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Abstract: The industrial sector in South Korea has recently undergone significant growth; however, it
is also known for its hazardous workplaces. Occupational accidents have had a widespread impact
across various industries; therefore, the identification of accident-influencing factors is crucial to
improve workplace safety. We analyzed the occupational accident database from the Ministry of
Economy and Finance to examine the influencing factors, including worker information, project
details, time-related variables, and accident descriptions. Exploratory and correspondence data
analyses were performed to identify patterns and relationships between variables. We applied
multinomial logistic models and random forest algorithms to understand the correlation between
victim status and independent variables. Results showed that 67% of all accidents occurred among
workers with less than one month of employment. The multinomial regression model achieved
a prediction accuracy of 97.66% with a kappa value of 0.846, outperforming the random forest
model (kappa = 0.844). The receiver operating curve illustrated that the random forest had higher
misclassification rates when distinguishing between injuries and fatalities. To mitigate accidents
among new workers, enhanced safety training and protective measures are needed to enforce a
healthy workplace. This study contributes to ongoing efforts to advance workplace safety, reduce
occupational accidents, and promote a healthier working environment.

Keywords: occupational accidents; healthy work environment; random forest; multinomial model;
multi-class problems

1. Introduction
1.1. Background of the Study

Globally, occupational accidents claim approximately 2.3 million lives annually among
workers, with an additional 340 million workers enduring injuries and around 160 million
individuals being affected by work-related illnesses [1]. The consequence of these occur-
rences is profound, affecting the afflicted workers and their families. These incidents lead
to a reduction in workdays due to injuries and the need for disease treatment, thereby
impeding overall wellbeing and exerting a negative impact on the economy at large.

In Korea, the surge in industrial development witnessed in recent decades has cor-
responded with a notable uptick in occupational accidents, particularly within the con-
struction sector. This was largely attributed to the inherent hazards in various work
environments and the substantial demand for skilled and unskilled workers. Consequently,
the occurrences of occupational accidents have surged over the past few decades, leaving a
trail of physical injuries, work-related sicknesses, and, tragically, fatalities among work-
ers. The characteristics of occupational accidents in South Korea revealed that half of all
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workplace accidents between 1991 and 1994 occurred within the initial year of employ-
ment [2]. This highlights the critical role of work experience as a pivotal determinant in
understanding the root causes of such accidents.

A safe workplace setting is important for workers’ productivity [3–5], and a clean
environment is associated with no risk of bumping into objects [6]. Additionally, working
at surface level is associated with no risk of falling from height [7]. Kang [8] reported a
decrease in injuries resulting from entanglement with objects, while incidents involving
slips, falls on the same level, and falls from heights exhibited an increase in the construction
industry in South Korea from 1970 to 2000. Accident hazards within the workplace are also
different based on the working section, such as warehouse, production, and finishing areas.
Additionally, accidents originate from various sources, including production materials,
machinery, misplaced tools, and the behavior of both workers and supervisors. These last
sources consist of workers ignoring the use of protective equipment, failing to conduct
proper workplace inspections, and not ensuring the provision of necessary safety devices [9].
Further, Jeong [2] studied the location of injuries on the body and analyzed both fatal and
non-fatal accidents in South Korea, emphasizing the importance of detailed information
about the wounded part of the body for assessing accident severity. Similarly, Al-Abdallat
et al. [10] reported that the body part, such as the head, significantly affects the severity
of the accident and the level of fatality and permanent disability in Jordan. Furthermore,
time-based variables can play a critical role in the occurrence of the accident and its severity.
For example, nightshift workers are exposed to sleep deprivation due to working in the
circadian phase naturally programmed for sleeping. This leads to poor sleep during the
daytime, leading to chronic sleep disturbance, occupational accidents, and other diseases
such as obesity [11]. The day of the week and month of the accident may also be associated
with accidents based on the type of occupation, especially outdoor activities such as
agriculture, construction, mining, etc. [12,13]. Szóstak [14] utilized the timing of accident
occurrences, identifying three distinct peak points: between 7 and 8 a.m., the midday hour,
and 2 to 3 p.m. Additionally, the project value is believed to be an influencing factor of
accidents. Smaller projects are thought to have a higher rate of accidents because fund
managers may prioritize budget maximization and disregard safety costs. On the contrary,
large projects may have enough funds to finance the safety cost. The study conducted in
the construction field in Spain by Pellicer et al. [15] revealed that the cost of ensuring safety
measures can account for up to 5% of the total project cost. Thus, the size of the project is a
crucial factor to consider in the analysis of occupational accidents.

It was observed that the influencing factors including worker information (i.e., age,
work experience, gender, employment category), features of a project (i.e., project value,
number of employees, project type), time-based variables (i.e., hour, day, and month of the
accident), and accident description (i.e., diagnosis, wounded part, lost workdays) could
play a significant role in the identification of occupational accident severity. Therefore, a
comprehensive analysis of occupational accidents can be a first step in finding the actual
cause of accidents to enforce preventive measures for accident mitigation, enhancing the
long-term productivity and sustainability of the industries.

1.2. Literature Review

Due to the unstable state of the industrial safety management system, the analysis of
the severity and cause–effect of occupational accidents can contribute to the improvement
of workplace safety. Consequently, extensive research has been carried out in recent decades
to enhance safety performance on construction sites [3,4,16]. The socio-demographic factors,
including gender, age, occupation, and work experience in relation to accident occurrences,
have been widely analyzed to increase construction site safety performance [9,17,18]. These
factors are vital in identifying vulnerable societal groups, thus aiding the implementation
of protective policies tailored to those specific groups. Notably, socio-demographic in-
formation carries greater significance for developed countries grappling with population
aging challenges [19]. Furthermore, considering socio-economic variables is important in
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analyzing the provision of post-accident recovery support for victims [20]. Kim and Lee [9]
also highlighted substantial disparities in victim characteristics, examining variables such
as industry type, business size, worker age, accident patterns, work duration, and accident
year. Additionally, Jo et al. [21] analyzed the construction accidents and revealed that the
elevated incidence and mortality rates among male workers were predominantly attributed
to falls. Therefore, it is imperative to explore the interplay among the various occupational
accident variables to assess the features of accidents and gain insights into them.

Recently, numerous researchers [16,18,22–24] applied machine learning and deep
learning algorithms to unravel the cause–effect relationships of accidents, highlighting
the influence of human factors, equipment malfunctions, and workplace conditions. Kim
and Park [18] utilized multilinear regression to model the correlation between economic
factors and accidents. Their primary focus was to examine how accidents vary in response
to fluctuations in the economy. Kang and Ryu [25] used random forest methodology to
predict the type of accidents. The primary objective of their study was to determine the
accident type based on various influencing factors, irrespective of their severity. Moreover,
Kim et al. [26] analyzed the relationship between working contracts and departments
and the frequency of accidents in shipbuilding. The focus was to analyze the frequency
based on stress induced by the type of work conducted in different departments and
climates. Jeong [2] applied descriptive statistics to analyze the characteristics of accidents in
manufacturing companies; the research aimed to illustrate the accurate influencing factors
of accidents for mitigation and prevention. Rafindadi et al. [27] studied the causes and
preventive measures of fatal fall-related accidents in the construction industry.

The existing studies focused on characterization, the identification of a cause, accident
types, etc.; however, the severity of the accident and the influencing factors were not thor-
oughly analyzed. In the present study, we focus on analyzing the severity of occupational
accidents with respect to their influencing factors to identify the list of the most influencing
factors for accident mitigation. Here, the severity is defined as the state of the victim after
the accident: injured, occupational diseases, and dead. The main objective of this study
is to combine the socio-economic data, project-related information, and time-based vari-
ables to predict the severity of occupational accidents using multinomial logistic models
and random forest algorithms. Consequently, this work analyzes the combined effect of
worker’s personal information, time-based information, working conditions, and the part
of the body injured on the severity of occupational accidents.

2. Data and Methodology

The following steps were followed to predict the severity of accidents. First, the dataset
was organized and cleaned to facilitate all analyses. Subsequently, an exploratory data
analysis was conducted, utilizing various visualization techniques to identify patterns and
clusters. Additionally, a multinomial regression model was developed to probabilistically
examine the relationship between the severity of occupational accidents and explana-
tory variables. Figure 1 illustrates schematically detailed steps undertaken to perform
all analyses.

2.1. Data Description

The dataset used in this study was collected from the Ministry of Economy and
Finance of South Korea and contains occupational accident records for the year 2019. It
tabulates the basic information about the accident victims, namely, gender, age, skills, work
experience or simply the length of employment, and the status of the victim, which has
three states: injured, diseased patient, or dead. The injury state stands for the physical
wound or fracture of the victims, while the disease state represents the infection and other
non-visible maladies that resulted from the accident. In addition, the wounded part of the
victim, the form of occurrence that is the accident source, and the number of workdays lost
due to the accident were considered variables in the modeling process. The wounded part
variable was created in the dataset based on the international classification of diseases code
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ICD-11 [28]. Moreover, the information about the time of the accident (i.e., month, day, hour)
was considered due to the variation in strength and focus of the human body associated
with the change in the time [14,29]. Furthermore, project information, namely, project value,
number of employees, and project phase, were considered to examine their effect on the
frequency and type of accidents. Detailed information about the considered variables in the
study is summarized in Table 1. The time variable was considered categorical because the
study deals with the frequency and severity of an event that happened during an interval
of time.
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Table 1. Descriptive statistics of occupational accident data.

Categories
Accidents (in 100% of 27,211 Cases)

Deaths Disease Patients Injuries Total

Variables % of victims 2.19 6.7 91.11 100

Sex
Female 0.02 0.15 2.69 2.87
Male 2.17 6.55 88.42 97.13

Age (Years)

18–24 0.01 0.01 0.51 0.53
25–29 0.06 0.08 1.76 1.89
30–34 0.05 0.09 2.34 2.48
35–39 0.08 0.21 3.76 4.05
40–44 0.14 0.32 5.81 6.27
45–49 0.25 0.65 9.94 10.85
50–54 0.37 0.89 14.99 16.26
55–59 0.48 1.34 19.46 21.28
60–64 0.35 1.72 18.65 20.72
65–69 0.23 1 9.68 10.91
70–74 0.12 0.28 3.43 3.83
75–79 0.04 0.11 0.69 0.84
80+ 0 0.01 0.08 0.09

Worker skills
Skilled 1.12 3.34 43.11 47.58
Unskilled 1.07 3.36 48 52.42

Work experience

<1 month 1.19 2.2 63.93 67.33
1–2 months 0.15 0.86 8.74 9.75
2–3 months 0.11 0.62 4.4 5.13
3–6 months 0.22 0.94 5.73 6.89
6–12 months 0.17 0.75 3.58 4.5
1–3 years 0.21 0.7 2.94 3.86
3–5 years 0.05 0.19 0.81 1.05
5+ years 0.1 0.43 0.96 1.48

Diagnosis (injured
part or infected

organs of the
victim)

Abdomen, lower back 0.08 1.14 8.39 9.61
Ankle and foot 0 0.01 11.84 11.86
Burns and corrosions 0.05 0 1.37 1.43
Circulatory system 0.23 0.32 0.03 0.59
Ear and mastoid process 0 0.49 0.04 0.53
Elbow and forearm 0 0.02 7.68 7.7
Head 0.93 0.01 7.35 8.29
Hip and thigh 0 0 2.79 2.79
Knee and lower leg 0.01 0.13 11.86 12
Musculoskeletal system 0.01 2.98 0.27 3.26
Neck 0.1 0.03 1.54 1.66
Others 0.47 0.26 1.57 2.3
Respiratory system 0.09 0.57 0.04 0.7
Shoulder and upper arm 0.01 0.67 4.37 5.05
Thorax 0.21 0.06 9.56 9.83
Wrist and hand 0 0.03 22.39 22.42

Accident
occurrence form

Building collapse 0.09 0 1.23 1.32
Bump 0.12 0 7.8 7.92
Carelessness 0 0 2.81 2.81
Chemical contact 0.03 0.01 0.24 0.27
Cutting and stabbing 0.01 0 10.49 10.5
Disease infection 0.32 6.68 0.02 7.03
Electric shock 0.04 0 0.48 0.52
Entrapment 0.08 0 7.62 7.7
Explosion and rupture 0.02 0 0.18 0.2
Extreme heat exposure 0 0 0.52 0.52
Fall down 0.02 0 15.12 15.14
Fall from height 1.1 0 30.38 31.48
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Table 1. Cont.

Categories
Accidents (in 100% of 27,211 Cases)

Deaths Disease Patients Injuries Total

Accident
occurrence form

Fire 0.02 0 0.18 0.21
Flip over (buried) 0.08 0 2.55 2.63
Hit by an object 0.1 0 10.77 10.87
Off-site traffic accident 0.1 0 0.56 0.65
Others 0.06 0.01 0.16 0.22

Project phase
(% rate of

completion)

0–20 0.47 0.69 15.49 16.65
20–40 0.38 1.01 18.31 19.7
40–60 0.46 1.36 20.05 21.87
60–80 0.43 1.62 19.97 22.02
80+ 0.45 2.02 17.29 19.76

Number of
workers

<5 0.76 1.9 37.76 40.42
5–9 0.25 0.72 11.85 12.82
10–15 0.18 0.49 8.15 8.83
16–29 0.17 0.76 10.4 11.33
30–99 0.36 1 11.88 13.25
100–499 0.36 1.34 8.54 10.24
500+ 0.1 0.49 2.52 3.11

Project value
(in million KRW)

10–20 0.32 0.52 11.87 12.71
20–40 0.17 0.38 6.22 6.77
40–100 0.16 0.4 8.28 8.84
100–500 0.36 1 18.06 19.42
500–1000 0.18 0.44 7.95 8.57
1000–5000 0.32 1.16 16.85 18.33
5000–10,000 0.12 0.47 6.1 6.69
10,000–50,000 0.22 0.67 6.12 7
50,000+ 0.35 1.67 9.65 11.67

Month of accident

January 0.15 0.57 6 6.73
February 0.12 0.42 4.68 5.22
March 0.21 0.58 7.31 8.1
April 0.15 0.55 7.76 8.46
May 0.18 0.63 8.59 9.4
June 0.2 0.62 7.77 8.58
July 0.24 0.64 8.31 9.19
August 0.22 0.6 8.5 9.33
September 0.17 0.36 6.41 6.93
October 0.12 0.59 9.2 9.92
November 0.22 0.57 9.01 9.79
December 0.21 0.56 7.58 8.35

Day of accident

Sunday 0.17 0.2 5.73 6.1
Monday 0.37 1.4 14.51 16.28
Tuesday 0.37 1.19 14.93 16.49
Wednesday 0.38 1.13 14.47 15.98
Thursday 0.28 1.11 14.09 15.47
Friday 0.35 1.1 14.88 16.33
Saturday 0.28 0.57 12.51 13.35

Hour of accident

0:00 0.09 1.71 1.18 2.98
1:00 0.01 0.01 0.17 0.19
2:00 0 0.01 0.16 0.17
3:00 0.01 0 0.12 0.13
4:00 0 0 0.05 0.05
5:00 0.01 0.02 0.1 0.13
6:00 0.04 0.03 0.32 0.4
7:00 0.1 0.1 3.05 3.25
8:00 0.23 0.39 8.2 8.82
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Table 1. Cont.

Categories
Accidents (in 100% of 27,211 Cases)

Deaths Disease Patients Injuries Total

Hour of accident

9:00 0.2 1.35 10.07 11.63
10:00 0.29 0.94 14.11 15.34
11:00 0.2 0.4 10.58 11.18
12:00 0.08 0.22 2.31 2.61
13:00 0.21 0.19 7.11 7.52
14:00 0.22 0.44 11.39 12.04
15:00 0.17 0.44 10.82 11.43
16:00 0.17 0.26 8.36 8.79
17:00 0.07 0.07 1.84 1.99
18:00 0.03 0.05 0.47 0.55
19:00 0.02 0.02 0.23 0.27
20:00 0.01 0.02 0.15 0.18
21:00 0.01 0.01 0.12 0.14
22:00 0.01 0.01 0.1 0.12
23:00 0.01 0 0.08 0.1

Lost workdays Discrete variable 11.00 12.00 77.00 100

2.2. Methods

This section discusses the detailed methodologies used to perform all analyses, in-
cluding the exploratory data analysis techniques and the modeling method with their
assessment techniques.

2.2.1. Exploratory Data Analysis Techniques

Understanding the patterns and visualization of clusters in the dataset is an important
step before going further in the modeling method. This method helps to understand data
distribution and the identification of issues (anomalies), such as missing data or outliers,
within the dataset through the graphical representation of data. To accomplish this, the
following techniques were applied:

• Cleveland dot: The Cleveland dot plot is better at reducing the visual cutter in the plot
and makes it easier to view patterns in the data on the graph [30].

• Balloon plot: It graphically represents the contingency (matrix) table with a size dot
corresponding to the entry value in the matrix in the categorical data. The balloon
plot serves as an analogy for the correlation matrix when analyzing correlations in the
context of continuous variables [31].

• Correspondence analysis: It facilitates the visualization of cross-tabulated data that
are on the same scale while considering the weight of factors. It enables a visual
representation that takes into account the relative importance or weight of the factors
being analyzed [32]. The category with more weight tends to be in the center of the
graph, while the categories with few counts tend to be far from the center. Correlated
categories are located on the same side of the hyperplane, while negatively correlated
categories are placed on opposite sides of the axis.

2.2.2. Modeling Techniques

Multinomial logistic regression is widely used to model multi-categorical outcome
variables where the dependent variable is nominal, with an unordered outcome. In this
model, logarithms of odds (known as logit) of the dependent variable are expressed in the
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form of linear combinations of independent variables [33]. The general equation of the
logarithm of odds is written as follows,

log(odds) = logit(p) = ln
(

p
1−p

)
= a0 + a1 x1 + a2 x2 + · · ·+ an xn

with
p =

exp(a0+a1 x1+a2 x2+···+an xn)
1−exp(a0+a1 x1+a2 x2+···+an xn)

(1)

where p is the probability that a given outcome falls in a particular category, exp() is
the exponential function with base (e ≈ 2.72), and ai are coefficients of independent
variables. In order to assess the goodness of fit of the multinomial model and remove
non-contributing variables, the Z-test was conducted. To conduct a comparative evaluation
of the multinomial model’s performance, the random forest model was chosen for its
high accuracy in multi-classification problems [34]. This comparative study is crucial to
identify the difference in performance so that alternative methods may be adopted when
the accuracy of the proposed method is not satisfactory.

3. Results and Discussion
3.1. Results
3.1.1. Exploratory Data Analysis

Exploratory data analysis exhibits the relationship between the severity of the accident
and the independent variables. Overall, 27,211 accident cases occurred in the year 2019,
with 91% of them being bodily injuries, 7% were occupational diseases, and 2% were fatal
accidents (Table 1). Observations revealed that the gender ratio for all accidents was 97%
males and 3% females.

Different graphical techniques were explored to graphically visualize the intercon-
nection between accident severity and influencing factors. The correspondence analysis
was used to summarize the relationship between categorical variables in a contingency
table. From the contingency table, the calculation of the proportion of inertia associated
with rows and columns based on their profile represents the singular value decomposition
(factorization of matrix diagonal with positive real number entries and unitary matrix) in
the two-dimensional plot [35]. The balloon plot represents a graphical matrix that contains
dots whose size reflects the magnitude of the associated component [31]. Figure 2a depicts
that accident frequency was higher for workers with less work experience, especially below
one month, and 98% of the variability in the data can be explained with the first dimension.
This association of accidents is also reflected in the balloon plot (Figure 2b), where a large
balloon represents the correspondence between injuries and individuals with less than one
month of experience. The bigger the balloon, the closer to the center of the graph, and the
fewer cases, the longer the distance from the center. Disease patients were more likely to
have more work experience, which is explained by an acute angle [36], between three and
five years of work experience, while deaths were more likely associated with more than
one year of employment.

The impact of work experience on the frequency and severity was deeply analyzed
based on the form of occurrence of the accident. Figure 3 shows that falling from height was
the most frequent among workers with less than one year of experience, with a frequency
of 6235 (22.9%) of all accident cases, followed by falling down on the same level with a
frequency of 2782 (10.22% of all accident cases). In total, 67% of all accident victims were
new workers with less than one month on the job. As the employment time increased, the
frequency of falling from height accidents fell sharply from 22.9% to 2.7% of all cases. It
was observed that the initial sources of the accidents were falling from a height, falling
down, hit by an object, cutting and stabbing, bumped into an object, and entrapment, which
totaled 83.62% (22,753) of all accidents.
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When an accidental incident occurred, the victim stopped working for medical care
once the event did not swipe away his life. The loss of workdays may be influenced by the
severity of the accident and other different factors such as age, gender of the victim [37],
work experience, etc. Figure 4 shows that the loss of workdays for fatal accidents was
above 1000 days, and the workers with less than one month of work experience had a
higher mode (325), totaling 54.5% of all fatal accidents. The mode of fatal accidents shifted
to 40 (7% of all fatal cases) among workers with one to two months of work experience,
highlighting the heightened vulnerability of new workers, and subsequent work experience
intervals maintained a lower rate of fatal accidents. The decline in accidents after the first
month could be attributed to increased adaptability to working conditions.
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The frequency of the loss of working days remained low and did not show observable
differences based on work experience among disease patients. However, for injuries,
the most common duration of lost workdays among novice workers was 84 days with a
frequency of 332 times, followed by 42 days with a frequency of 297 times. Similarly, for
workers with one to two months of work experience, the most frequent (mode) durations
of lost workdays were still 84 days and 42 days, with frequencies of 42 and 39, respectively.

Due to the change in human homeostasis and energy over the day, the hour of the
day is believed to have an impact on the occurrence of the accident [11]. Figure 5 shows
that there is a difference in the hour of the accidents. It is observable that workers became
contaminated with diseases mostly between 9:00 and 10:00 a.m. The higher frequency
of contamination occurring around midnight (about 500 cases) may be due to erroneous
reporting of nightshift accidents, which may be allocated by default when the hour was not
correctly recorded or because of the tiredness associated with sleep loss caused by circadian
disturbance. Fatal accidents exhibited two peaks, one at 10:00 a.m. and the second at 2:00
p.m, the same as accidental injuries. A noticeable decrease in the number of accident cases
is observed at 12:00 p.m. and 1:00 p.m., which can be attributed to lunchtime breaks. It is
important to note that Figure 5 was plotted on different scales to enhance the visualization
of patterns in the data, not to indicate the weight or magnitude of the cases. Furthermore,
there was no discernible variation in the pattern of accidents per hour across different days.
The two peaks at 10:00 a.m. and 2:00 p.m. remained consistent throughout the week, with
a lower frequency observed on Sundays.
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Figure 6 shows the distribution of occupational accidents based on the gender and
age of the victims at the time of the accident. A significant disparity is observed between
males and females in terms of accident frequency. The pattern of accidents is similar
among skilled and unskilled workers, with a higher frequency occurring among workers
between the ages of 50 and 64, regardless of gender. The higher frequency of accidents
among individuals aged 50 to 64 does not necessarily imply that they are more vulnerable.
Instead, it reflects the age distribution of the Korean population as represented by the
population pyramid.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 19 
 

 
Figure 6. Age- and gender-based distribution of accidents by worker’s skills. 

The body part injured may play a tremendous role in the identification of the severity 
of the accident. This is because certain body parts may require a longer time to heal, while 
injuries to other parts may pose a higher risk of fatality. Figure 7 shows that the most 
frequently injured parts, namely, the wrist and hands and the knee and lower leg, did not 
lead to fatal accidents, while neck, thorax, head, abdomen, and lower back injuries were 
likely to lead to fatal accidents. In order to facilitate clear visualization of the data, Figure 
7 was plotted on different scales due to the rapid decrease in frequency from the first 
month to the 1–3 months’ interval and beyond. 
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The body part injured may play a tremendous role in the identification of the severity
of the accident. This is because certain body parts may require a longer time to heal, while
injuries to other parts may pose a higher risk of fatality. Figure 7 shows that the most
frequently injured parts, namely, the wrist and hands and the knee and lower leg, did not
lead to fatal accidents, while neck, thorax, head, abdomen, and lower back injuries were
likely to lead to fatal accidents. In order to facilitate clear visualization of the data, Figure 7
was plotted on different scales due to the rapid decrease in frequency from the first month
to the 1–3 months’ interval and beyond.
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3.1.2. Accident Severity Prediction and Model Validation

The multinomial logistic regression model was used to estimate the relationship
between the severity of the accident and independent variables. In order to utilize this
model, the null hypothesis stated that all selected predictor variable coefficients are zero,
indicating that those variables have no influence on the severity of accidents. The alternative
hypothesis proposed that some predictor variables considered for the multinomial logistic
regression have non-zero coefficients, indicating their influence on the severity of accidents.
To estimate the impact of predictor variables, the null model (the model with only a
constant) was constructed and compared with the full model (model with all variables).
Following the construction of the null and full models, a likelihood ratio test was conducted
to compare the two models and determine whether they have a significant difference. This
test is commonly used to assess the goodness of fit of a multinomial model [38]. In order
to select the optimal model and remove non-influential variables from the full model, a
two-tailed Z-test was conducted for each presumed influential variable. A variable with
p-values greater than 0.05 for all categorical levels was considered non-significant and
subsequently removed from the full model [39]. The full model included variables such as
age, sex, workers’ skills, work experience, completion rate of the project or working phase,
number of employees, project value, diagnosis (indicated by the International Classification
of Disease Code, IDC-11 [28]), and the form of occurrence of an accident (direct source of
accident). After conducting the two-tailed test, it was determined that age, workers’ skills,
project value, and day of the accident were insignificant. As a result, they were removed
from the full model to obtain the optimal model.

To quantify the proportion explained by the predictor variable in the model, pseudo
R-squared values were calculated. Pseudo R-squared measures the proportion of variance
in the dependent variable, which was explained by the explanatory variables. CoxSnell,
Nagelkerke, and McFadden R-squared were used to explain differences between the null,
full, and optimal models [40]. CoxSnell R-squared is the analogy of R-squared in the
ordinary least-square regression but with a different meaning. CoxSnell’s minimum is
zero, and its maximum is less than one, which makes it easy to explain. The modified
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version, Nagelkerke R-squared, ranges between zero and one, making it easier to interpret
and a more reliable measure of the relationship between variables. The McFadden R-
squared is the ratio of the difference in log-likelihood between the full model and the null
model, divided by the log-likelihood of the null model [40–42]. It provides a measure of
the improvement in model fit, with higher values indicating a better fit. The McFadden
R-squared is calculated using the following equation,

McFadden =
LL(Null model)− LL(Full or optimal model)

LL(Null model)
(2)

where LL stands for log-likelihood.
To select the optimal model, the performance of the training set and the complexity

of the model were assessed using the Akaike information criterion (AIC) and Bayesian
information criterion (BIC). In comparing multiple models with different variables, the
model with a lower value of AIC and BIC and higher performance is considered optimal.
That is the model with fewer predictors than the full model that performs the same or
better than the full model. Hastie et al. [43] defined AIC and BIC as

AIC = − 2
N

∗ LL +
2K
N

, and BIC = −2 ∗ LL + ln(N) ∗ K (3)

where N represents the number of observations in the training set, K is the number of
independent variables in the model, and ln is the natural logarithm.

The results for pseudo R-squared (Table 2) show that there is a difference between
the null and the full model. CoxSnell’s R-squared was 0.441, which means that predictor
variables explained 44.1% of the severity of accidents. On the other hand, Nagelkerke and
McFadden show that 87.75% and 83.28% of the variance in the severity of accidents was
explained by the predictor variable.

Table 2. Pseudo R-squared for the multinomial models.

Pseudo R-Squared Information Criterion

Models CoxSnell Nagelkerke McFadden AIC BIC

Null model 0 0 0 13,325.970 13,341.670
Full model 0.441 0.877 0.832 2670.543 4414.290
Optimal model 0.441 0.877 0.833 2559.036 3878.629

3.2. Discussion

The proposed optimal model excluded age, worker skills, project value, and the day
of accident predictors, which did not contribute to the performance of the model. The
significant variables, their odds ratio, confidence interval, and corresponding p-values are
summarized in Table S1 (Supplementary Data). The odds ratio is the ratio of the probability
of being in a given category and the probability of not being in that category (probability
of success divided by the probability of failure). The category death was considered as
the reference category of the multinomial model. Some variables demonstrated greater
influence on injuries, whereas others exhibited heightened significance in relation to the
occurrence of injuries. For example, work experience exhibited noteworthy influence as a
variable in relation to occupational injuries, but it did not yield the same significance in the
context of occupational diseases.

Overall, most variables were not significant for risks of diseases because the risk was
mostly from work itself, not the working environment. The risk ratio (odds ratio) of diseases
versus death slightly decreased from June to September and in December. The worker’s
gender significantly differentiates fatal accidents from disease patients and injuries from
fatal accidents. Specifically, an accident that happened to males multiplies the odds of being
injured versus fatal accidents by 0.6 (p < 0.05). Work experience significantly distinguished
the occurrence of injuries versus fatal accidents in the 3–6 months, 6–12 months, and
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1–3 years of employment periods versus workers with less than one month of experience,
with odds of being injured of 0.47 (p = 0.002), 0.51 (p = 0.008), and 0.39 (p < 0.001) (for
respective experience periods) versus fatal accidents. This reduction in injuries may be due
to adaption to working conditions, and the increase in the rate of fatal accidents may be
attributed to the assignment of more dangerous tasks as the work experience increases.

The completion rate (project phase), at all levels, had odds of an accident being an
injury versus fatal between 60% and 102%. For the case of the number of employees,
workplaces with fewer workers had a higher likelihood of fatal accidents. The employment
place with 5–9 workers had 44% (1–0.64) less odds of injuries vs. deaths than places
with 0–5 workers. For the accident hour, the hour of the accident was not a significant
determinant of the severity of the accident except at 6:00 a.m. and 7:00 p.m. where odds of
injuries versus deaths were 82% (0.18–1) and 89% (0.11–1) less, respectively, with respect to
0:00 a.m. (the reference hour). This reduction in the injury ratio may have originated from
those two hours being a transition period from dayshift to nightshift working time.

For diagnosis cases with the reference category being the abdomen and lower back,
burn and corrosion injuries to the head and neck had a higher likelihood of causing
death over injuries compared to the abdomen and lower back accidents. The form of the
occurrence variable, cutting and stabbing, falling down, hit by an object, and bumps, had
52.2, 22.5, 9.97, and 5.23 more odds of injuries over death compared to the reference level
(building collapse), respectively. On the contrary, the disease infection had 0.07 less odds of
injuries over death with respect to the building collapse category.

To verify the performance of the multinomial model, it was compared to the random
forest model, as illustrated in Table 3. It was observed that both models exhibited excellent
performance, with an accuracy of 97.66% and 97.7%, respectively, on the test dataset.
Despite the high performance of 0.04% for the random forest over the multinomial model,
the multinomial model had higher overall predictive power, as indicated by its higher
kappa value.

Table 3. Comparing multinomial model and random forest performance.

Values Multinomial Random Forest

Accuracy 0.9766 0.9738
95% CI (0.9731, 0.9798) (0.9735, 0.9801)
No Information Rate 0.9111 0.9111
p-Value [Acc > NIR] <0.001 <0.001
Kappa 0.8463 0.8443

Furthermore, the receiver operating characteristic (ROC) [44,45] curve exhibits that
both multinomial and random forest models performed better by accurately classifying
100% of the victims who contracted diseases (Figure 8). In other cases, the multinomial
model classified injuries and fatalities far better than the random forest model. The fatal
cases were mostly misclassified in the random forest model. The classification accuracy
for the injuries category was still far higher in the multinomial than in the random forest
model. Based on these findings, the multinomial model can be used as a predictive model
for the severity of occupational accidents due to its superiority in ranking accidents in their
appropriate categories.

The finding in this research study represents the situation of occupational accidents
for the case study of South Korea for the accident records of 2019. The results revealed
that 67% of all accidents occurred within the first month of the employment period, and
the prominent accident was falling from a height, while Jeong [2] found that about 50% of
all accidents that occurred between 1991 and 1994 happened within the first year and the
main accident cause was entrapment. However, in the present study, entrapment ranked
as the sixth cause of accidents (Figure 3), which shows a shift in the cause of accidents over
time. In addition, it was observed that the most frequently injured parts, namely, wrist,
hand, knee, and lower leg, did not lead to fatal accidents, while the neck, thorax, head,
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abdomen, and lower back were more often sources of fatal accidents. This accident pattern
has similarities with the observation of Al-Abdallat et al. [10], where head injuries led to
fatalities and permanent disability in Jordan.
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Further studies are needed to understand occupational accident patterns in general.
In the considered data, the categorization of workers into skilled or unskilled groups
was taken into consideration; however, their educational levels and vocational training
remained undisclosed. Furthermore, it is essential to note that the timing of accidents
reflected the moment of occurrence rather than the cumulative work hours leading up
to the accidents. Given that fatigue has the potential to impact accident likelihood, as
highlighted by Swaen et al. [46], there is a compelling need to enhance the database
by introducing supplementary variables that are believed to influence the occurrence of
occupational accidents. In addition, collecting geo-localization information would be
helpful for future studies in identifying clusters of accidents in different regions within the
country. Other datasets, such as environmental climate variables, safety management, and
safety technology, could also play a pivotal role in strengthening safety protocols in regions
with higher susceptibility to accidents.

4. Conclusions

This study aimed to assess the severity of occupational accidents in South Korea
by considering various influencing factors. The initial phase involved exploratory data
analysis to explore the connection between accident severity and independent variables
visually. Subsequently, a predictive model utilizing multinomial logistic regression was
developed to anticipate the condition of accident victims. To assess the model’s accuracy, a
comparison was made against a random forest model. The outcome revealed that 67% of all
accident victims were newly recruited employees with less than one month of experience.
Furthermore, accidents were most frequent at 10:00 am, constituting 15% of all cases, closely
followed by 2:00 pm, accounting for 12% of all incidents. The predictive accuracy of the
multinomial regression model was determined to be 97.66% on the test dataset, with a
kappa of 0.846. This performance surpassed that of the random forest model across all
categories. Both models perfectly predicted the disease patient category; however, the
random forest model was less accurate in predicting fatal accidents and injuries.

Given the heightened accident rate within the first month of employment, several
strategies are recommended to reduce the frequency of occupational accidents. These
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strategies include providing comprehensive safety education and limiting the exposure of
new recruits to the most hazardous work areas until they have gained sufficient experience.
The findings of this study offer valuable insights for shaping appropriate worker protection
policies. Such policies could encompass ongoing monitoring, tailored safety education
based on job roles, emphasis on recognized hazards, and setting insurance reserves to assist
victims in post-accident relief.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/su152015058/s1, Table S1: Multinomial model odds ratios and
p-values.
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