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Abstract: Food supply chains (FSCs) have long been exposed to environmental variability and
shock events caused by various economic, political, and infrastructural factors. The outbreak of the
COVID-19 pandemic has further exposed and identified the vulnerability of FSCs, and promoted
integrated optimization approaches for building resilience. However, existing works focusing on
general supply chains (SCs) and FSCs have not been fully aware of the distinct characteristics of
FSCs in green logistics, i.e., the expiration of fresh products. In reality, perishable food materials
can be processed into products of different processing levels (i.e., multi-level processing) for longer
shelf lives, which can serve as a timely and economic strategy to increase safety stocks for mitigating
disruption risks. Motivated by this fact, we study the problem of enhancing FSC with a multi-level
processing strategy. An integrated location, inventory, and distribution planning model for a multi-
echelon FSC under COVID-19-related disruptions is formulated to maximize the total profit over a
finite planning horizon. Specifically, a two-stage stochastic programming model is presented to hedge
against disruption risks, where scenarios are generated to characterize geographical impact induced
by source-region disruptions. For small-scale problems, the model can be solved with commercial
solvers. To exactly and efficiently solve the large-scale instances, we design an integer L-shaped
method. Numerical experiments are conducted on a case study and randomly generated instances to
show the efficiency of our model and solution method. Based on the case study, managerial insights
are drawn.

Keywords: COVID-19 related FSC disruption; multi-level processing strategy; two-stage stochastic
programming; integer L-shaped method

1. Introduction

In a world of complexity and uncertainty, food supply chains (FSCs) are increasingly
threatened by many factors, including multiple slow but major global changes such as
climate change, disease outbreaks, pest outbreaks, soil degradation, economic and political
crises, and population growth [1]. FSCs of some food products (e.g., seafood) are highly
globalized and structurally complex, allowing shocks and disruptions propagation [2].
Almost all parts of FSCs, i.e., food production, storage, processing, distribution, retail, and
consumption, are exposed to environmental variability and shock events, which can lead to
local disruptions, cascade through FSCs, and finally impact geographically distant places
and people. For example, the 2008 drought in the key grain-producing region, along with
rising biofuel demand, high oil prices, decreasing grain stocks, and the depreciation of
the US dollar, induced price spikes in the global grain market. The disaster further led
to a series of rice export bans, shortages, and eventually driving over 130 million people
into poverty and an increase of 75 million people into malnourishment [3]. This example
embodies the impact of a disruption along the FSC caused by local shocks. Furthermore,
the outbreak of the COVID-19 pandemic has also caused disruptions in one country that
can have an impact across multiple geographical locations along the SCs [4–7], which is
especially unprecedented for FSC.
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The disruptions caused by the COVID-19 can lead to differential impacts on food
availability (e.g., unharvested fields due to reduced labor), physical and economic access
(e.g., restricted movement and transportation, and loss of livelihoods), and intake (e.g.,
dietary shifts towards highly processed foods with a longer shelf life) [8], which has
further exposed and identified the vulnerability of FSCs, and promoted studies on how
to build and enhance FSCs to cope with and adapt for future unpredictable shocks [2,9].
To hedge against disruption risks, several typical proactive strategies have been studied
for building and improving general SCs under disruption risks, such as (i) multi-sourcing
and backup-suppliers [10–15], (ii) pre-positioning of risk mitigation inventory [11,16–18],
(iii) nearshoring, shortening global SCs and rebuilding domestic SCs [19], (iv) maintaining
ecosystem partnerships with strategic material suppliers (Sarah Hippold, 2020. 6 Strategies
for a More Resilient Supply Chain. https://www.gartner.com/smarterwithgartner/6-
strategies-for-a-more-resilient-supply-chain (accessed on 30 May 2022)). There are also
some reactive strategies to mitigate disruption risks (e.g., inventory sharing and customer
reallocation [20]). However, due to transportation slowdown during and after the pandemic,
the reactive strategies are hard and very costly to apply. Therefore, decision-makers
commonly resort to proactive strategies. Furthermore, these strategies designed for general
SCs have not fully taken distinct characteristics of FSCs in green logistics into consideration,
i.e., expiration of products, which cannot guarantee an uninterruptible supply of food
products and, thus, may not be able to achieve resilient FSCs.

Recently, Gholami-Zanjani et al. [21,22,23] considered the troublesome perishability
of fresh food products with expiration, and developed a series of integrated location,
inventory, and distribution planning models for multi-echelon FSCs and to cope with
disruption risks. Specifically, Gholami-Zanjani et al. [21,22] applied both multi-sourcing
and backup-suppliers strategies for FSC enhancement; Gholami-Zanjani et al. [23] further
took advantage of the capacity-expansion strategy, which is however costly and time-
consuming. Moreover, due to the abrupt demands caused by the pandemic together with
its geographical complexity, the conflict between perishable food products and such abrupt
demands has not been detailedly addressed in these works, which may lead to decreases
in safety stocks and increases in the frequency of transportation [24,25]. For example,
during the outbreak of the COVID-19 pandemic in Wuhan, JD.COM experienced a critical
problem in that demands for food and fresh products increased abruptly owing to the
pandemic [26]. Meanwhile, the transportation and operation during lockdown are slowed
down, which leads to in-transit and in-stock rotten foods and exacerbates the shortage of
fresh food products, as experienced by residents in Shanghai under lockdown (Feiran Lu,
2022. Dumped ‘fresh’ vegetables were actually rotten. Shanghai Daily. https://www.shine.
cn/covid19/220419457\2/ (accessed on 30 May 2022)) To alleviate the supply-demand
mismatching condition for fresh products and build a green logistics, this work innovatively
proposes a multi-level processing strategy, based on a real-life practice.

In reality, fresh food materials can be processed into products of different processing
levels with longer shelf lives, which can help increase safety stocks as a practical risk-
mitigating strategy. Apart from risk mitigation, such a multi-level processing strategy is
also beneficial for stopping the waste of fresh materials, in contrast to the way of procuring
multiple products from multiple suppliers, i.e., multi-sourcing and backup-suppliers strate-
gies. This strategy has important implications for building a food supply chain in green
logistics. It has been revealed that food retailers and SCs in high-income countries selling
shelf-stable and frozen seafood have done well following COVID-19-related shifts in food
sourcing, while live-fresh and high-value producers were particularly hard hit [2,8], since
highly processed food products (e.g., frozen products, processed meats, and cans), have
lower deterioration rates and can be stored for longer times. Some digital technologies,
such as food material freshness detecting and monitoring technologies (e.g., electrical gas
sensors [27], computer vision technologies by deep neural network [28]), and inventory
level monitoring technologies in a real-time measure (e.g., radio-frequency identification
(RFID) [29,30]), facilitate the implementation of multi-level processing strategy.

https://www.gartner.com/smarterwithgartner/6-strategies-for-a-more-resilient-supply-chain
https://www.gartner.com/smarterwithgartner/6-strategies-for-a-more-resilient-supply-chain
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To fill the gap between existing literature and FSC practice, we study the problem of
enhancing FSC with a multi-level processing strategy, where highly processed food prod-
ucts have a lower deterioration rate and, thus, a longer shelf life to cope with disruptions.
To portray the FSC under COVID-19-related disruptions, an integrated location, inventory,
and distribution planning model under disruptions is formulated. We use different sce-
narios to characterize uncertain demand, disrupted capacity, and lead time. Specifically,
a two-stage stochastic programming model to maximize the total profit is established.
To simulate the practice, we specifically portray the geographical spread of disruptions
from a source region along the FSC, using the approach from [11]. For solution approaches,
we first apply commercial solvers to solve the model for small-scale problems. Then, we
design an integer L-shaped method to exactly and efficiently solve the model for large-scale
instances. The main contribution of this work can be summarized as follows:

(1) A new problem of enhancing FSC in green logistics with a multi-level processing
strategy is investigated, where food products of different processing levels have
distinct deterioration rates and shelf lives;

(2) An integrated location, inventory, and distribution planning model for a multi-echelon
FSC under COVID-19-related disruptions is formulated, where abrupt demand and
regional information associated with source region-induced disruption propagations
are specifically described via scenarios;

(3) An exact integer L-shaped method is developed to solve the model efficiently;
(4) Different deterioration function parameters of food products are investigated in a

case study to evaluate the efficiency of a multi-level processing strategy, based on
which managerial insights are drawn on whether and when to apply this novel risk-
mitigating strategy;

(5) Numerical experiments are conducted to validate the efficiency of our solution method.

The remainder of this paper is organized as follows. In Section 2, a brief literature
review is given. Section 3 states the studied problem, describes the disruption modeling
approach, and presents the two-stage stochastic programming model. In Section 4, we
present the details of the designed integer L-shaped method. In Section 5, a case study
is conducted, and numerical experiments on random instances are conducted. Finally,
Section 6 summarizes this paper and suggests future research directions.

2. Literature Review

As new digital technologies arise and become mature to be applied in FSC manage-
ment, such as electrical gas sensors [27,31], computer vision technologies by deep neural
networks [28,32], and RFID [29,30], they provide opportunities for FSCs to improve busi-
ness performance and adapt for future unpredictable risks. At the same time, the outbreak
of the COVID-19 pandemic and other natural or man-made disasters threatening food sup-
ply safety have given a boost to studies on FSC [2,8,25]. This section focuses on reviewing
the literature on enhancing FSCs under disruption risks, and the most related works on
general SCs are also discussed. In the following, we mainly review the applications of
operational research methods for SCs with perishable products, which can be distinguished
by whether they consider the expiration of products.

2.1. General SC Optimization without Product Expiration

Zahiri et al. [33] studied a multi-objective location and distribution planning problem
for a four-echelon pharmaceutical SC, where demand was uncertain under disruptions.
With the backup-supplier strategy, the authors proposed a fuzzy optimization approach
to deal with uncertainty and developed meta-heuristics to solve the problem. Abbasi
et al. [34] investigated a location and distribution planning problem for a four-echelon
pharmaceutical SC with multiple perishable products under disruptions. They applied
multi-sourcing, fortification, and backup-suppliers strategies to mitigate disruption risks,
proposed a bi-objective mixed-integer nonlinear programming model, and developed a
fuzzy optimization approach to deal with uncertain capacities caused by disruptions. Diabat
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et al. [35] conducted a work on a bi-objective location and distribution planning problem
for a four-echelon SC of multiple perishable products under disruptions. The demand and
capacity were uncertain in their problem setting. Considering two risk-mitigating strategies,
i.e., backup-suppliers and multi-sourcing, they presented a bi-objective robust optimization
model and developed a heuristic solution method based on Lagrangian relaxation and ε-
constraint to solve it. Apart from SCs disruptions, Yavari and Zaker [36] considered power
network disruptions in a location and distribution planning problem for a four-echelon SC
of multiple perishable products. Risk-mitigating strategies, including backup suppliers,
inventory sharing, and capacity-expansion, were considered in their work. The authors
proposed a bi-objective stochastic programming model, and applied commercial solvers
and LP-metrics method to their model.

Although the above literature considered perishable products, such as pharmaceuti-
cals, they have not taken the expiration of products into consideration. Because for fresh
foods, they are easy to deteriorate in a short time. Therefore, a non-ignorable part of the
inventory foods may become expired, and demand cannot be satisfied in time, especially
during the pandemic. For this reason, the above optimization approaches are not applicable
for enhancing FSC under COVID-19 related disruptions.

2.2. FSC Optimization with Product Expiration

Gholami-Zanjani et al. [22] studied a location, inventory, and distribution planning
problem for a three-echelon SC with multiple meat products under disruptions, where
capacity and demand are uncertain. They considered the expiration of food products,
and applied the periodic reorder point and order-up-to-level inventory policy (s, S). To mit-
igate disruption risks, the authors adopted backup suppliers and multi-sourcing strategies.
A bi-objective two-stage stochastic programming model was presented, and commercial
solvers were used to solve it. Gholami-Zanjani et al. [21] also investigated a location, in-
ventory, and distribution planning problem for a three-echelon FSC under disruptions,
where capacity, demand are uncertain. The (s, S) inventory policy and multi-sourcing
strategy were also applied. They first presented a two-stage stochastic programming model
to maximize the total profit, and then adopted a robust optimization technique to obtain
solutions. The application of (s, S) inventory policy in Gholami-Zanjani et al. [21,22] leads
to mixed-integer second-stage decision variables, which increases computational effort for
solvers to obtain solutions, but these two works have not developed exact and efficient
algorithms to address this problem. Gholami-Zanjani et al. [23] studied a similar problem
but did not consider inventory replenishment decisions. They adopted several different
risk-mitigating strategies: backup suppliers, multi-sourcing, and capacity expansion for
enhancing the ability of FSC to cope with disruption risks. They also proposed a two-stage
stochastic programming model and developed an L-shaped method to solve it. However,
all these three works do not apply the easy-to-implement multi-level processing strategy.

Gholami-Zanjani et al. [21] has comprehensively considered FSCs’ distinct character-
istics (i.e., expiration of food products, and uncertain disrupted capacity and demand),
and applied multi-sourcing and backup-suppliers strategies to enhance FSC. Our work
extends the study of Gholami-Zanjani et al. [21] in the following aspects: (i) proposing
to apply multi-level processing strategy in FSCs to improve its ability in a timely and
economic way, which has not been studied in literature; (ii) portraying geographical spread
of COVID-19 related disruptions induced by a source region, which is consistent with the
reality in China (i.e., the disruptions begin in a source region with high disruption risks
and propagate to other regions); (iii) considering uncertain replenishment lead times under
disruptions; (iv) designing an integer L-shaped method to exactly and efficiently solve
our model since the (s, S) inventory policy leads to mixed-integer second-stage decision
variables that cannot be addressed by the classic L-shaped method; (v) drawing managerial
insights on whether and when to adopt multi-level processing strategy. The comparison of
our work and related literature is presented in Table 1.
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Table 1. Comparison of our work and related literature.

Inventory Disruption Uncertainty Multi- Backup- Capacity- Multi-Level Source Region-Induced

Literature Expiration Policy Capacity Demand Lead Time Sourcing Suppliers Expansion Processing Geographical Spread of Disruptions Solution Method

Zahiri et al. (2017) [33] - - - X - - X - - - Heuristic
Diabat et al. (2019) [35] - - X X - X X - - - Heuristic
Yavari and Zaker (2020) [36] - - X - - - X X - - Solver
Abbasi et al. (2021) [34] - - X - - X X - - - Solver
Gholami-Zanjani et al. (2021c) [23] X - X X - X X X - - L-shaped
Gholami-Zanjani et al. (2021b) [22] X (s, S) X X - X X - - - Solver
Gholami-Zanjani et al. (2021a) [21] X (s, S) X X - X X - - - Solver
This paper X (s, S) X X X X X - X X Solver, Integer L-shaped

3. Problem Description and Formulation

In this section, we present the details of the integrated location, inventory, and dis-
tribution planning problem faced by a single decision-maker under COVID-19-related
disruptions, and formulate a two-stage stochastic programming model for it. Specifically,
in our problem setting, multi-level processing of food materials, serving as a risk-mitigating
strategy for the FSC, is for the first time considered, which distinguishes our work from
the related literature [23]. Our unique feature of multi-level processing can significantly
enhance FSCs’ ability to cope with disruption risks. In Section 3.1, we state the problem
and introduce a multi-level processing feature. In Section 3.2, we portray disruptions on a
realistic basis. In Section 3.3, a novel two-stage stochastic programming model is presented.

3.1. Problem Description

Considering a three-echelon food supply chain (FSC) consisting of processing centers
(PCs) P = {1, 2, . . . , P}, distribution centers (DCs) D = {1, 2, . . . , D} and customer zones
(CZs) K = {1, 2, . . . , K}, which is faced by unforeseen disruption risks under pandemic
COVID-19. It focuses on the business of satisfying the food demand of covered CZs,
specifically a single type of food demand, such as meat. Customer demand can be satisfied
by food products of different processing levels, e.g., fresh meat products and processed
meat products, both of which are made of raw meat materials. Food products of different
processing levels mainly differ in unit ordering cost, fixed ordering cost, inventory holding
cost, transportation cost, replenishment lead time, and shelf life. The food product is
ordered and purchased from PCs, stored in the DCs, and transported to CZs to satisfy
demand. The storage capacity of PCs and production capacity of DCs is limited. In DCs,
a periodic reorder point and order-up-to-level policy (s, S) is applied. At the beginning of
each time period, the inventory level of each DC is reviewed using digital technologies
such as RFID [29,30], and an order is placed if the inventory level is below the reorder point
to replenish the inventory up to the order-up-to level point. When the PCs cannot provide
sufficient product due to disruptions, the DCs can replenish inventory by outsourcing from
PCs out of the considered FSC at an extra cost. In addition, the throughput capacity of PCs
is also considered limited, which describes the maximum quantity of product that can be
transported from DCs in a single period. We aim to tactically determine the number of DCs,
locations of DCs, the maximum storage and throughput capacity of DCs, and operationally
the replenishment (outsourcing) time points and quantities and distribution configurations,
to maximize the total profit over a discrete planning horizon T = {1, 2, . . . , T}, considering
unpredictable pandemic disruptions.

The food product is perishable for all processing levels (i.e., it deteriorates over time),
and the freshness of it can be monitored using electrical gas sensors [27,31] or computer
vision technologies by deep neural networks [28,32]. Once the product is transported to
DCs, its shelf life begins. The products stored in each DC are distinguished by their ages,
and the earlier the products are produced, the sooner they are transported to CZs. In this
paper, we consider an exponential function µ0et/ω [37], where µ0 is the initial deterioration
rate, constant ω denotes the time when the deterioration rate of the product becomes
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equal to e times of the initial value. For each processing level l, the fraction µlrt of product
produced in time period r and deteriorated at the end of period t is calculated as follows.

µlrt =
∫ t−r+1

t−r
µ0

l et′/ωl dt′ (1)

Food products of different processing levels have different deterioration function parame-
ters, which is the essence for adopting multi-level processing strategy to enhance FSC.

The price of food products is usually related to their freshness. In line with Gholami-
Zanjani et al. [21], we adopt a linear price function with respect to the product’s inventory
age as follows.

πlrt = π0
l

(
SLl − (t− r)

SLl

)
, ∀l ∈ L, r, t ∈ T , r ≤ t, (2)

where π0
l represents the initial price if the product of processing level l is fresh and SLl

denotes the shelf life of processing level l. Different from Gholami-Zanjani et al. [21] that
only considered fresh food products, in this paper, food products of different processing
levels have different shelf lives SLl .

3.2. Disruption Modeling

We portray uncertain disruptions, together with their geographical information, in line
with Sawik [11]. According to the geographic location and supply chain partnership, supply
chain nodes in the FSC are divided into N regions, N = {1, 2, . . . , N}. The supply chain
nodes in the region n ∈ N are denoted by set Mn. The region n = 1 is considered as
the source region, which is exposed to regional pandemic disruption risks of different
levels g ∈ G1 = {0, 1, . . . , G1}, with different probabilities, Pr1g. The disruption levels
are characterized by disruption duration, available throughput capacity, replenishment
lead time, customer demand, etc. The higher the disruption level, the greater impact
it has on business performance. Disruption level 0 refers to normal conditions without
disruption. The regional disruption of level g ∈ Gn/{0} in the source region n = 1 can
be propagated to other regions n ∈ N/{1}, and trigger disruptions of different levels
g ∈ Gn, with different probabilities Prng. Therefore, there is totally ∏n∈N (Gn + 1) potential
scenarios, S = {1, 2, . . . , S = ∏n∈N (Gn + 1)}. Each potential scenario s is represented
by a n-dimensional vector ζs = {ζ1s, ζ2s, . . . , ζNs}, where ζns ∈ Gn denotes the disruption
level in region n ∈ N under scenario s ∈ S . The probability of each potential scenario s is
calculated as follows [11].

Rs = ∏
n∈N

∏
g∈Gn ,g=ζns

Prng, ∀s ∈ S (3)

This approach is based on the assumption that, except for the source region, all regions
can only be disrupted due to regional disruptions directly propagated from the source re-
gion. This assumption simplifies disruption modeling and does not mean loss of generality.
It represents the condition faced by a domestic FSC in China where only PCs in the source
region have trade contacts with foreign suppliers, and, thus, are exposed to higher pan-
demic disruption risks, whereas the other regions are not exposed to pandemic disruption
risks directly. For example, as the number of confirmed cases was increasing at the outbreak
of the COVID-19 pandemic in Germany, China halted imports from German meat plants,
which caused disruptions to its meat-import firms (Orange Wang, 2020. Coronavirus: China
bans imported pork from German meat plant after more than 650 infected in outbreak.
South China Morning Post. https://www.scmp.com/economy/china-economy/article/
3089661/coronavirus-china-bans-imported-pork-german-meat-plant-after (accessed on
30 May 2022)). Therefore, if the pandemic does not hit the source region, and at least
one non-source region has been disrupted, such scenarios are assumed to be infeasible.
The probability of these scenarios should be corrected to zero, while the probability of

https://www.scmp.com/economy/china-economy/article/3089661/coronavirus-china-bans-imported-pork-german-meat-plant-after
https://www.scmp.com/economy/china-economy/article/3089661/coronavirus-china-bans-imported-pork-german-meat-plant-after
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scenarios where all regions are at normal condition should be augmented to ∑s∈S ,ζ1s=0 Rs.
The corrected probability Probs for each scenario is presented as follows.

Probs =


∑

s′∈S ,ζ1s′=0
Rs′ if ∑

n∈N
ζns = 0

0 if ζ1s = 0 and ∑
n∈N/1

ζns > 0

Rs otherwise

(4)

The disruption of each level g ∈ G1/{0} in the source region is assumed to occur at
the beginning of the planning horizon. Then, with a delay of Λng, the disruption of level
g ∈ Gn, begins in region n ∈ N/{1}. The disruption of level g ∈ Gn in region n ∈ N has a
duration of ∆ng. Denoted by Cap0

pl the production capacity for the product of processing
level l in PC p without disruptions in the region n ∈ N . The production capacity of PCs in
the region n under scenario s ∈ S is presented as follows.

Caps
plt =

{
(1− bnζns)Cap0

pl if Λnζns < t ≤ Λnζns + ∆ng

Cap0
pl otherwise

, (5)

where bnζns ∈ [0, 1] is the regional capacity reduction factor under disruption level of ζns
in region n. Likewise, if DC d is established with capacity level c ∈ C, we use Φ0

dlc to
denote the storage capacity without disruptions in its region. The storage capacity is not
impacted by disruptions once it is built, whereas the throughput capacity may decrease
due to lockdown. The throughput capacity of DCs in the region n ∈ N under scenario
s ∈ S is given as follows.

Φs
dlct =

{
(1− bnζns)Φ

0
dlc if Λnζns < t ≤ Λnζns + ∆ng

Φ0
dlc otherwise

(6)

When disrupted by pandemic disruptions, replenishment lead time of ordering product
from PCs increases due to temporary lockdown and limitation of transportation resources.
Denoted by δ0

pl the replenishment lead time for a product of processing level l from PC p
to DCs, if there are no disruptions in its region n ∈ N . The replenishment lead time δs

plt
under scenario s is expressed as follows,

δs
plt =

{
δ0

pl + hpζns if Λnζns < t ≤ Λnζns + ∆ng

δ0
pl otherwise

, (7)

where hpζns represents the replenishment lead time extension under disruption level of ζns
in region n.

As a distinctive feature of FSC, the demand for food products increases abruptly owing
to the pandemic, since the outbreak of disruption in the source region [26]. Influenced by
the panic of possible lockdown, customers in both source and non-source regions rush
to purchase more food products than normal level. We assume that the demand of each
CZ starts to increase since the outbreak of disruption in the source region, and gradually
decreases to normal level when its region is disrupted by disruptions propagated from the
source region, as depicted in Figure 1. The normal demand level of CZ k ∈ K is denoted
by q0

k , and the maximum demand under scenario s ∈ S is impacted by both disruption
levels in the source region 1 and the CZ’s region n, as qmax

ks = νζ1snυζns q0
k , where νζ1sn ≥ 1

represents the impact of regional disruption of level ζ1s in source region 1 on the demand
of CZs in region n, and υζns ≥ 1 denotes the impact of disruption of level ζns in region n on
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the demand of CZs in it. The demand qs
kt of CZ k in time period t under scenario s ∈ S can,

therefore, be expressed as follows.

qs
kt =


q0

k +
t

Λnζns

(qmax
ks − q0

k) if 1 ≤ t < Λnζns

qmax
ks +

Λnζns−t

∆nζns

(qmax
ks − q0

k) if Λnζns ≤ t < Λnζns + ∆nζns

q0
k otherwise

(8)

Figure 1. Illustration for demand pattern under pandemic disruption.

3.3. Problem Formulation

In this section, the basic assumptions for problem formulation are given, and the
mathematical model for the studied problem is presented.

3.3.1. Problem Assumption

The basic assumptions for problem formulation are concluded and listed as follows.

(1) The demand for CZs for certain food types can be satisfied by products of all processing
levels provided by the FSC, and in this paper, we study two processing levels: fresh
and processed. They mainly differ in deterioration function parameters, shelf lives,
holding costs, replenishment lead times, and transportation costs;

(2) Products of different processing levels have distinct shelf lives, storage requirements,
replenishment lead times, and per-unit costs and prices;

(3) Products of different processing levels should be stored in DCs using different equip-
ment, i.e., the capacity for products of different processing levels is independent;

(4) The transportation time from DCs to CZs is smaller than one time period and can be
neglected;

(5) The supply chain nodes (PCs, DCs and CZs) in a region are faced with identical
disruption risks;

(6) The disruption originates in exactly one source region, occurs at the beginning of the
planning horizon, and triggers disruption in the remaining regions with a delay;

(7) The disruptions propagated from the source region impact the maximum throughput
capacity of PCs and DCs, replenishment lead time from PCs to DCs, and demand in
CZs;

(8) The demand of each CZ starts to increase linearly since the outbreak of disruption in
the source region, and gradually decreases linearly to normal level when its region is
disrupted by disruptions propagated from the source region;

(9) When the PCs cannot provide sufficient products due to disruptions, DCs can out-
source from PCs out of the considered FSC at an extra cost, which is actually the
backup-suppliers strategy;
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(10) Backlogging is not allowed, since customers can easily buy other substitute products
when their demand cannot be satisfied;

(11) The deterioration function of food products is an exponential one [37].

3.3.2. The Two-Stage Stochastic Programming Model

The indices and notations for the mathematical model are summarized as follows:

Indices

t, r, m: index of time periods during the planning horizon;
i, j: index of nodes in the supply chain network;
p: index of processing centers (PCs);
d: index of distribution centers (DCs);
k: index of customer zones (CZs);
l: index of processing levels of product;
c: index of possible capacity levels of DCs;
g: index of disruption levels;
s: index of scenarios.

Notations

T : set of time periods, T = {1, 2, . . . , T}, where T is the length of the planning
horizon;

P : set of processing centers (PCs), P = {1, 2, . . . , P}, where P is the number of PCs;
D: set of possible distribution centers (DCs), D = {1, 2, . . . , D}, where D is the

number of DCs;
K: set of possible customer zones (CZs), K = {1, 2, . . . , K}, where K is the number of

CZs;
L: set of possible processing levels, L = {1, 2, . . . , L}, where L is the number of

processing levels;
C: set of possible capacity levels for establishing new DCs, C = {1, 2, . . . , C}, where

C is the number of processing levels;
S : set of scenarios, S = {1, 2, . . . , S}, where S is the number of scenarios;
σdlc: establishment cost of DC d with capacity level c for product of processed level l,

where d ∈ D, l ∈ L and c ∈ C;
Caps

plt: maximum throughput capacity for product of processing level l of PC p in period
t under scenario s, where p ∈ P , l ∈ L, t ∈ T and s ∈ S ;

Φs
dlct: maximum throughput capacity for product of processing level l of DC d in period

t under scenario s if DC d is established with capacity c for product of processing
level l, where Φ0

dlc represents storage capacity, d ∈ D, l ∈ L, c ∈ C, t ∈ T and
s ∈ S ;

τijl : transportation cost of per unit product of processing level l from node i to node j,
where l ∈ L and i, j ∈ P ∪D ∪K;

SLl : shelf life for processing level l, where l ∈ L;
θl : outsourcing cost of per unit product of processing level l, where l ∈ L;
αl : fixed cost of placing an order for product of processing level l, which is indepen-

dent of the order quantity, where l ∈ L;
βl : procurement cost of per unit product of processing level l from PCs, where l ∈ L;
λ+

l : holding cost of per unit product of processing level l for one period in DCs, where
l ∈ L;

λ−l : backlogging cost of per unit product of processing level l for one period in DCs,
where l ∈ L;

πlrt: price of per unit product of processing level l that is produced in period r and
sold in period t, where l ∈ L, r, t ∈ T and r ≤ t;

µlrt: fraction of per unit product of processing level l that is produced in period r but
becomes expired at the end of period t, where l ∈ L, r, t ∈ T and r ≤ t;
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ρl : deterioration cost of per unit product of processing level l, where l ∈ L;
qs

kt: demand of CZ k in period t under scenario s, where k ∈ K, t ∈ T and s ∈ S ;
δs

plt: lead time of product of processing level l in PC p that is ordered in period t under
scenario s, where p ∈ P , l ∈ L, t ∈ T and s ∈ S ;

Probs: probability of scenario s, where s ∈ S ;
M: a sufficient large positive number;
ε: a sufficient small positive number.

Decision Variables

yd: a binary variable equal to 1 if a DC is established at potential location d ∈ D; 0,
otherwise, d ∈ D;

xdlc: a binary variable equal to 1 if a DC is established at potential location d with
capacity level c for product of processing level l; 0, otherwise, where d ∈ D, l ∈ L
and c ∈ C;

os
dlt: a binary variable equal to 1 if DC d places an order for product of processing level

l at the beginning of period t under scenario s; 0, otherwise, where d ∈ D, l ∈ L,
t ∈ T and s ∈ S ;

Rs
dl : reorder point of product of processing level l for DC d under scenario s, where

d ∈ D, l ∈ L and s ∈ S ;
Us

dl : up-to-level point of product of processing level l for DC d under scenario s, where
d ∈ D, l ∈ L and s ∈ S ;

ws
dkt: amount of demand of CZ k that is satisfied by DC d in period t under scenario s,

where d ∈ D, k ∈ K, t ∈ T and s ∈ S ;
bs

dkt: amount of demand of CZ k that should be satisfied by DC d but backlogged till
the end of period t under scenario s, where d ∈ D, k ∈ K, t ∈ T and s ∈ S . Note
that bs

dk0 = 0 in this paper;
zs

dklrt: amount of product of processing level l that is produced in period r and trans-
ported from DC d to CZ k in period t under scenario s, where d ∈ D, k ∈ K, l ∈ L,
r, t ∈ T , r ≤ t and s ∈ S ;

f s
dplt: amount of product of processing level l transported from PC p to DC d in period t

under scenario s, where d ∈ D, p ∈ P , l ∈ L, t ∈ T and s ∈ S ;
Is
dlt: inventory position of product of processing level l in DC d at the beginning of

period t under scenario s, where d ∈ D, l ∈ L, t ∈ T and s ∈ S ;
es

dlrt: on-hand inventory at the end of period t of product of processing level l in DC d
that is produced in period r under scenario s, where d ∈ D, l ∈ L, r, t ∈ T , r ≤ t,
s ∈ S and es

dl00 represents the initial inventory (equal to zero in this paper);
ϕs

dlt: outsourcing quantity of product of processing level l in DC d in period t under
scenario s, where d ∈ D, l ∈ L, t ∈ T and s ∈ S ;

γs
dlt: order quantity of product of processing level l from DC d in period t under

scenario s, where d ∈ D, l ∈ L, t ∈ T and s ∈ S .

The two-stage stochastic programming model for the studied problem is detailed below.

max



− ∑
d∈D

∑
l∈L

∑
c∈C

σdlcxdlc − ∑
p∈P

∑
d∈D

ηpdupd − ∑
d∈D

∑
k∈K

φdkvdk

+ ∑
s∈S

Probs ∑
d∈D

∑
l∈L

∑
t∈T

( ∑
k∈K

∑
r∈T ,r≤t

(πlrt − τdkl)zs
dklrt − αlos

dlt − βlγ
s
dlt

− ∑
p∈P

(βl + τpdl) f s
dplt − θl ϕ

s
dlt − ∑

r∈T ,r≤t
(λ+

l + ρlµlrt)es
dlrt − ∑

k∈K
λ−l bs

dkt)


(9)
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subject to:

∑
c∈C

xdlc ≤ yd, ∀d ∈ D, l ∈ L (10)

∑
l∈L

∑
c∈C

xdlc ≥ yd, ∀d ∈ D (11)

∑
d∈D

ws
dkt ≤ qs

kt, ∀k ∈ K, t ∈ T , s ∈ S (12)

ws
dkt + bs

dk,t−1 = ∑
l∈L

∑
r∈T ,r≤t

zs
dklrt + bs

dkt, ∀d ∈ D, k ∈ K, t ∈ T , s ∈ S (13)

bs
dkT = 0, ∀d ∈ D, k ∈ K, s ∈ S (14)

Is
dlt = ∑

r∈T ,t−SLl+1≤r≤t−1
(1− µlrt−1)e

s
dlr,t−1 + ∑

p∈P

t+δs
plt

∑
r=t

f s
dplr, ∀d ∈ D, l ∈ L, t ∈ T , s ∈ S (15)

es
dlrt = ∑

p∈P
f s
dplt + ϕs

dlt − ∑
k∈K

zs
dklrt, ∀d ∈ D, l ∈ L, r, t ∈ T , r = t, s ∈ S (16)

(1− µlrt−1)e
s
dlr,t−1 = es

dlrt + ∑
k∈K

zs
dklrt, ∀d ∈ D, l ∈ L, r, t ∈ T , r < t ≤ r + SLl − 1, s ∈ S (17)

Is
dlt ≤ Rs

dl − ε + M(1− os
dlt), ∀d ∈ D, l ∈ L, t ∈ T , s ∈ S (18)

Is
dlt ≥ Rs

dl −Mos
dlt, ∀d ∈ D, l ∈ L, t ∈ T , s ∈ S (19)

os
dlt ≤ ∑

c∈C
xdlc, ∀d ∈ D, l ∈ L, t ∈ T , s ∈ S (20)

γs
dlt ≥ Us

dl − Is
dlt −M(1− os

dlt), ∀d ∈ D, l ∈ L, t ∈ T , s ∈ S (21)

γs
dlt ≤ Us

dl − Is
dlt, ∀d ∈ D, l ∈ L, t ∈ T , s ∈ S (22)

γs
dlt ≤ Mos

dlt, ∀d ∈ D, l ∈ L, t ∈ T , s ∈ S (23)

γs
dlt = ∑

p∈P
∑

r=t+δs
plt

f s
dplr, ∀d ∈ D, l ∈ L, t ∈ T , s ∈ S (24)

∑
d∈D

f s
dplt ≤ Caps

plt, ∀p ∈ P , l ∈ L, t ∈ T , s ∈ S (25)

∑
k∈K

∑
r∈T ,r≤t

zs
dklrt ≤ ∑

c∈C
Φs

dlctxdlc, ∀d ∈ D, l ∈ L, t ∈ T , s ∈ S (26)

∑
r∈T ,r≤t

es
dlrt ≤ ∑

c∈C
Φ0

dlcxdlc, ∀d ∈ D, l ∈ L, t ∈ T , s ∈ S (27)

yd, xdlc, os
dlt ∈ {0, 1}, ∀p ∈ P , d ∈ D, k ∈ K, c ∈ C, l ∈ L, t ∈ T , s ∈ S (28)

Rdl , Udl , ws
dkt, zs

dklrt, f s
dplt, Is

dlt,

es
dlrt, ϕs

dlt, γs
dlt ≥ 0, ∀d ∈ D, d ∈ D, k ∈ K, l ∈ L, r, t ∈ T , r ≤ t, s ∈ S (29)

The objective function of maximizing the total profit is given by (9), which includes
establishment costs of DCs in the first-stage decision, and revenue of satisfying customer
demand, the procurement costs of DCs, the fixed ordering costs of DCs, outsourcing cost
of DCs, the transportation costs, the inventory holding costs and deterioration costs in
second-stage decision.

The constraints related to the first-stage decision are given by (10) and (11). Con-
straints (10) ensure that at most one DC is established at a potential location and each DC is
established with a capacity level for the product of each processing level. Constraints (11)
state that if one DC is established at a potential location, it should be built up for at least
one processing level.

The constraints related to the second-stage decision are stated by (12)–(27). Con-
straints (12) mean that the supply for each CZ cannot exceed its maximum demand.
The backlogging flow conservation is described by Constraints (13). The demand of each
CZ can be satisfied by the product of all processing levels, as stated by Constraints (13).
Constraints (11) ensure that the backlogged demand is equal to zero at the end of the
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planning horizon. Constraints (15) calculate the inventory position for the product of
each processing level in each DC at the beginning of each period, which includes on-hand
and in-transit inventory. Constraints (16) and (17) represent the inventory material flow
conservation constraints. Constraints (18) and (19) mean that DCs places an order if and
only if their inventory positions are less than or equal to reorder points at the beginning
of each time period. Constraints (20) ensure that orders can only be placed by established
DCs. Constraints (21)–(23) calculate order quantities if an order is placed for each DC. Con-
straints (24) calculate the transportation quantities considering lead time. The maximum
production capacity constraints for PCs are described by (25), while the throughput capacity
constraints for DCs are described by (26). Constraints (27) ensure that the inventory level
in DCs for the product of each processing level at the end of each period should be less
or equal to the maximum storage capacity. The domains of decision variables are given
by (28) and (29).

4. Solution Method

The proposed mathematical formulation is a two-stage stochastic programming model,
which includes purely binary first-stage decision variables and mixed-integer second-stage
decision variables. For small-scale problems, we can resort to commercial solvers for
solutions. However, the model is fairly intractable as the number of scenarios increases
for convergence of the sample average approximation method. To tackle this problem,
we design an integer L-shaped method that could reduce the computational effort for
evaluating the second stage objective function value. This approach is developed by [38]
and latter improved by [39]. In the following subsections, we present the decomposed
matrix form of the two-stage stochastic programming model and provide the details of
our algorithm.

4.1. Decomposition

The original two-stage stochastic programming model is decomposed into a master
problem (MP) with binary decision variables and S subproblems (SPs) with mixed-integer
decision variables, where S represents the number of scenarios [40]. In this subsection,
the matrix forms of the original model, and decomposed MP and SPs are presented.

The first-stage decision variables are first divided into two categories: Z and V ac-
cording to whether they are directly related to second-stage constraints. The second-stage
decision variables for scenario s are divided into two categories: Xs for binary variables,
and Ys for continuous variables. The first-stage decision variables in the mathematical
model can be represented by vectors, such as y for yd, and x for xdlc. According to the
two-stage stochastic programming model, Z includes variables yd and V includes variables
xdlc. Among second stage decision variables, only os

dlt is binary. Therefore, Xs only includes
variable os

dlt. The matrix form of the original two-stage stochastic model is presented
as follows.

max

{
czZ + cvV + ∑

s∈S
Probs(cs

xXs + cs
yYs)

}
(30)

subject to:

AZ + BV ≤ b (31)

W s
x Xs + W s

yYs = hs − Ts
v V , ∀s ∈ S (32)

Z ∈ {0, 1}mz , V ∈ {0, 1}mv ,Xs ∈ {0, 1}mx , Ys ∈ Rmy
+ , ∀s ∈ S (33)

where cz, cv, cs
x, and cs

y are corresponding coefficient vectors of decision variables, matrix
A and B are obtained from Constraints (10) and (11), and b represents the right-hand side
constant vector of Constraints (10) and (11). In (32), W s

y and W s
x represent the recourse

matrices corresponding to Xs and Xs, Tv
s is the technology matrices corresponding to
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V , and hs denotes the resource vectors. Constraints (33) states the domains of decision
variables, where mz, mv, mx, and my are the size of corresponding vectors.

The second-stage objective function is represented by Q(V). By introducing an auxil-
iary variable η, the master problem (MP) is formulated as follows.

[MP] max FMP = czZ + cvV + η (34)

subject to:

AZ + BV ≤ b (35)

η ≤ η̄ (36)

Z ∈ {0, 1}mz , V ∈ {0, 1}mv (37)

where η̄ is an upper bound of Q(V) to avoid unboundedness of the problem, and it can
be obtained by assuming DCs are established at all potential locations with sufficient
capacity. The solution of MP provides an upper bound for the original two-stage stochastic
programming model. For any given solution Z̄ and V̄ , the subproblem (SPs) for scenario s
can be formulated as follows.

[SPs] max FSPs = cs
xXs + cs

yYs (38)

subject to:

W s
x Xs + W s

yYs = hs − Ts
v V̄ (39)

Xs ∈ {0, 1}mx , Ys ∈ Rmy
+ (40)

4.2. Integer L-Shaped Method

The classic L-shaped method is developed by [41] for solving a two-stage stochastic
programming model where second-stage subproblems are linear programs (LPs). However,
when the second-stage decision includes mixed-integer variables, optimality cuts, and
feasibility cuts cannot be obtained by using LP duality. The integer L-shaped optimality
cut is introduced by [38] for two-stage stochastic programming with binary second-stage
variables as follows (it is described in the form for maximum problem).

η ≤ (Q(V i)−U)( ∑
j∈O(V i)

xj − ∑
j/∈O(V i)

xj − |O(V i)|) + Q(V i) (41)

where Q(V i) denotes the second-stage objective function value in iteration i of the algo-
rithm, U is an upper bound for Q(V), andO(V i) is the set of indices for second-stage binary
variables that take the value of 1 in iteration i. As mentioned before, the upper bound U can
be obtained by assuming that DCs are established at all potential locations with sufficient
capacity. The optimality cut can be added to the MP to ensure that η ≤ Q(V i) for the
first-stage solution V i, whereas this optimality cut is not tight for other first-stage solutions.
Ref. [38] combine the integer L-shaped optimality cut and branch-and-bound scheme for
the master problem. On each node of the branch-and-bound tree of the master problem,
the values of some first-stage decision variables are fixed, and the master problem is solved
based on these fixed values. When a solution at a node is obtained, the integrality of the
first-stage decision variables is first checked. If the solution satisfies integrality restriction,
the algorithm further checks whether η ≥ Q(V i). If this condition is not satisfied, an integer
L-shaped optimality cut of form (41) is added to the master problem. In their algorithm,
exact evaluation for the value of Q(V i) is required every time a feasible first-stage solution
is obtained. It may be much more time-consuming since the mixed-integer subproblem for
each scenario should be solved. Ref. [39] improve the algorithm by using the information
on linear relaxation of mixed-integer subproblems. The objective function of LP relaxation
is denoted by QLP(V i). For maximum subproblems, the condition QLP(V i) ≥ Q(V i) holds
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on, therefore, the algorithm can be improved by first checking whether η > QLP(V i). If this
condition holds on, the computational effort of evaluating the objective function value
of mixed-integer subproblems can be reduced. The solution can be removed by adding
continuous L-shaped optimality cut into a master problem using duality information of
subproblem LP relaxation as follows:

η ≥ ∑
s∈S

Probsπs
i
′hs − ∑

s∈S
Probsπs

i
′Ts

v V , (42)

where πs
i is optimal dual variables of LP relaxation of the subproblem under scenario s in

iteration i.
Refs. [38,39] implement the L-shaped method along with branch-and-bound scheme

for solving the master problem, whereas in this paper, we simplify the implementation by
using a commercial solver to address the master problem since our master problem is not
very complicated. By now, we can present the main steps of our implementation as follows:

Step 0: Let i = 0 denote the number of iterations, and define LB = −in f and UB = in f as
the lower bound and upper bound of the original two-stage stochastic programming
model, respectively.

Step 1: Solve the MP, obtain optimal solution (Zi, V i, ηi), update UB as the obtained objec-
tive function value Fi

MP and set i = i + 1. If UB− LB ≤ ε, stop. Otherwise, go to
Step 2.

Step 2: Solve the LP relaxation of each subproblem for s ∈ S . If ηi > QLP(V i), add
continuous L-shaped optimality cut of form (42) and return to Step 1. Otherwise,
go to Step 3.

Step 3: Solve the subproblems for s ∈ S . If Fi
MP − η + Q(V i) > LB, update LB, add integer

L-shaped optimality cut of form (41) into the master problem and return to Step 1.
Otherwise, stop.

Note that the procedure of adding feasibility cuts into the master problem is omitted since
our second-stage subproblems are always feasible.

5. Numerical Experiment

In this section, we first investigate the efficiency of applying the new multi-level
processing strategy for FSCs under COVID-19-related disruptions through a case study.
Based on the case study, we draw managerial insights on whether and when to apply this
novel risk-mitigating strategy. To evaluate the efficiency of our integer L-shaped method,
we conduct numerical experiments on randomly generated instances and compare the
results with commercial solver.

5.1. Case Study

In this subsection, we present an example of an FSC under source region-induced
disruption in China, which includes 3 regions, 2 PCs, 5 potential DCs, and 5 CZs, and the
integrated location, inventory, and distribution decisions should be made for a planning
horizon with 12 periods, as depicted in Figure 2. Different deterioration function parameters
and disruption levels are investigated to evaluate the efficiency of applying a multi-level
processing strategy.

The parameters of the example used in the case study are provided in Tables 2 and 3.
We consider two processing levels in the example, i.e., fresh meat and highly processed
meat. They mainly differ in deterioration function parameters, shelf lives, holding costs,
replenishment lead times, and transportation costs. In reality, the demands for food
products cannot be backlogged, since customers can easily buy other substitute foods;
therefore, the backlogging costs are set to be sufficiently large. By the scenario-related
parameters in Table 3, a total of 19 scenarios are generated using the disruption modeling
approach detailed in Section 3.2.
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Figure 2. Example used in the case study.

Table 2. Basic parameters of the example.

Instance Scale:

N = 3 (3 regions), P = 2 (2 PCs), D = 5 (5 potential DCs), K = 5 (5 CZs), T = 12 (12 periods)
L = 2 (2 processing levels), C = 3 (3 capacity levels for DCs), Gn = 3 (3 disruption levels for each region)

Parameters related to PCs:

Normal production capacity Cap0
11 = 6000, Cap0

12 = 6000, Cap0
21 = 5000, Cap0

22 = 5000
Normal lead time δ0

p1 = 0, δ0
p2 = 0, ∀p ∈ P

Parameters related to DCs:

Normal storage capacity Φ0
dl1 = 2000, Φ0

dl2 = 4000, Φ0
dl3 = 6000, ∀d ∈ D, l ∈ L

Establishment cost σd11 = 10000, σd12 = 16000, σd13 = 20000, ∀d ∈ D
σd21 = 5000, σd22 = 8000, σd23 = 10000, ∀d ∈ D

Parameters related to CZs:

Normal demand q0
1 = 400, q0

2 = 350, q0
3 = 420, q0

4 = 370, q0
5 = 440

Transportation cost:

From PCs to DCs τij1 ∈ (2, 3), ∀i ∈ P , j ∈ D, τij2 ∈ (0, 1), ∀i ∈ P , j ∈ D
From DCs to CZs τij1 ∈ (1, 2), ∀i ∈ D, j ∈ K, τij2 ∈ (0, 1), ∀i ∈ D, j ∈ K
Parameters related to different processing levels:

Fresh price π0
1 = 35, π0

2 = 37
Ordering cost β1 = 12, β2 = 20
Fixed ordering cost α1 = 500, α2 = 500
Outsourcing cost θ1 = 35, θ2 = 37
Shelf life SL1 = 4, SL2 = 12
Inventory holding cost λ+

1 = 0.5, λ+
2 = 0.2

Backlogging cost Sufficient large
Deterioration cost ρ1 = 1.5, ρ2 = 1
Deterioration function parameter µ0

1 = 0.03, µ0
2 = 0.01

ω1 = 4, ω2 = 12
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Table 3. Scenario-related parameters for the example.

Disruption Level

Parameters Region Normal Partly Disrupted Disrupted

Disruption probability Prng 1 0.3 0.5 0.2
2 0.5 0.3 0.2
3 0.6 0.3 0.1

Capacity reduction factor bnζns 1 0 0.7 1
2 0 0.5 1
3 0 0.5 1

Delay of regional disruption Λng 1 0 0 0
2 0 2 1
3 0 3 1

Duration of disruption ∆ng 1 0 4 8
2 0 3 6
3 0 3 6

Lead time extension for PCs hpζns 1 0 1 3
2 0 1 2
3 0 1 2

Demand impact factor νζ1sn 1 1 1.25 1.5
2 1 1.1 1.2
3 1 1.05 1.15

Demand impact factor υζns 1 1 1 1
2 1 1.2 1.3
3 1 1.2 1.4

We focus on 3 indicators: objective function value, expected demand fulfillment
rate of all CZs (which is calculated by ∑s∈S Probs

Satisfied_demand
Total_demand × 100%), and expected

rate of demand that is satisfied by fresh meat (which is calculated by ∑s∈S Probs
Demand_satisfied_by_fresh_meat

Satisfied_demand × 100%).
The objective function value for the example is 108,497.89, where potential DC 1 is

established for storing processed meat, potential DC 4 for both fresh meat and processed
meat, and potential DC 5 for processed meat. Potential DC 2 and DC 3 are not established.
For all 19 different scenarios, the expected demand fulfillment rate of all CZs is 38.61%,
of which 32.10% is satisfied by fresh meat and 67.90% is satisfied by processed meat.

To further investigate the efficiency of applying a multi-level processing strategy, we
solve the example without considering a multi-level processing strategy, i.e., the FSC only
provides fresh meat. To achieve a fair comparison, we set the production capacity of PCS
for supplying meat to be 12,000 and 10,000 in PC 1 and 2, capacity levels of DCs to be 4000,
8000, and 120,000, and the corresponding establishment costs to be 20,000, 320,000, and
400,000, respectively. The objective function value obtained is 77,579.76 and the expected
demand fulfillment rate is 27.31%, which are smaller than that of considering a multi-
level processing strategy. The result shows that a multi-level processing strategy can help
improve the total profit and demand fulfillment rate for the FSC under disruptions.

We also investigate whether the multi-level processing strategy is always beneficial.
In our original example, the fresh meat is easy to deteriorate while processed meat can
hardly expire in the planning horizon. We vary the deterioration function parameters
µ0

2 and ω2, and shelf life SL2 to investigate other situations where two processing levels
may be similar. Five combinations of (µ0

2, ω2, SL2) are tested, including (0.01, 12, 12),
(0.015, 10, 10), (0.02, 8, 8), (0.025, 6, 6), and (0.03, 4, 4), where the combination 1 represents
that food product of processing level 2 is not easy to deteriorate, while the combination 5
denotes that food product of processing level 2 are more easy to deteriorate. The obtained
results are depicted in Figure 3. As we can see from the figure, both the objective function
value and expected demand fulfillment rate decrease as the food product of processing
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level 2 become more perishable. Note that the expected demand fulfillment rate under
combination 5 is 21.22%, which is smaller than that of not applying a multi-level processing
strategy. It means that as two processing levels are more similar, i.e., food products of
two processing levels have similar deterioration function parameters, the efficiency of the
multi-level processing strategy decreases.

We can conclude the managerial insight obtained from the case study: (i) for FSCs with
fresh food products that are easy to deteriorate and expire, such as fresh meat, a multi-level
processing strategy can help improve the total profit, and demand fulfillment rate for
FSC under source region-induced disruptions; (ii) the efficiency of multi-level processing
strategy decreases as food products of two processing levels have similar deterioration
function parameters.

Figure 3. The obtained results for five combinations of parameters.

5.2. Numerical Result on Randomly Generated Instance

In this subsection, we compare the efficiency of our solution method with the state-
of-art commercial solver Gurobi of version 9.1.2. In the implementation of our integer L-
shaped method, we use Gurobi to solve the master problem, the mixed-integer subproblems,
and the LP relaxation of subproblems. The integer L-shaped method is coded in Python
and the Gurobi 9.1.2 is also called in Python to solve the two-stage stochastic programming
model with a time limit of 3600 s. All the experiments are conducted on a personal computer
with 2.4 GHz Intel Core i5 and 16 GB RAM.

5.2.1. Instance Generation

The randomly generated instances used in numerical experiments can be classified
into three sets according to the number of regions and the number of nodes in the FSC,
as in Table 4. As in the case study, 12 periods, 2 processing levels, 3 capacity levels for DCs,
and 3 disruption levels are considered for each region in the randomly generated instances,
i.e., normal, partly disrupted, and disrupted. For each instance set, we generate 5 instances.

Table 4. The instance sets used in numerical experiments.

Instance Set Number of Regions Number of PCs Number of DCs Number of CZs

1 3 2 5 5
2 3 3 10 10
3 4 4 15 15

The instances are generated according to the ranges provided in Tables 5 and 6. Note
that the generated disruption probabilities for each region are normalized.
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Table 5. Basic parameter ranges for generating instances.

Parameters related to PCs:

Normal production capacity Cap0
pl ∈ [4000, 10000], ∀p ∈ P , l ∈ L

Normal lead time δ0
pl = 0, ∀p ∈ P , l ∈ l

Parameters related to DCs:

Normal storage capacity Φ0
dlc ∈ [1000, 7000], ∀d ∈ D, l ∈ L, c ∈ C

Establishment cost σd1c = 2Φ0
dlc, σd2c = 1.5Φ0

dlc, ∀d ∈ D, c ∈ C
Parameters related to CZs:

Normal demand q0
k ∈ [300, 500], ∀k ∈ K

Transportation cost:

From PCs to DCs τij1 ∈ (2, 3), ∀i ∈ P , j ∈ D, τij2 ∈ (0, 1), ∀i ∈ P , j ∈ D
From DCs to CZs τij1 ∈ (1, 2), ∀i ∈ D, j ∈ K, τij2 ∈ (0, 1), ∀i ∈ D, j ∈ K
Parameters related to different processing levels:

Fresh price π0
1 = 35, π0

2 = 37
Ordering cost β1 = 12, β2 = 20
Fixed ordering cost α1 = 500, α2 = 500
Outsourcing cost θ1 = 35, θ2 = 37
Shelf life SL1 = 4, SL2 = 12
Inventory holding cost λ+

1 = 0.5, λ+
2 = 0.2

Backlogging cost Sufficient large
Deterioration cost ρ1 = 1.5, ρ2 = 1
Deterioration function parameter µ0

1 = 0.03, µ0
2 = 0.01

ω1 = 4, ω2 = 12

Table 6. Scenario-related parameter ranges for generating instances.

Disruption Level

Parameters Region Normal Partly Disrupted Disrupted

Disruption probability Prng 1 [0.3, 0.5] [0.4, 0.6] [0.1, 0.3]
Other [0.5, 0.8] [0.2, 0.3] (0, 0.1]

Capacity reduction factor bnζns 1 0 [0.5, 0.8] [0.9, 1]
Other 0 [0.4, 0.7] [0.9, 1]

Delay of regional disruption Λng 1 0 0 0
Other 0 [1, 2] 1

Duration of disruption ∆ng 1 0 [3, 5] [5, 8]
Other 0 [1, 3] [3, 5]

Lead time extension for PCs hpζns 1 0 1 2
Other 0 1 2

Demand impact factor νζ1sn 1 1 [1.15, 1.25] [1.25, 1.5]
Other 1 [1.05, 1.15] [1.15, 1.25]

Demand impact factor υζns 1 1 1 1
Other 1 [1.15, 1.25] [1.25, 1.5]

5.2.2. Numerical Experiment Result Comparison

In this subsection, the results of numerical experiments are presented and compared.
For the commercial solver Gurobi, five indicators are reported, including the objective
function value of the best solution found in 3600 s (Objg), the best upper bound found by
the solver (Obj_bound), the computational time (Time), and the gap to best upper bound

(Gapg
b =

Obj_bound−Objg
Obj_bound ×%). For the integer L-shaped method, we record four indicators,

including objective function value (Objl), the computational time (Time), an improvement
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compared to the best objective function value found by Gurobi (Impl =
Objl−Objg

Objg
×%),

and gap to the best upper bound found by Gurobi (Gapl
b =

Obj_bound−Objl
Obj_bound ×%). The results

of numerical experiments are provided in Table 7.

Table 7. Numerical experiment results.

Gurobi Intger L-Shaped Method

Instance Set Instance Obj Obj_bound Time Gapg
b Obj Time Impl Gapl

b

1 1 129,554.67 129,554.67 71.92 0.00% 129,554.67 38.09 0.00% 0.00%
2 155,232.48 155,232.48 68.31 0.00% 155,232.48 23.42 0.00% 0.00%
3 150,420.27 150,420.27 95.98 0.00% 150,420.27 26.49 0.00% 0.00%

2 1 300,345.75 306,162.32 3600.00 1.90% 302,143.44 3600.00 0.60% 1.31%
2 275,639.19 299,357.20 3600.00 7.92% 279,718.31 3600.00 1.48% 6.56%
3 322,675.30 337,239.50 3600.00 4.32% 322,963.57 3600.00 0.09% 4.23%

3 1 326,753.97 358,818.78 3600.00 8.94% 329,763.85 3600.00 0.92% 8.10%
2 250,384.65 287,815.14 3600.00 13.01% 260,751.93 3600.00 4.14% 9.40%
3 332,955.47 354,903.64 3600.00 6.18% 338,607.20 3600.00 1.70% 4.59%

It can be observed from the results that both the solver and integer L-shaped method
can obtain optimal solutions, for instance, set 1, but the latter is more efficient in terms
of computational times. As the problem size increases, the computational times of both
solution methods increase significantly. Although both solution methods cannot yield
optimal solutions within 3600 s, for instance, sets 2 and 3, we can see that the integer
L-shaped method can find better feasible solutions. The numerical experiments validate
the efficiency of our integer L-shaped method.

6. Conclusions and Future Research

In this paper, we study a new problem of enhancing FSC with a multi-level processing
strategy under COVID-19-related disruptions. An integrated location, inventory, and
distribution planning model is formulated to portray the FSC under the geographical
spread of disruptions, where scenarios are generated to characterize uncertain demand,
capacity, and lead time, as well as the geographical spread of disruptions induced by
a source region. Specifically, a two-stage stochastic programming model to maximize
the total profit is presented, which can be solved via a commercial solver for small-scale
problems. To exactly and efficiently solve the model for large-scale instances, we design an
integer L-shaped method. We conduct a case study to illustrate the efficiency of applying
a multi-level processing strategy and draw managerial insights. Numerical experiments
on randomly generated instances are performed to show the efficiency of the designed
solution method.

Future research directions may include: (i) developing efficient heuristic to obtain
near-optimal solutions in fewer times, which can also be used to generate better initial lower
bound for the integer L-shaped method; (ii) considering customer satisfaction as customers,
in reality, have different satisfaction degrees on food products of different processing levels,
and multi-objective optimization approach should be developed; (iii) investigating another
advantage of multi-level processing, i.e., process flexibility, as it can further enhance FSC
and reduce waste of foods.
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