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Abstract: As one representative smart energy infrastructure in smart cities, an integrated energy
system (IES) consists of several types of energy sources, thus making more complicated coupling
connections between the supply and demand sides than a power grid. This will impact when
allocating different energy sources to ensure the appropriate energy utilization in the IES. With this
motivation, an IES energy configuration optimization strategy based on a multi-model ensemble
is proposed in this paper. Firstly, one coupling model is constructed to assess the underlying
collaborative relationships between two sides for a renewable-energy-connected IES. Next, the
independent component analysis (ICA) method is implemented for noise reduction in massive
heterogeneous input databases, which can effectively improve the computing efficiency under such
high-dimensional data conditions. Also, the self-adaptive quantum genetic model (SAQGM) is
built for subsequent configuration optimization. Specifically, the quantum bit representation is
incorporated to reduce computation complexity in multi-states scenarios, the double-chain formation
of chromosomes is deployed to diminish the uncertainty when encoding, and the dynamic adaptation
quantum gate is established to successively amend parameters. Finally, an empirical case study
is conducted which can demonstrate the benefits of this strategy in terms of feasibility, efficiency,
and economy.

Keywords: integrated energy system; energy configuration optimization; coupling relationships;
ICA-SAQGM ensemble

1. Introduction

Nowadays, the integrated energy system (IES), which comes with a higher perme-
ability of multi-type energy sources, is making notable strides in its attempt to fulfill the
increasing energy consumption and eco-friendly tendency in cities. In an IES, energy utiliza-
tion and dispatch strategies [1–3] can enhance the overall energy efficiency, thus achieving
a high utilization rate, a high environmental protection rate, and a comprehensive energy
balance between supply and demand. However, due to the complexity of coupling among
the multiple heterogeneous energy sources and loads, the operation of an IES is intricate
and, hence, requires further strategy optimizations.

To achieve this, mathematical programming techniques are ubiquitously utilized in
energy systems. In application scenarios, the objective functions might be single or multiple,
and the constraints can also be linear or nonlinear. Ergo, these tools for the IES optimization
include linear programming (LP) [4], mixed-integer linear programming (MILP) [5], and
mixed-integer nonlinear programming (MINLP) [6]. The mathematical programming
approaches can generate precise outputs, whereas their efficiency and performance might
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be impacted since the diversities and complexities grow dramatically in an IES compared
with a power grid.

Hence, the machine learning (ML) methodologies are widely deployed in different
fields, and their applicable range can, of course, cover the optimization of IESs. One typical
group is the neural networks. An artificial neural network (ANN) was built to forecast the
solar radiation and wind speed in [7]; the heating, cooling, and lighting loads in an IES
were predicted via combining the ANN and the long short-term memory (LSTM) in [8];
and Chandrasekaran et al. [9] selected the ANN as the decision-making method for the
operation of an IES with hybrid photovoltaic, wind power, and battery. The second is
the support vector machine (SVM). The SVM was added to the firefly optimizations for
solar radiation predictions in [10] and the dragonfly algorithm for wind power forecasting
in [11]. Also, the least squares support vector regression (LSSVR) learning approach
for hydropower consumption predictions was proposed by [12]. Another type is the
random forest (RF). A tree model integration approach [13] was utilized for building energy
consumption predictions, and Ahmadi et al. [14] presented a tree-based learning wind
power forecasting tool. Moreover, [15] proposed an improved GM (1,1) model to improve
the accuracy of load forecasting. Based on the ML techniques, one class of methods, the deep
learning (DL) approaches, which consist of more hidden layers organized in deeply nested
networks, are also incorporated. For instance, one DL framework for building an energy
consumption forecast was presented in [16]; the short-term prediction of wind and solar
was considered in the energy management model for a microgrid in [17]; Zhou et al. [18]
proposed a multi-energy net load prediction method with heterogeneous prosumers; and
in [19], the output of a hybrid wind–photovoltaic farm was forecasted via feature selection.
These ML and DL techniques are more robust and immune to potential noise and can
perform well in complex IESs. However, these methodologies generally require a larger
volume of input data when theoretically analyzing, which might be difficult in some real-life
scenarios. Moreover, most of them merely consider either supply or demand sides during
assessments, whereas the coupling relationships between these two sides are significant in
an IES as well and thus cannot be simply neglected.

On the demand side, various energy coupling devices are implemented to choose a
reasonable, favorable, and efficient energy transmission approach for responding to its own
energy demand. For example, in [20–22], different operational architectures of comprehen-
sive IES demand response models were established to minimize the operation cost. The
supply side, however, usually sets dissimilar energy prices to guide the optimization of
energy consumption on the demand side. For instance, diverse transaction models for the
IES based on energy blockchain technologies were designed in [23–25] which can not only
ensure the priority of energy supply to important users but also guarantee the reliability of
energy transactions. Significant progress has been brought about by the aforementioned
research. Nonetheless, for the purpose of conducting more comprehensive evaluations,
both the supply and demand sides ought to be coordinated. The complicated data con-
ditions such as high-dimensional, heterogeneous, and uncertain data scenes generated
from these coupling connections between two sides are indispensable and thus need to be
incorporated when designing energy configuration strategies.

To this end, an IES configuration optimization strategy based on a multi-model ensem-
ble is proposed in this paper. To start with, a coordination model between the supply and
demand side in an IES is formed. Next, to cope with the random errors and biases caused
by a high-dimensional heterogeneous data context, the inputs are transformed into linear
combinations of multiple statistically independent components to implement the unmixing
process based on the independent component analysis (ICA) model, which can achieve
dimension reduction and computational efficiency strengthening. Then, the self-adaptive
quantum genetic model (SAQGM) is initiated to optimize energy configurations. Firstly,
the quantum bit, which refers to the basic unit of information in quantum computing, is
deployed according to the quantum state characteristics, and the linear superposition of dif-
ferent state probabilities of each analytic solution can amend the coverage and convergence
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performance, thus decreasing the number of requisite chromosomes, that is, reducing the
unnecessary solutions to the problem. Secondly, a double-chain chromosome formation
is designed, where each chromosome contains two concatenated genes, with each gene
representing an optimal solution. Every chromosome can be delineated through a set of
bimodal solutions containing biomorphic strings to handle the potential random coding
and frequent decoding during the stage of quantum bits encoding. Thirdly, in the step of
evolution, both the rotation angle and probability magnitude can be actively modified via
the dynamic adaptation quantum gate; hence, the uncertainty can be diminished while
the efficiency can be raised simultaneously. At last, the effectiveness and feasibility of the
proposed strategy are verified by an empirical case study.

The contributions of this paper are summarized as follows:

1. To handle the complicated coupling relations among supply and demand sides in
an IES, this paper proposes an energy configuration optimization strategy based
on a multi-model ensemble to ensure better resource allocation and arrangement,
especially in more complex data distribution scenarios.

2. To cope with the high-dimensional data conditions, the ICA approach is deployed to
establish a linear transformation from high-dimensional inputs to unmixing indepen-
dent components in the feature space, which can reduce the noise and thus improve
computing efficiency.

3. To solve the heterogeneous and uncertain data problems, the SAQGM methodology
is designed for subsequent energy configuration optimizations, where the quantum
bit representation is built to reduce computation complexity in multi-state component
scenarios, the double-chain formation of chromosomes is formed to diminish the un-
certainty when encoding, and the dynamic adaptation quantum gate is implemented
to successively amend parameters.

The remainder of this paper is organized as follows: Section 2 demonstrates the
coupling model for a target IES, Section 3 describes the proposed ICA-SAQGM ensemble,
Section 4 discusses an empirical case study, and Section 5 presents conclusions of this paper.

2. IES Coupling Model
2.1. Coupling Relationships between Supply and Demand

An IES mainly includes energy input, exchange, storage, and supply [26]. The input
side (supply side) is connected to various types of sources [27], and after the conversion,
the energy can be supplied to the load side (demand side), such as the electric load, cold
load, heat load, and natural gas load, etc. This supply network of cooling, heating, power,
and natural gas are generally simultaneously connected, and the characteristics of each
component are also different, making the coupling relationships between those two sides
more complex. Hence, the coupling matrix can be constructed by the energy center (EC)
model [28] to reflect the input–output relationships among multiple energy sources.

One representative local IES network is implemented as a test system in this paper,
and the corresponding coupling relationships between the supply and demand sides are
presented in Figure 1. This IES is an energy supply system with various operational features
for the coordinated operation of multiple energy sources, making the network structure of
this system more adaptable to a variety of energy sources and loads; thus, it can coordinate
both the supply and demand sides.

As represented in Figure 1, the input energy on the supply side mainly consists of
electricity, heat, and natural gas, and can be transformed into various forms of energy
needed by users through energy conversion equipment such as gas turbines, electric air
conditioning gas boilers, etc. This can be depicted mathematically as follows:{

PE = ρ1EE + γG
1 ρ2EG

PH = EH +
(
γG

1 ρ3 + γG
2 ρ4

)
EG (1)
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where the PE and PH denote the supply efficiency of electrical and thermal energy in energy
input; ρ1, ρ2, ρ3, and ρ4 are the efficiency of transformer input, the efficiency of electric
power of gas turbine, the efficiency of heat of gas turbine, and the efficiency of gas boiler,
respectively; γG

1 and γG
2 depict the distribution coefficient of the natural gas network to

the gas turbine and the distribution coefficient to the gas boiler, respectively; EE, EH , and
EG demonstrate the power network, heat network, and natural gas network resources
in the energy input; and PW and PL represent the wind power and photovoltaic power
connected to the integrated energy system, respectively. To ensure the linearity of this
model, it is necessary to set γG

1 EG and γG
2 EG as the principal variables. γG

1 EG indicates the
amount of natural gas resources consumed by the gas turbine, and γG

2 EG delineates the
number of natural gas resources consumed by the gas boiler.
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The EC model on the supply side can therefore be formed as follows:

[
PE

PH

]
=

[
ρ1 0 γG

1 ρ2
0 1 γG

1 ρ3 + γG
2 ρ4

]EE

EH

EG

+

[
PW + PL

0

]
(2)

On the load side, users purchase the energy on demand and convert into actual-use
resources through electric air conditioners, absorption chillers, heat exchangers, and other
equipment, so as to meet the requirements for various energy resources. This can be
delineated mathematically as follows:

Ereq = αElE

Qc = γE
1 ϕ1lE + γH

2 ϕ2lH

Qh = γE
3 ϕ3lE + γH

4 ϕ4lH
(3)

where Ereq, Qc, and Qh denote the demand for electrical energy, the demand for cold
energy, and the demand for heat energy on the energy demand side, respectively; lE and
lH are the overall electrical load and the overall thermal load when the energy demand
is satisfied through various electrical devices, respectively; ϕ1, ϕ2, ϕ3, and ϕ4 indicate
air-conditioning cooling efficiency, absorption chiller efficiency, air-conditioning heating
efficiency, and heat exchanger efficiency, respectively; γE, γE

1 , and γE
3 illustrate the distri-

bution coefficients of direct electricity consumption equipment, air-conditioning heating
state, and air-conditioning heating state in the overall electrical load, respectively; and γH

2 ,
and γH

4 depict the distribution coefficients of absorption chillers and heat exchangers in the
overall thermal load, respectively, and thus γE+γE

1 + γE
3 = γH

2 + γH
4 = 1.
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The demand-side EC model can hence be written as follows:Ereq
Qc
Qh

 =

 αE 0
γE

1 ϕ1 γH
2 ϕ2

γE
3 ϕ3 γH

4 ϕ4

[ lE

lH

]
(4)

2.2. Coupling Relationships between Supply and Demand
2.2.1. Economical Cost

In order to bring higher economic benefits, the operating costs should be minimized,
and its objective function should be established in terms of the investment cost, the main-
tenance cost, the loss during the operations, and the user’s comfort experience. The
economical cost function can be formed as follows:

min(Ec) = Cb + Cr + Cl + Cc (5)

where

Cb =
24

∑
t=1

(
cE

t E
E
t + cG

t E
G
t + cH

t E
H
t

)
(6)

In Equation (6), Cb denotes the integrated system investment cost; cE
t , cG

t , and cH
t represent

the acquisition unit price of electric network resources, natural gas network resources, and
thermal network resources, respectively; and EE

t , EG
t , and EH

t demonstrate the amount of
resources acquired by the electricity network, the amount of resources acquired by the natural
gas network, and the amount of resources acquired by the thermal network, respectively.

Cr =
24

∑
t=1

∑ ctPt (7)

In Equation (7), Cr represents the cost to be spent by the equipment in operation, ct is
the maintenance cost required for the physical equipment to output unit power per unit
time period, and Pt denotes the power output of the equipment per unit time period.

Cl = βE

(
Wsup

E −Wreq
E

)
+ βH

(
Wsup

H −Wreq
H

)
+ βG

(
Wsup

G −Wreq
G

)
(8)

In Equation (8), the Cl depicts the additional cost of energy loss during operation;
βE, βH , and βG denote the additional loss coefficients of energy in the operation pro-
cess for electric network resources, thermal network resources, and natural gas network
resources, respectively; Wsup

E , Wsup
H , and Wsup

G delineate the supply of electric power re-
sources, thermal power resources, and natural gas resources, respectively; and Wreq

E , Wreq
H ,

and Wreq
G represent the demand for electricity, heat, and natural gas resources, respectively.

Cc =
24

∑
t=1

∑(µt·(LE + LH + LG)) (9)

In Equation (9), Cc is the user comfort cost, i.e., the cost expended by the user to
compensate for the user’s comfort not being affected when the energy demand changes;
µt denotes the proportional coefficient of user comfort cost per unit time period; and LE,
LH , and LG illustrate the load difference between the user’s energy demand change and
the initial demand.

2.2.2. Environmental Cost

When minimizing the system’s operation cost, the environmental cost of energy
consumption will also be taken into account. In this paper, the pollutant emissions within
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system operations are selected as the measure of the environmental cost, and its objective
function is built as follows:

min (En) = ∑T
t=1 ∑n

i=1 θiEnt
i (10)

where T is the total annual operating time of the system, n represents the number of energy
types in the system, θi denotes the pollutant emission index of the ith energy source per
unit time, and Ent

i is the pollutant emission index of the ith energy source at time t.

2.2.3. Constraints

An IES involves many different types of energy, so it is important to ensure the safety
and reliability of the operation of various components of the system in line with the ability
to prevent impacts of extreme scenarios [29].

1. Power balance constraint:

{
PE

t = PE
1t + PE

2t + P3t + P4t
PH

t = PH
1t + PH

2t
(11)

where PE
t , PE

1t, PE
2t, P3t, and P4t denote the output electrical power, transformer input power,

gas turbine output electrical power, wind power generation power connected to the system,
and photovoltaic generation power, respectively; and PH

t , PH
1t , and PH

2t represent the output
thermal power, the thermal power output from the gas turbine, and the thermal power
output from the gas boiler, respectively.

2. Equipment operation constraint:

{
Pi,min ≤ Pit ≤ Pi,max
Ei,min ≤ Eit ≤ Ei,max

(12)

where Pit denotes any device that performs energy conversion in an integrated energy
system; Pi,min and Pi,max are the minimum and maximum values of the power output of
the device, respectively; Eit indicates the input of any network resource; and Ei,min and
Ei,max depict the threshold value of this resource acquired by the integrated energy system.

3. Energy price constraint:

ci,min ≤ cit ≤ ci,max (13)

where cit represents the acquisition price of any energy source in the system; and ci,min and
ci,max indicate the lower and upper bounds of the energy price, respectively.

3. ICA-SAQGM Ensemble
3.1. ICA Model

The ICA is a method for finding the intrinsic components from a multidimensional
dataset. For dataset X, the ICA solution can be formulated as follows:

X = AS (14)

Let X be a random vector and X ∈ Rm×1, and then we have the following:



x1
x2
· · ·
xi
· · ·
xm

 =



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

ai1 ai2 · · · ain
...

...
...

am1 am2 · · · amn





s1
s2
· · ·
si
· · ·
sn

 (15)
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where si is a random variable, and both values are independent of each other. A is a full
rank matrix and A ∈ Rm×n.

We suppose the following:
W = A−1 (16)

thus, Equation (14) can be rewritten as follows:

S =
(∼

w1 · · · ∼
wj · · ·

∼
wn

)
=



w11 w12 · · · w1j · · · w1n
w21 w22 · · · w2j · · · w2n

...
...

. . .
...

. . .
...

wi1 wi2 · · · wij · · · win
...

...
. . .

...
. . .

...
wm1 wm2 · · · wmj · · · wmn


X (17)

where W is a full rank matrix and W ∈ Rm×n; and
∼
wj is one included column vector.

The goal of the ICA is to use the statistically independent and non-Gaussian properties
of each independent component as the objective function to find a suitable transformation
matrix, W, thus obtaining the independent components, S. According to the different objec-
tive functions, the ICA can be classified into diverse types, including the large likelihood
estimation and minimum mutual information method. Among them, the FastICA model
deploys the negative entropy as a measure of the non-Gaussian random variables. The
negative entropy will then be maximized under the constraints to solve the independent
components. The benefits of this model are the fast convergence and effortless computation
compared with other methods.

The flowchart of the FastICA is delineated as Figure 2:
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The specific steps of the FastICA are shown below:

1. Calculate the mean value of X and obtain the de-averaged value Y according to the
following equation:

Y = X−M (18)

2. Find the covariance matrix of Y : C = cov
(
Y, YT), the diagonal array of eigenvalues

of the matrix Q, and the eigenvectors α. Let U = Q−1/2αT , and the processed data can
be obtained via the following equation:

H = U ×Y (19)
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3. Initialize the random matrix, W(0), and assume that the modulus of the column vector
is 1. Set k as the iteration indicator, such that k = 0.

4. Use the following equation for numerical iterations of
∼
w
(k)
j :

∼
w
(k)
j = E

{
H·G

(
∼
w
(k−1)T
j ·H

)}
− E

{
H·g

(
∼
w
(k−1)T
j ·H

)}
× ∼w

(k−1)
j (20)

where E is the identity matrix, and G() denotes the hyperbolic tangent function, that
is G(t) = tanh(σt). Assume that the coefficient σ is 1, and therefore G(t) = tanh(t) =(
et − e−t)/ (et + e−t), and g() represents the first order derivative of G().

5. Perform the matrix orthogonalization and normalization on W:

∼
w
(k)
j →

m

∑
i=1

(
w(k)r

j wi

)
wi (21)

∼
w
(k)
j →

w(k)
j∣∣∣∣∣∣w(k)
j

∣∣∣∣∣∣ (22)

6. When
∣∣∣∣∼w(k)T

j
∼
w
(k−1)
j − 1

∣∣∣∣< ε , then j = j + 1; otherwise, there is no convergence, and

must return to Step 3.

7. When j = m, the matrix W can be generated, and then the independent components,
S, can be figured out according to Equation (17).

From the above discussions, it is clear that the ICA is a linear transformation that can
separate data samples into independent and non-Gaussian distributed linear combina-
tions. On the whole, the ICA multiplies the independent components of the data with a
decomposition matrix so that each component can reflect as much time-independent and
valid information as possible without orthogonal processing. In contrast, the traditional
dimensionality reduction method, the principal component analysis (PCA), performs de-
correlation on the dataset based on an orthogonal mixing matrix, so that each principal
component tries to cover the variance. Therefore, the ICA can be summarized as a process
of unmixing linear combinations of several independent components, while the PCA is
a process of information extraction, which is actually the normalization step in the ICA.
Although the ICA requires a predefinition of the total number of independent components
to be decomposed, i.e., it requires prior knowledge of the database, the ICA gives a better
performance in regard to portraying the random statistical properties of variables and
tolerating the white noise.

3.2. SAQGM Methodology
3.2.1. Objective Description: Quantum Bit Representation Scheme

The QGM model is generally based on the quantum bits and the concept of state
superposition in quantum mechanical theory. In a system of two-state quantum, the
smallest unit for information storage is called a quantum bit. A quantum bit can be the
state “1” or “0” or in any superposition of these two. Thus, the state of one quantum bit
can be expressed as follows:

〈Ψ〉 = α〈0〉+ β〈1〉 (23)

where α and β are the complex coefficients representing the probability of being in the
corresponding state, |α|2 represents the probability that the quantum bit is 0, and |β|2
represents the probability that the quantum bit is 1.

Regularizing this complex coefficient can be achieved as follows:

|α|2 + |β|2 = 1 (24)
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Thus, for a system with n quantum bits, it will cover 2n kinds of states.
In evolutionary optimization algorithms, one difference is the various representation

schemes for encoding and storing. These representations can roughly be classified as the
bimodal, numerical, and symbolic methods. In this paper, a representation scheme based
on the concept of quantum bits is designed for the QGM.

A quantum bit is defined via a pair of complex numbers, which can be written as
(α, β)T , where the two parameters have the same meaning as those in Equation (24).

We define a space for m quantum bits as follows:[
α1 α2 · · · αm
β1 β2 · · · βm

]
(25)

where |αi|2 + |βi|2 = 1, i = 1, 2, · · · , m.
The advantage of this representation scheme is that it can cover the superposition

states other than “1” and “0”. For example, the probability magnitude of a three-qubit
system with three states can be written as follows:[

1/√2 1/√2 1/2
1/√2 −1/√2

√
3/2

]
(26)

Then, the states of this system can be expressed as follows:

1
4 (000) +

√
3

4 (001)− 1
4 (010)−

√
3

4 (011) + 1
4 (100) +

√
3

4 (101)− 1
4 (110)

−
√3
4 (111)

(27)

From Equation (27), this three-qubit system contains information in eight states,
namely (000), (001), (010), (011), (100), (101), (110), and (111), with probabilities of oc-
currence of 1/16, 3/16, 1/16, 3/16/, 1/16, 3/16/, 1/16, 1/16, and 3/16, respectively.

Therefore, the quantum bit-based representation scheme has better performance in
dealing with multi-state scenarios. As in Equation (27), one quantum chromosome, which
refers to a feasible solution to the problem, can represent eight states; however, in the
classical representation, at least eight chromosomes, namely (000), (001), (010), (011), (100),
(101), (110), and (111), are required. In addition, the representation by quantum bits is
better in terms of convergence. When coefficient |αi|2 or |βi|2 converges to the value “1” or
“0”, the multi-state property of quantum bit chromosomes gradually disappears until it
converges to one single state.

In summary, the population size, i.e., the number of quantum bit chromosomes, in the
QGM will always remain constant, which follows the principle of quantum bit conservation
in quantum computing theory. Therefore, the QGM with the quantum bit representation
scheme has better diversity and convergence compared with the ordinary GM.

3.2.2. Quantum Bit Coding: Double-Chain Formation

In the QGM, a probabilistic analysis model is added to the standard genetic algorithm.
The QGM can usually cover a quantum bit chromosome population, and the population by
the tth generation can be expressed as follows:

Q(t) =
{

qt
1 , qt

2, · · · , qt
l
}

(28)

where l is the population size, and qt
j represents a quantum position chromosome.

In the proposed SAQGM, the double-chain coding model [30] of the jth chromosome
is deployed, and it can be written as follows:

qt
j =

[
αt

11 αt
12 · · · αt

1n αt
21 · · · αt

2n · · · αt
l1 · · · αt

mn
βt

11 βt
12 · · · αt

1n βt
21 · · · βt

2n · · · βt
m1 · · · βt

mn

]
(29)
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where j = 1, 2, . . . , l; m is the number of genes in that chromosome; n is the number of
quantum bits, i.e., the string length of the quantum bit chromosome; each chromosome is a
viable solution to the problem; and the viable solution is made up of multiple elements,
which refer to the genes of the chromosome.

To initialize Q(t), all qt
j in Q(t) values are preset to 1/√2 . That is, qt

j

∣∣∣
t=0

refers to
a quantum bit chromosome that linearly superimposes all possible states with the same
probability, and its state can be formed as follows:〈

Ψq0
j

〉
=

2m

∑
k=1

1√
2m
〈SK〉 (30)

where SK is the kth state that is represented by bimodal string x1, x2, . . . , xm.
For the purpose of overcoming the randomness when coding and the frequent decod-

ing when optimizing, the quantum bit chromosome can be reformed as follows:

qt
j =

[
Sc(t)
Ss(t)

]
=

[
cos(θ i1) cos(θ i2) · · · cos(θ ih) · · · cos(θ im)
sin(θ i1) sin(θ i2) · · · sin(θ ih) · · · sin(θ im)

]
(31)

where θih = 2π × τ, and τ is a random number from 0 to 1, h = 1, 2, . . . , m.
Commonly, a set of bimodal solutions S(t) will be worked out through Q(t), where

the binary solutions are a biomorphic string with a length, m, and are generated via each
quantum bit, qt

j. Each solution can be employed to evaluate its fitness, and then the best
one is selected and stored in the bistatic solution, S(t). It can be noticed in Equation (29)
that each chromosome qt

j contains two juxtaposed genes, and each of them represents an
optimal solution set, i.e., the Sc(t) and Ss(t), respectively.

3.2.3. Evolution Strategy: Dynamic Adaptation Quantum Gate

In the iterations, the bimodal solution set S(t) is calculated based on the previous time
series of quantum bit chromosome populations, Q(t− 1). By constructing quantum gates,
U(t), each set of quantum bit chromosomes Q(t) can be updated. U(t) is built according to
the bistable solutions and the optimal storage solution, which can be designed in line with
dissimilar requirements. The quantum gate is chosen in this paper, and its mathematical
expression is as follows:[

α′ij
β′ij

]
= U(θij)

[
αij
βij

]
=

[
cos
(
θij
)
− sin

(
θij
)

sin
(
θij
)

cos
(
θij
) ][αij

βij

]
(32)

where θij denotes the rotation angle. Moreover,
[
α′ij β′ij

]T
and

[
αij βij

]T represent the

probability amplitude before and after the updating of qt
j ; that is, the new qubit chromosome,

Q(t), is obtained by rotating the qubit chromosome of the previous cycle, Q(t− 1).
The optimal solutions in each of them are stored in S(t). We calculate their fitness

and compare it with the fitness of the next set of solutions in the next cycle to ensure
better solutions. If the fitness, f (t), corresponding to qt

j is greater than f (t− 1), then the
iteration proceeds in the direction that is conducive to the occurrence of qt

j; otherwise, it
proceeds in the opposite direction. The iteration step will repeat until the optimal solution
is obtained. Ergo, the selection of θij will significantly impact the evaluation and ought to
be dynamically adjusted.

In order to achieve this in a more comprehensive manner, a statistical tool normal
distribution model which can incorporate the gradient of the fitness function in the previous
time series is utilized in this paper to assess the tendency of evolution. Based on the
formerly calculated gradient of the fitness function, the probability density function, ϕ(x),
of the normal distribution model can be solved, and the variation coefficient of θij can thus
be determined via the gradient of the current evaluation function, ∇ f

(
Xij
)
. When that
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gradient is low-in-value, the contemporary evolution direction is positive which requires a
higher iteration speed, and otherwise lower. In that case, the self-adaptive update model
for θij can be built as follows:

θij(t + 1) = θij(t) + sgn(x)× ℵ× ∆θ0 (33)

where
ℵ = P

(
∇ f (X) ≥ ∇ f (X ij

)
);

ϕ[∇ f (Xij)] =
1√
2πσ

e
−(∇ f (Xij)−µ)2

2σ2 ;

µ = ∇ f
(
Xij
)
;

σ2 = 1
n

n
∑

i=1

(
∇ f
(
Xij
)
−∇ f

(
X(i−1)j

))2
.

In Equation (33), sgn(x) is the update direction when x 6= 0, and can be positive
or negative if x = 0, µ and σ2 represents the average and variance gradient of f (x),
respectively, ϕ

[
∇ f
(
Xij
)]

is the probability density function of that gradient, ∆θ0 denotes
the initial iteration angle.

We assume that σ2 remains constant when the input data volume grows, since the
variation of it is comparably smaller than∇ f

(
Xij
)
. Therefore, if∇ f

(
Xij
)
≤ µ, the farther it

locates from µ, the smaller ∇ f
(
Xij
)

will be, and the larger ℵ will be, and a faster evolution
can be made; otherwise, ℵ will be smaller, and the evolution will also be slower. The
illustration for selecting ℵ is shown in Figure 3.
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In that case, ϕ
[
∇ f
(
Xij

)
] in Equation (33) can be further simplified as follows:

ϕ[∇ f (Xij)] =
1√
2π

∫ ∇ f (Xij)

−∞
e−

g2
2 dg (34)

where g =
−(∇ f (Xij)−µ)

σ .
Hence, ℵ can be calculated as follows:

ℵ = 1− ϕ[∇ f (Xij)] = 1− 1√
2π

∫ ∇ f (Xij)

−∞
e−

g2
2 dg (35)

According to previous discussions, the phase of quantum bits can be adjusted via the
self-adaptive, θij, and hence the double-chain coding model in Equation (31) can also be
amended. The corresponding probability magnitude can be formed as follows:[

cosθij(t + 1)
sinθij(t + 1)

]
=

[
cos∆θij −sin∆θij
sin∆θij cos∆θij

][
cosθij(t)
sinθij(t)

]
=

[
cos
[
θij(t) + ∆θij

]
sin
[
θij(t) + ∆θij

]] (36)
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3.2.4. Procedure

The main steps of the SAQGM model can be described as follows:

1. Initialize the quantum position chromosome population, Q(t), with l quantum posi-
tion chromosomes and assume θ0 to be the initial iteration angle and the mutation
probability, Pm, to be 0.05.

2. Probe all chromosomes, encode the quantum bits via the double-chain coding model,
and calculate the fitness, as well as the gradient.

3. Evaluate the solution set, S(t); solve the optimal solution; and store.
4. If the termination condition is not reached, S(t) is generated via the previous time

series of the chromosome population Q(t − 1) in each round of the iteration.
5. Adjust the rotation angle and the probability magnitude, and then update Q(t) via the

self-adaptive quantum gate, U(t);
6. The optimal solution is stored in S(t) until the termination condition is reached.

4. Empirical Case Study
4.1. Data Base

For the verification of the performance of the proposed ensemble, an IES in Eastern
China is selected in this paper. The generation forecasts of wind and photovoltaic, as well
as the load predictions of thermal and electric, are shown in Figure 3. The parameters of
equipment and the energy prices are presented in Tables 1 and 2, respectively.

Table 1. Parameters of devices in the IES.

Equipment Efficiency Lower Limit Upper Limit

Transformer Power: 0.9 Power purchase: 0 kW Power purchase: 4200 kW

Gas turbine Power: 0.35
Heating: 0.42

Electricity/heat production:
1000 kW/1080 kW

Electricity/heat production:
4000 kW/4200 kW

Gas boiler Heating: 0.91 Heat production capacity: 1000 kW Heat production capacity: 6300 kW
Air conditioning Cooling: 3.7 Production capacity: 0 kW Production capacity: 4000 kW
Heat exchangers Heating: 1.2 Production capacity: 0 kW Production capacity: 6000 kW

Absorption chillers Cooling: 1.2 Production capacity: 0 kW Production capacity: 4000 kW
External heating Heating: 1 Heat purchase: 0 kW Heat purchase: 4000 kW

External gas supply Air supply: 1 Gas purchase: 0 m3 Gas purchase limit: 1350 m3

Table 2. Energy prices.

Energy Type Parameters Price/CNY

Electricity
Peak hours 1.00

Off-peak hours 0.60
Low hours 0.30

Heating Upper limit 0.75
Lower limit 0.35

Natural Gas / 3.33

4.2. Results Analysis

For the verification of the performance of the proposed ensemble, an IES in Eastern
China is selected in this paper. The generation forecasts of wind and photovoltaic, as well
as the load predictions of thermal and electric, are shown in Figure 4. The parameters of
equipment and the energy prices are presented in Tables 1 and 2, respectively.
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Two application scenarios are tested in this paper.
Scenario 1: To verify the optimization performance of the ICA-SAQGM ensemble,

the particle swarm optimization (PSO) [31], the BP neural network (BPNN) [32], and the
standard quantum genetic model (QGM) [33] are deployed for comparison. The maximum
time of iterations of all of these algorithms is set to 300 times. The total daily cost of the
studied IES is optimized, and the resulting curves are illustrated in Figure 5.
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In summary, evaluation indices such as the average daily cost, pollution emission,
times of convergence iteration (The critical point at which the algorithm becomes stable is
taken as the convergence limit), and variance are demonstrated in Table 3.



Sustainability 2023, 15, 15248 14 of 17

Table 3. Comparison of optimized consequences by different models.

Model Average Total
Daily Cost/CNY

Average
Pollution

Emissions/Ton

Average
Convergence

Iterations
Mean Variance

PSO 53,662 1.69 284 0.7731
BPNN 52,013 1.48 233 0.5215
QGM 50,978 1.26 136 0.2781

ICA-SAQGM
47,681 1.02 47 0.1833Model

From Figure 5 and Table 3, it can be concluded that the performance of the ICA-
SAQGM is better. In terms of the average daily cost, the optimal solution of the ICA-
SAQGM is 11.1%, 8.3%, and 6.5% lower than PSO, BPNN, and QGM, respectively; in
terms of average pollution emissions, the ICA-SAQGM is 39.6%, 31.1%, and 19.0% better.
Similarly, the proposed ensemble is finer in both the convergence speed and the variance.
Above all, the ICA-SAQGM strategy can achieve a cost reduction for the IES.

Scenario 2: In order to assess the optimized IES considering the coupling relationship
between supply and demand, three patterns are utilized: Pattern 1, standard IES operations;
Pattern 2, IES operations considering the coupling relationships; and Pattern 3, optimized
IES operations with the coupling relationships. Figure 5 delineates the operating curves of
these three patterns.

From Figure 6a, Patterns 2 and 3 have an increase in electric loads at some specific
periods, such as 1:00–7:00, since the coupling connections are incorporated into these two
patterns so that the electric purchase cost can be reduced after the optimization of supply
and demand. Meanwhile, in the periods with a larger electric load, such as 10:00–20:00,
Pattern 3 has a better optimization effect compared with the regulation of Pattern 2, which
results in a better customer satisfaction rate and better total economics. From Figure 6b,
we can see that Pattern 2 has almost no regulation on the thermal load, whereas Pattern 3
makes a balance regulation of thermal loads according to the regulation of electrical loads.
In Pattern 3, the combined optimization regulation of the thermal–electric loads makes it
possible to cut the operating cost and to improve the overall operation of the IES without
affecting users.
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Figure 6. Comparison of operation curves by three patterns. (a) Electric load curve. (b) Heating
load curve.

A comparison of the costs among the three patterns is provided in Table 4.
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Table 4. Cost comparison of the three patterns.

Pattern Pattern 1 Pattern 2 Pattern 3

Investment cost/CNY 46,914 44,832 42,002
Equipment running

cost/CNY 4522 3964 3482

Loss cost/CNY 3022 2552 1889
User comfort

cost/CNY 0 1231 0

Total daily cost/CNY 54,458 52,579 47,373
Pollutant

emissions/ton 1.02 1.02 1.02

Among these patterns, Pattern 1 does not consider the coupling relationship between
supply and demand and thus assumes the energy consumption to be fixed values. In
that case, the IES only needs to cover a fixed load to meet the demand; thus, the user
comfort cost is 0. However, without the coupling relationships, the demand side cannot
coordinate with the supply side, so the equipment operation and loss cost are both higher.
Pattern 2 considers the coupling relationships, so the coordination between the demand
and supply side can be achieved to decrease the equipment operation and loss cost. but
will also generate extra user comfort cost. Pattern 3 can optimize Pattern 2 to more
flexibly coordinate the two sides, which can reduce all the costs while not sacrificing the
user’s comfort. This verifies the effectiveness of the ICA-SAQGM ensemble for the IES. In
addition, the pollution emissions are almost the same in different patterns, thus indicating
that the coupling relationships have a small impact on this value so that it does not need
further assessments.

5. Conclusions

In this paper, an optimization strategy based on the ICA-SAQGM ensemble is pro-
posed for energy allocation in a renewable-energy-connected IES. The main works can be
summarized as follows:

1. An IES operation model containing the coupling relationships between supply and
demand sides was built which can incorporate the underlying connections between
the energy sources and loads when designing strategies.

2. The ICA model was established for dimensionality reduction, which maps the high-
dimensional heterogeneous inputs into the linear combinations of independent compo-
nents for data unmixing. Therefore, it is used to further improve the computing efficiency.

3. The SAQGM optimization procedure was designed to enhance the comprehensive-
ness and efficiency, where the quantum bit representation scheme is built to decrease
the computation burden in multi-state scenarios, the double-chain formation of chro-
mosomes is deployed to ameliorate the performance when encoding, and the dynamic
adaptation quantum gate was implemented to modify the parameters.

4. An empirical case study was conducted to validate the performance of the proposed
method during real applications. The results prove that the configuration strategy
based on this methodology can reduce investment, operation costs, and pollution
emissions significantly.
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