h, and an ESS
life expectancy of 20 years. e is the energy capital cost, and d is the cost of the power over a
period T with a 5% reduction rate.

3.1. Power Outputs of the Expected SF and Composite Demand PDF Results

Samples of the seasonally partitioned historical solar radiation data are depicted in
Figure 5. By using the SCG generation models introduced earlier and the historical solar
radiation data, the expected seasonal power output of the SF was computed and then
convolved with ρSFA(cSF), as described in Equation (5) and shown in Figure 6. Figure 7
shows the seasonal CD calculated using Equation (6). The seasonal CD was then converted
to PDF as illustrated in Figure 8. Hourly annual samples were taken from these PDFs, with a
total of 8760 samples for each season, which are represented by 2190 samples. The seasonal
PDFs highlight the seasonal demand and the expected output variabilities of SFs. Sampling
each season’s PDFs detects these variabilities and thus might give an accurate definition of
the sizing problem of the ESS. Figure 8 shows each season ρCD (cd). More fluctuations are
observed during winter, spring, and fall, whereas there are fewer fluctuations in summer.
This may be explained by examining Figure 8 again, in which the summer CD PDF has
the highest demand values and resembles a normal distribution, whereas in other seasons,
there is a smaller probability of high demand.
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3.2. ESS Sizing and CG Operational Cost Results

The ESS sizing model was run multiple times, and Table 6 shows the average ESS
sizing and CG operational costs results, with the average± standard deviation. The average
EESS was found to be approximately 3 ± 0.30 MWh, whereas the PESS was 1.70 ± 0.40 MW.
These resulted in an ESS capital of $320,514± $34,950, which represents about of 40% of the
total cost, i.e., $815,4645 ± $22,259. The cost for CG and PV (no ESS) was $718,638 ± $1042.
This cost represents the CG cost only. Comparing the CG costs for this case and after
the addition of ESS clearly shows that adding the ESS decreased the CG cost (by 31%, to
$494,951 ± $20,857). Figure 9 shows the seasonal variation of the ESS SOC.

Table 6. ESS sizing and CG operational cost results.

Case EESS (MWh) PESS (MW) Total Cost ($) ESS Cost ($) CG Cost ($)

CG and PV (no ESS) NA NA 718,638 ± 1042 NA 718,638 ± 1042
CG and PV+ESS 3.0 ± 0.30 1.70 ± 0.40 815,465 ± 22,259 320,514 ± 34,950 494,951 ± 20,857
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It is worth noting that the ESS, in addition to CG, could result in a higher ESS sizing and
hence a higher investment cost by providing the reserve to meet the reserve requirement.
Figure 10 shows the seasonal reserve provided by the ESS and CG. It can be noted that the
ESS provided a substantial percentage of the reserve.
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4. Conclusions

A mixed integer linear programming (MILP) model for optimal sizing of energy storage
for islanded microgrids was presented. The model is a unit commitment model and considers
the following: unavailability of solar cell generators, seasonal correlation of solar radiation with
demand, operational constraints of CG, and demand and reserve requirements. When running
the proposed model, we showed that the ESS sizing, when considering Li-Ion technology and
an SCG penetration of 25%, was on average approximately 3 MWh and 1.7 MW. The case study
also showed that the CG cost was significantly reduced in the presence of ESS when compared
to a scenario without ESS. This reduction could be attributed to a change in the operation of CG
when an ESS was present, resulting in lower costs.

While this model considers several aspects, it has some limitations that could be
addressed in future work. These include ESS degradation over time, in addition to factors
that affect SCG efficiency. In future work, we intend to use the proposed approach for more
accurate modeling of long-term ESS operation. The effect of SCG derating factors, such as
soiling, conversion, temperature-related factors, and others affecting ESS sizing, are also
important and will be considered in future work.
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