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Abstract: The quest for an intelligence compliance system to solve power stability problems in
real-time with high predictive accuracy, and efficiency has led to the discovery of deep learning (DL)
techniques. This paper investigates the potency of several artificial neural network (ANN) techniques
in assessing the steady-state stability of a power system. The new voltage stability pointer (NVSP)
was employed to parameterize and reduce the input data to the neural network algorithms to predict
the proximity of power systems to voltage instability. In this study, we consider five neural network
algorithms viz. feedforward neural network (FFNN), cascade-forward neural network (CFNN), layer
recurrent neural network (LRNN), linear layer neural network (LLNN), and Elman neural network
(ENN). The evaluation is based on the predictability and accuracy of these techniques for dynamic
stability in power systems. The neural network algorithms were trained to mimic the NVSP dataset
using a Levenberg-Marquardt (LM) model. Similarly, the performance analyses of the neural network
techniques were deduced from the regression learner algorithm (RLA) using a root-mean-squared
error (rmse) and response plot graph. The effectiveness of these NN algorithms was demonstrated
on the IEEE 30-bus system and the Nigerian power system. The simulation results show that the
FFNN and the CFNN possess a relatively better performance in terms of accuracy and efficiency for
the considered power networks.

Keywords: voltage stability; machine learning (ML); neural network (NN); new voltage stability
pointer (NVSP); steady-state stability

1. Introduction

The intricacy of an interconnected power network has forced most power systems to be
operating close to their stability breakpoint [1]. This is because power systems with much
uncertainty are vulnerable to voltage instability, especially when faced with contingency.
However, accurate and timely prediction of voltage instability could avert voltage collapse
or blackout if properly managed [2]. The conventional practice of deploying numerical
methods for assessing a power network seems not to yield convincing results [3], mostly,
for early detection of possible voltage breakdown. Aside from that, numerical methods
of solving power stability problems are growing out of phase, as they are less effective
in the analysis of a complex interconnected power network [4]. The complexity of most
power systems could be traced to the adverse effect of matching up with the increasing rate
of power demand through the penetration of renewable energy [5–9]. Conversely, these
renewable energy injection schemes have their inherent dynamic characteristics, thereby,
altering the stability of the existing power system [10]. In such a context, a more reliable
and smart controlling mechanism is needed to ensure a secured power system.

For this reason, machine learning (ML) is now being predominantly used in the analy-
sis of power systems because of its high accuracy and efficiency [11]. Moreover, with the
advent of the smart grid, an intelligent compliance system is desirable [12]; essentially for
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the sustainable delivery of qualitative and quantitative power to end users [13]. Similarly,
ML techniques are found to be promising in applications where fast and smart decisions
are required without compromising the accuracy of the output result [11,14]. ML is often
regarded as artificial intelligence (AI) and deep learning (DL) [15]. These approaches are
somewhat efficient and reliable tools for the assessment of power system stability [11].
As a branch of ML, artificial neural networks (ANN) have gained application in power
systems due to their flexibility [11], easy adaptability to nonlinear variables [16], and better
performance [17]. The advantage of ANN algorithms lies in their ability to accurately
define the security status, [18] and control the network through the optimal placement
of flexible AC transmission system (FACTS) devices [19]. This is to ensure a responsive,
spontaneous, and smart power system capable of taking intelligent decisions with little or
no supervision.

The objectives of this research are to (a) evaluate the voltage stability set-points of
the power network buses using a new voltage stability pointer (b) train the result in ANN
using different algorithms (c) assess the steady-state stability of the NN techniques and (d)
rank the performance of the NN techniques based on their accuracy and predictability via
the regression learner algorithm (RLA).

2. Related Work

In recent times, ML has been widely used in power system analysis especially, the ANN
for transient and steady-state stability assessment. Reference Zhu L. et al. [20] presented
a convolutional neural network-based approach to analyzing the transient stability of a
power network. The research employs the power stability margin using a ‘divide and
conquers’ technique for the evaluation of transient stability. The result shows that ML
is a better method for the prediction of transient stability in a power network. Similarly,
authors Zhao T. et al. [21] proposed a new control method for power stability problems
using the Lyapunov model. The proposed model possesses a two-unit framework designed
to mimic the pattern of the Lyapunov function through a neural network. The model was
validated on different power control problems. More recently, Wang T. et al. [22] presented
an intelligent technique for the control of voltage stability using a back-propagation neural
network. The study explored the high precision characteristics and speed of the neural
network to control the load margin and voltage stability problems. The simulation result
was tested with the IEEE 118-bus test data.

Furthermore, authors Yang Y. et al. [23] presented a control technique for a small
stability problem using an extreme gradient boosting model. The technique served as a
correctional tool to compensate for the variance in active power until the stability of the
power system is attained. Moreover, a new control model presented by S. Naderi et al. [24]
ensures that a power system is prevented from possible transient stability problems using a
DL technique. The study considers the response time of the rotor cycle to voltage instability
under post-fault and pre-fault conditions. Several loading patterns were mapped and
trained with an integer linear programming algorithm on transient stability restrictions.
The practicability of this model was tested with the IEEE 39-bus test data and the 74-bus
Nordic data. Similarly, Bento M. [25] presented a hybrid technique of ANN and genetic
algorithm methods to solve power system loading problems. The ANN data was derived
from the phasor measurement units and the genetic algorithm was employed to choose a
sizable number of buses for the ANN.

The process of identifying the weak buses in a power network could be time-consuming;
however, it is one of the ways to prevent voltage collapse [26]. The authors Goh H. et al. [27]
examined several voltage stability indices for the identification of the weakest bus in a
power system. The results were trained on an artificial neural network with the IEEE 9-bus
and IEEE 14-bus data. The simulation results show a close prediction value between the
calculated indices and the ANN-trained results. In the paper presented by Bai X. and
Tan J. [28], several contingency problems were analyzed using the NN algorithm. The
simulation result was tested with the IEEE 39-bus data. The results show that the proposed
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deep learning neural network model is accurate for the monitoring of voltage stability.
In the same vein, Wang T. and Liua J. [22] presented an ANN model that is based on
the surrogacy theorem for the control voltage stability problem in power systems. The
control of the voltage stability margin through the proposed model experimented with
the IEEE 188-bus data. The results show the accuracy and time-effectiveness of the neural
network method to control voltage stability issues. In addition, Shi Z. et al. [29] introduced
a classification model through a neural network algorithm to assess the transient stability
status of every bus in an interconnected power network. The classification was based on
the vulnerability of the network to oscillatory stability and non-periodic stability. The
results from the newly proposed model were proved to be accurate.

Similarly, Abdullah A. et al. [30] presented a technique to determine the stability status
of a distribution network using an artificial neural network. The ANN was trained to
predict the maximum loading point as it affects the stability of the distribution network.
Reference, Calma E. and Pacis, M. [31] compared different voltage stability indices on
steady-state stability assessment through the injection of load perturbation. The ANN
was employed to train the line stability index and fast voltage stability index. The result
was demonstrated on IEEE 14-bus, IEEE 30-bus, and IEEE 57-bus data. Authors Khurana
B. and Titare L. [32] presented an improved stability technique using an artificial neural
network for the reduction of voltage instability and enhancing the voltage profile of a
power network. In the same vein, Bingi K. and Prusty B. [33] proposed a prediction method
based on an artificial neural network to suggest vulnerable buses in a power network.
The result from the simulation was compared with the existing numerical methods. The
results proved to be more accurate. In addition, Zhang H. et al. [34] proposed a combined
method of NN and an easy ensemble learning algorithm for the transient stability analysis
in a power network. The multilayer perceptron neural network was deployed for the
assessment of the network’s performance. Also, Ramachandran B. et al. [35] proposed a
convolutional neural network to classify the power network based on its transient stability
status. The proposed model was confirmed to be better than the existing deep learning
techniques with improved accuracy.

From the literature, it is clear that the neural network technique is seen as an essential
tool for the performance assessment of a power network. This research is aimed at exam-
ining the best neural network technique from the selected algorithms for the prediction
of voltage stability problems in power systems. The performance indices of this study
are accuracy, predictability, and training time through the RLA. The framework of this
study is to (a) define the security status of a power network through the new voltage
stability pointer (b) synthesize the dataset into the neural network models (c) evaluate the
performance of the surrogate data using root mean squared error (rmse).

3. Methodology

In this study, we employed the new voltage stability pointer (NVSP) proposed by
Badrudeen T. et al. [36] to define the voltage security status of each line and bus in the power
network under the steady-state condition. In addition, these datasets were synthesized
into the NN algorithms for better and faster prediction of power instability. The sequence
diagram of the proposed methodology is presented in Figure 1.

3.1. Mathematical Modeling of the New Voltage Stability Pointer

The mathematical modeling of the NVSP was formulated from Figure 2. The 2-bus
network in Figure 2 depicts a reduced power network with the P-V and P-Q bus systems.
In addition, this line voltage stability index, NVSP, will be used to determine the stability
breakpoint of each transmission line as regards the steady-state stability of the considered
power systems. The power networks considered in this research are the IEEE 30-bus system
and the Nigerian power system (NGP).
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The line current (I) from bus 1 is

I = (V1 −V2)×Ybus (1)

The load current at the bus 2 is given as:

I =
(

S2

V2

)
=

P2 − jQ2

V2∠− δ2
(2)

If the line loss is neglected, then the current at bus 1 will be equal to the load current
in bus 2, i.e.:

P2 − jQ2 = |V1V2Ybus|∠(θ − δ2)− |V2|2 × |Ybus|∠θ (3)

Equation (3) can be reduced to

P2− jQ2

|Ybus|∠θ
= |V1V2|∠− δ2 − |V2|2 (4)

Then, Equation (4) can be rearranged as

|V2|2 − |V1V2|∠− δ2 +
P2 − jQ2

|Ybus|∠θ
= 0 (5)

From Equation (5):

V2 = |V1|∠− δ2 ±

√
|V1|∠− δ2 |2 − 4 P2−jQ2

|Ybus |∠θ

2
(6)
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Assume
(
|V1|∠− δ2 |2 − 4 P2− jQ2

|Ybus |∠θ

)
is set to zero, the real roots of V2 will be evaluated

as |V1|∠− δ2 |2 − 4 P2− jQ2
|Ybus |∠θ

≤ 0; and

4(P2 − jQ2)

|G− jB|∠θ|V1|∠− δ2 |2
≤ 1 (7)

If the voltage angle (δ2 ) is presumed to be ignored, then the imaginary part of
Equation (7) will be approximately equal to 4Q2|Z|

|V1|2
≤ 1.

Conclusively, the NVSP is given as Equation (8)

NVSP =
4Q2|Z|
|V1|2

≤ 1 (8)

where Q2 and V1 denote the load reactive power and the generator bus voltage, respectively,
and Z represents line impedance between buses 1 and 2.

The NVSP between the transmission lines is a value that must be less than 1 to keep
the power network free from voltage collapse. However, in any case where the value of the
NVSP between the transmission lines is equal or greater than 1, then, it is a clear indication
of voltage instability and corrective measures must be ensued imminently to prevent large
system disturbances. In summary, the NVSP value must be maintained far below 1 for all
lines at all times to ensure a stable power system.

3.2. Neural Network Algorithms

In this research, we propose to investigate the potency of the selected neural network
techniques to assess the steady-state stability of a power network. This investigation will be
based on the predictability and accuracy of these neural networks for steady-state stability
assessment. The input data to the NN are the load reactive power, line impedance, line
susceptance and generator voltage as shown in Figure 3, and the target data are the NVSP
indexing values between the transmission lines. The selected NN algorithms are cascade-
forward neural network (CFNN), Elman neural network (ENN), linear layer (Design)
neural network (LLNN), layer recurrent neural network (LRNN), and feedforward neural
network (FFNN) as shown in Figure 4. The evaluation of the NN algorithms will be ranked
based on the accuracy and predictability of steady-state stability in power systems.
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3.2.1. Cascaded-Forward Neural Network (CFNN)

The CFNN is widely accepted as one of the neural techniques in machine learning
modeling [37]. It has input and output layers, and possesses some neurons as a hidden
layer. The mathematical representation of the CFNN is presented in Equation (9).

xk =
p

∑
i=1

giω0
i yi + g0

(
p

∑
j=1

ω0
i xigh

i

(
p

∑
i=1

ωh
jHyi

))
(9)

where gh
i , gi and ωh

j are hidden, output layer functions and weight of hidden layer,
respectively and xk is the output of the trained NN.

3.2.2. Elman Neural Network (ENN)

The Elman neural network (ENN) has a better feature for real time performance
evaluation of nonlinear functions. [38]. The mathematical representation of the ENN is
shown in Equation (10).

xk = g

(
p

∑
i=1

ω0
kigki

)
(10)

where g, ω0
k , and gk represent the logsig function, weight of the hidden layer and output of

the hidden layer, respectively.

3.2.3. Layer Recurrent Neural Network (LRNN)

The LRNN are best mathematical soft tool for processing data that are in sequential
order [39]. The mathematical expression for the LRNN is given in Equation (11).

xk = g0

(
v0

i +
p

∑
j=1

g0
ijy

(t)
j +

p

∑
i=1

ω0
ijg

(t−1)
j

)
(11)

where g0, v0, ω0 represent biases, input weights, and recurrent weights, respectively, while
g(t) and yt denote the hidden layer (vector) and input functions, respectively.

3.2.4. Linear Layer Neural Network (LLNN)

The mathematical modeling expression for the LLNN is presented in Equation (12).

xk = g0

(
p

∑
i=1

yiω
0 +

q

∑
j=1

yjω
h
ji

)
(12)
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where gh
i , gi and ωh

j are hidden, output layer functions and weight of hidden layer,
respectively and xk is the output of the trained NN

3.2.5. Feed-Forward Neural Network (FFNN)

The FFNN is different from the recurrent types of the NN. However, the neuron
communication channel is monodirectional, thereby, making it simple and fast to train
with [40]. The FFNN mathematical modeling is presented in Equation (13).

xk = g0

(
p

∑
j=1

ω0yigh
j

(
p

∑
i=1

ωh
jiyi

))
(13)

where gh
i , gi and ωh

j are hidden, output layer functions and weight of hidden layer,
respectively and xk is the output of the trained NN.

3.3. Levenberg-Marquardt Model (LMM)

In this research, we employ the LMM for the training of the neural network algorithms
due to its fast training time. The change of weight of the vector using LMM is given in
Equation (14).

∆(w) = −
[

J
(

wT J(w) + µI
)]−1

JT(w)e(w) (14)

where J(w), and I denote the Jacobian matrix, and identity matrix, respectively, and µ is
the parameter (damping).

4. Results and Analysis
4.1. Results

The steady-state analysis of the IEEE 30-bus system and the NGP system on the
vulnerable buses using the NVSP are presented in Tables 1 and 2, respectively. The Tables
describe the safe operating range of the power network in steady-state stability scenarios.
This includes the contingency and base case conditions. It is shown from the Table that the
safe range of active power at the load bus 30, 26, and 29 are 10.6–25.6 MW, 10.5–20.3 MW,
and 10.4–10.9 MW, respectively. Meanwhile, the steady-state stability range of the reactive
power at the same load bus 30, 26, and 29 are given as 10.9–25.9 MVar, 10.3–20.3 MVar, and
10.9–25.9 MVar, respectively. The NVSP values of these buses are kept below 1. Any further
increase in load demand outside the defined range of safe operating limit may result in
voltage collapse if there is no compensation or control mechanism.

Table 1. Steady-state stability assessment using NVSP on IEEE 30-bus.

Bus No
Minimum Load Maximum Load

P (MW) Q (MVar) NVSP Voltage Mag. (p.u) P (MW) Q (MVar) NVSP Voltage Mag. (p.u)

30 10.6 10.9 0.3053 0.919 25.6 25.9 0.9832 0.609
26 10.5 10.3 0.1943 0.912 20.5 20.3 0.4651 0.711
29 10.4 10.9 0.2110 0.945 25.4 25.9 0.6458 0.691

Table 2. Steady State Stability Assessment using NVSP on NGP.

Bus Name
Minimum Load Maximum Load

P (MW) Q (MVar) NVSP Voltage Mag. (p.u) P (MW) Q (MVar) NVSP Voltage Mag. (p.u)

Gombe 90.6 50.9 0.1242 1.174 125.0 135.0 0.1711 1.000
Jos 40.3 55.7 0.1372 1.140 120.0 105.0 0.3936 0.962

Kano 80.6 90.9 0.2091 1.112 250.0 150.0 0.4006 0.933
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As shown in Table 2, the NGP P-Q buses Gombe, Jos, and Kano have a safe oper-
ating limit of active power between 90.6–125.00 MW, 40.3–120.0 MW, and 80.6–250 MW,
respectively. However, the safe operating range of 50.9–135.0 MVar, 55.7–105.0 MVar, and
90.9–150.0 MVar are reactive power for Gombe, Jos, and Kano buses, respectively.

The data presented in Tables 3 and 4 depict the response of the NN algorithms to the
trained data of the IEEE 30-bus system and NGP system, respectively. The target is the
NVSP dataset of the vulnerable lines and buses, and the corresponding neural networks
dataset mimicking the target data is presented for IEEE 30-bus and NGP systems.

Table 3. Steady-State Stability Assessment using NN on IEEE 30-bus.

Target
Neural Network Algorithm

Cascade-
Forward Feed-Forward Linear Layer

(Design)
Layer

Recurrent Elman

0.0134 0.0359 0.0434 0.0198 0.0184 0.0306
0.0535 0.0319 0.0610 0.0169 0.0196 0.0313
0.0763 0.0248 0.0559 0.0226 0.0198 0.0355
0.0000 0.0221 0.0116 0.0231 0.0226 0.0369
0.0405 0.0351 0.0604 0.0222 0.0254 0.0371
0.0000 0.0323 0.0590 0.0196 0.0189 0.0319
0.0000 0.0817 0.0000 0.0417 0.0139 0.0344
0.0161 0.0271 0.0167 0.0274 0.0233 0.0369
0.0493 0.0588 0.1145 0.0344 0.0257 0.0452
0.0385 0.0324 0.0341 0.0288 0.0239 0.0374
0.0436 0.0385 0.0527 0.0540 0.0378 0.0470
0.0000 0.0036 0.0000 0.1114 0.0214 0.0081

Table 4. Steady-State Stability Assessment using NN on NGP bus.

Target
Neural Network Algorithm Training Output

Cascade-
Forward Feed-Forward Linear Layer

(Design)
Layer

Recurrent Elman

0.3689 0.0000 0.4646 0.2162 0.4708 0.2768
0.0389 0.0389 0.0094 0.0895 0.0466 0.2037
0.2223 0.2223 0.2013 0.3538 0.2495 0.2037
0.1797 0.1797 0.1112 0.4036 0.1058 0.3234
0.0000 0.0000 0.0020 0.1266 0.0080 0.1793
0.0000 0.0000 0.0714 0.4860 0.1085 0.3540
0.0000 0.0000 0.0010 0.1000 0.0039 0.1984

The training data comprises about seventy percent of the total dataset while the
remaining dataset was used as the target data. In the performance evaluation of the neural
network models, we consider root mean squared error (rms). The degree of closeness
between the target and the trained results from the neural network algorithms was used
to describe the accuracy of the NNs. However, the training time and the computed ratio
of the trained data of each NN technique to the target data was employed to define the
efficiency of each NN.

4.2. Performance Analysis of the Regression Learner Algorithm

In the performance evaluation of the neural network models, we consider root
mean squared error (rmse). The rmse was derived using the regression learner algorithm.
However, Equations (15) and (16) describe the numerical expression for the mse and
rmse, respectively.

mse =
1
P

P

∑
k=1

(xk − lk)
2 (15)
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rmse =

√√√√ 1
P

P

∑
k=1

(xk − lk)
2 (16)

where xk and lk are the trained output from the neural network and the target, respectively.
Tables 5 and 6 present the analysis of the trained output of the neural network models

for the IEEE 30-bus system and the NGP system, respectively. The table comprises the
rmse, training time, iteration, gradient, and regression performance of the considered
neural networks.

Table 5. Performance Analysis of the NN Algorithms on the IEEE 30-bus.

Neural
Network Model Rmse Training

Time (s)
No of

Iteration Gradient Regression Rank

CFNN 0.029316 0.82864 12 0.000117 0.000983 2nd

ENN 0.031560 0.84766 6 4.84 ×
10−5 0.000225 5th

LRNN 0.030479 0.92653 7 0.000633 0.000633 4th
LLNN 0.028165 2.92024 1000 - 0.000547 3rd
FFNN 0.026290 0.89757 6 0.000234 0.000327 1st

Table 6. Performance Analysis of the NN Algorithms on the NGP.

Neural
Network Model Rmse Training

Time (s)
No. of

Iteration Gradient Regression Rank

CFNN 0.14979 0.93095 6 0.00693 0.000333 1st
ENN 0.16124 0.77200 6 0.00905 0.000663 4th

LRNN 0.16480 0.86549 8 0.00206 0.000121 5th
LLNN 0.15717 4.97786 1000 - 0.000446 3rd
FFNN 0.15141 0.95489 20 0.00206 0.000350 2nd

The ranking of the NN algorithms was based on the training time, accuracy, and
efficiency of the target data (NVSP). The results presented in Table 5 depict that the FFNN
has the best performance in terms of accuracy, predictability, and adaptability as it is ranked
first for the IEEE 30-bus system. Meanwhile, the CFNN is ranked second on the assessment
of steady-state stability on the IEEE 30-bus system. Conversely, as shown in Table 6, the
CFNN is ranked first while FFNN is ranked second for the assessment of steady-state
stability on the NGP system.

The response plot showing the degree of closeness between the target data and the
trained data of different neural network techniques on the IEEE 30-bus is shown in Figure 5.
The weighted sample of the target data and the neural network’s predicted output is
represented with blue and yellow dots, respectively, while the marginal difference (error)
between the two set points is described by red lines.

The response plot showing the degree of closeness between the target data and the
trained data of different neural network techniques on the NGP is shown in Figure 6. The
weighted sample of the target data and the neural network’s predicted output is represented
with blue and yellow dots, respectively, while the marginal difference (error) between the
target data and the trained ANNs output is described by red lines.
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4.3. Comparative Analysis of the Neural Networks

The results from the response plot show that the FFNN has a very close predictive per-
formance to the CFNN for the considered power systems. This implies that both approaches
are good for the assessment of power systems [31,37,41,42]. Sometimes, researchers com-
bine more than one neural network algorithm for a better accurate result [43,44].

Figure 7 describes the interpolant nearest neighbor plot comparing the FFNN and
CFNN with the target result on steady state-stability prediction on the IEEE 30-bus system
and NGP system, respectively. From the information presented in Figure 7, the FFNN
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has similar traits to the CFNN for the considered power networks. More importantly, the
NGP is classified as a complex interconnected power network because of its nonlinear
loading feature [36]. However, the IEEE 30-bus system is an improved American power
subsystem [45]. Both CFNN and FFNN are good techniques for the assessment of the steady
state stability assessment in a power network. Meanwhile, in a complex interconnected
power system, it is recommended to employ the CFNN and the FFNN for an ideal network
that is free of uncertainty.
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5. Conclusions

This paper has investigated different neural network techniques for the assessment of
steady-state stability in a power network. In this study, we consider five neural network
algorithms namely: cascade-forward neural network (CFNN), Elman neural network
(ENN), layer recurrent neural network (LLNN), linear layer neural network (LLNN), and
feedforward neural network (FFNN). The performance ranking of the NN algorithms was
achieved through the regression learner algorithm (RLA) using a root mean squared error
(rmse) and response plot graph. The assessment was performed on the IEEE 30-bus and
the NGP system. The FFNN and CFNN have close prediction values for both the IEEE-30
bus system and NGP system. The data presented in Table 5 ranked the FFNN as the first
based on accuracy and predictability and CFNN ranked second for the IEEE 30-bus system.
Conversely, the CFNN is ranked first and FFNN ranked second for the NGP system as
presented in Table 6. LLNN is ranked third for the two cases-IEEE 30-bus and NGP. ENN is
ranked fifth for the IEEE 30-bus and fourth for the NGP. LRNN is ranked fourth and fifth
for the IEEE 30-bus and NGP systems, respectively.
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