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Abstract: Maintenance decision optimization based on network-level assessment has a long history
in road transportation infrastructure and has greatly assisted management departments in saving in
expenditure on maintenance costs. However, its application and research in water transportation
infrastructure have been lacking. This paper aims to design a predictive model for waterway im-
provement building maintenance based on network-level assessment and provide a new solution
for optimizing the allocation of limited maintenance funds for inland waterway infrastructure. The
proposed network-level assessment framework and predictive model comprise data collection, main-
tenance prediction, and maintenance decision modules. A small time-series dataset was constructed
based on the classification proportions of improvement building technical conditions in the juris-
diction of the Yangtze River trunk waterway over the past five years. The two-parameter moving
average method was transformed into a single-parameter “jurisdiction moving average method”
to suit the characteristics of the dataset. Three models, namely the jurisdiction moving average
(JMA), the linear regression (LR), and the quadratic curve regression (QCR) models, were employed
to perform calculations on the dataset, which were evaluated using t-tests and error analysis. The
research results indicated that both the JMA and LR models showed good overall performance and
were recommended for use. Especially, the confidence intervals of the JMA model increased the
credibility of the prediction results, making it the ideal choice. This study also found that the inland
waterway maintenance prediction technology based on the network-level evaluation has higher
overall efficiency than the known existing technologies. The proposed predictive model allows for a
simple and rapid assessment of the overall risk status of regional waterway facilities and is easy to
promote and apply.

Keywords: inland waterway; improvement building; network-level assessment; prediction; moving
average method; regression analysis; maintenance decision optimization

1. Introduction

Water transportation, compared to other modes of transportation, is environmentally
friendly and pollution-free, which is conducive to the sustainable development of society
and has played an essential role in economic construction from ancient civilizations to the
present day [1]. Waterway improvement buildings are important infrastructure for water
transportation; they are mainly used to improve and maintain the passage conditions of
waterways and enhance waterway traffic capacity. However, due to water erosion, riverbed
deformation, material aging, and human-related factors, the improvement structures con-
tinuously sustain damage during their service life, resulting in performance degradation
and navigation condition deterioration [2,3]. Therefore, the technical condition assessment
and repair of improvement buildings are important tasks for waterway maintenance [4,5].
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Currently, the maintenance and management of waterway improvement buildings require
vast funds, but cyclical operations have low efficiency. According to statistics, investment
in Yangtze River trunk waterway improvement building projects, including completed, yet-
to-be-completed, and presently underway projects, has exceeded CNY 40 billion over the
past 30 years. In the meantime, improvement building maintenance has long work cycles,
lasting up to a year in duration, and involves project tendering and bidding, evaluation,
maintenance planning, funding, and implementation [4]. Around the world, the economic
resources allocated to transportation infrastructure maintenance are limited and often far
from sufficient for fully maintaining the required reliability and service levels throughout
the life cycle. Therefore, the optimal allocation of existing funds has become the most impor-
tant goal [6]. With the rapid development of the Yangtze River waterway construction, the
comprehensive benefits of the improved buildings are becoming increasingly prominent.
This requires rational resource allocation and the unified coordination and operation of
waterway management [7]. Assessing the technical condition and maintenance of these
buildings is a challenging task. One of the key challenges faced here is the limited efficiency
of the current periodic operational model, which further faces constraints due to limited
economic resources allocation. Consequently, innovative methods are required to simplify
maintenance operations and resource utilization. Additionally, current methods mainly
focus on evaluating the current service status of individual building, often overlooking
the critical aspect of future overall risks. Therefore, a paradigm shift is needed in the
maintenance of harbor remediation buildings, moving from conventional maintenance
practices to forward-looking and systematic approaches. Evaluation methods should not
only be focused on current conditions but also on predicting future risks.

Researchers have already begun researching to assess the structural stability and
performance of waterway improvement buildings. They have adopted various methods
to assess factors such as hydraulic elements, scour pit parameters, damage volume ratios,
and scour depths, with the aim of improving the safety and maintenance efficiency of
these structures.

Scholars worldwide have long studied the structural stability evaluation of waterway
improvement buildings. Using the back wall slopes of local erosion pits as the main index
for spur dike erosion stability evaluation, Wang et al. [8] established a reliability function
to investigate the combined sensitivity of hydraulic elements, scour pit shape, and scour
pit size on the index based on measured data with random parameters. Han et al. [9] used
the ratio of damage volume as a quantitative index to assess the safety of improvement
buildings and the effectiveness of improvement. Yu et al. [10] used the scour depth at
the jetty head as a spur dike structural safety evaluation index and comparatively ana-
lyzed the extent to which different design parameters influence structural safety using
experimental data. Scholars have also studied the performance of improvement build-
ings. Chen et al. [11] used factors such as the amount and variation of incoming water
and sand, water surface slope, riverbed morphology, and riverbed sand composition as
evaluation indexes for the function of clearing sands with converging flow in spur dikes
and employed the regression support vector machine theory to evaluate and predict the
indexes. Muto et al. [12] and Clark et al. [13] included environmental impacts, economic
impacts, and other factors in the evaluation indexes to analyze and predict the perfor-
mance of dams. As can be seen, previous research focused mainly on evaluating a single
aspect of improvement buildings. In practice, waterway improvement building service
status maintenance is a multi-criteria decision-making (MCDM) problem. Accordingly,
Jiang et al. [2], Zhang et al. [14], Wen et al. [15], Li et al. [16], and Wang et al. [17] have also
established multi-factor evaluation index sets in recent years. Based on aspects such as ap-
pearance deformation, damage degree, and functional operation of waterway improvement
buildings, their service status was comprehensively evaluated through different theoretical
approaches. However, these methods judge the current service status of improvement
buildings and rarely predict their future risk status. While scholars have researched the
temporal variations in the functional status of buildings, their focus was primarily on eval-
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uating and predicting individual buildings in the lower reaches of the Yangtze River [11],
neglecting the distribution of building clusters and the overall risk status. Moreover, exist-
ing evaluation methods are highly intricate and demand extensive field data, including
building deformation, damage severity, riverbed topography, and hydrological data. In ad-
dition, stress analysis needs to be conducted using hydraulic elements such as flow velocity,
water level, flow rate, and sediment. Often, the overly complex operational procedures and
the difficulties in obtaining many indicator data mean that it is challenging to promote and
apply such evaluation methods on a large scale in practical engineering.

Traditional maintenance methods for waterway improvement buildings have lim-
itations, as they operate in a reactive and periodic manner which makes it difficult to
efficiently utilize resources and improve operational efficiency. Current evaluation models
are mainly focused on individual and passive assessments, evaluating only after issues
have already occurred rather than proactively predicting future risks. This limits the effec-
tive maintenance of waterway transportation infrastructure and hinders optimal allocation
of limited maintenance funding. Although research has advanced our understanding of
various aspects of improvement building evaluation, there remains a pressing need for a
transition towards more comprehensive and forward-looking maintenance methods.

Research on road transportation infrastructure has divided the evaluation of bridge
technical condition indicators into two categories: current assessment and condition de-
velopment prediction. The former reflects the current structural conditions and mainly
focuses on individual buildings, while the latter predicts future conditions (i.e., time-
dependent conditions) and is mainly used for the overall assessment and maintenance
decision optimization of bridges at the network level [18], known as network-level assess-
ment. Infrastructure management system experiences from the United States have shown
that adopting a systematic approach to facility management can bring tremendous benefits
in practice. For example, to minimize the life cycle cost of the road surface portion in the
network, Arizona made maintenance and recovery resource allocation decisions through
a project management system, which saved over USD 200 million in maintenance and
repair costs over five years [19]. Network-level assessment is the most commonly used
and effective way to comprehensively evaluate and predict bridge network states from a
systemic management perspective and is a crucial component of the bridge management
system [6,20]. Martinez et al. [21] conducted a network-level assessment of 2802 bridges in
Ontario, Canada, based on various bridge condition prediction models, including k-nearest
neighbors, decision trees, linear regression, artificial neural networks, and deep learning
neural networks. By comprehensively comparing the prediction accuracy, performance,
and certainty, the decision tree model was recommended. Adarkwa et al. [22] explored and
predicted the network-level performance of bridges in different states of the United States,
focusing on the tensor decomposition data analysis method. They defined network-level
performance indicators as the percentage of bridges with structural defects, functional obso-
lescence, or both in the network, calculated based on bridge area and quantity. Xia et al. [23]
proposed a comprehensive data-driven framework for network-level bridge condition
assessment, incorporating data integration, condition assessment, and maintenance man-
agement and applied it to an actual highway bridge network in Hebei Province, China; this
revealed the bridge’s condition and level of deterioration and the influence of maintenance
actions over time through periodic bridge inspection reports obtained from thousands of
bridges over multiple years. The results indicated that the proposed data-driven approach
could guide bridge managers in estimating future conditions and allocating maintenance
resources. Therefore, the network-level assessment approach for bridge system manage-
ment can also be applied to maintenance decision making for buildings along the Yangtze
River waterway improvement project.

In the field of transportation infrastructure, effective maintenance is crucial, as it not
only relates to safety and reliability but also to the rational allocation of resources. Al-
though effective maintenance decision models already exist in road transportation, research
in this area is relatively scarce relative to waterway transportation. This has motivated
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our research to explore new methods for enhancing maintenance efficiency, optimizing
resource allocation, and fostering the sustainable development of inland waterway trans-
portation. This research aims to bridge existing research gaps and provide improved
tools for management authorities to address maintenance challenges in inland waterway
transportation infrastructure.

Maintenance decision optimization methods based on network-level assessment have
long been used in the field of road transportation infrastructure, providing significant
help to management authorities in saving maintenance costs. Therefore, maintenance
decision making for the improvement buildings along the Yangtze River can also draw
inspiration from the principles of bridge system management and adopt network-level
assessment. The primary purpose of this study is to apply network-level assessment to
waterborne transportation infrastructures, collect and organize historical inspection data
of multiple waterway improvement buildings, propose a network-level assessment and
maintenance prediction method for inland waterway improvement buildings from a system
management perspective, and provide a new approach for optimizing the maintenance
fund allocation and comprehensive navigational infrastructure management. The main
research questions include the following: (1) How can we adjust and apply network-level
assessment methods to the maintenance of waterway transportation infrastructure? (2) Is
it feasible to use historical inspection data to predict the future risk status of channel
improvement buildings?

Given this, the Yangtze River trunk waterway improvement building technical condi-
tion categories in recent years were recorded. A network-level evaluation framework with
data collection, maintenance prediction, and maintenance decision-making modules was
proposed. Through the integration of methods, including moving averages and regression
analysis, we calculated the overall technical conditions of improvement buildings in each
jurisdictional area, conducted an error test, and proposed a maintenance prediction model
for inland waterway improvement building maintenance. The research results can facilitate
fast prediction of the overall risk status of regional waterway improvement buildings
and provide a scientific basis for the in-advance formulation of waterway improvement
building maintenance budgets, thus improving the efficiency and fineness of waterway
operation and management and enhancing resource allocation rationality.

2. Research Background and Dataset

The research background of the paper is the trunk waterway of the Yangtze River,
and the dataset consists of the technical condition evaluation results of the waterway
improvement structures collected over the past 5 years.

2.1. Research Areas and Objects

With a distant source, a long stream, and abundant ice-free water, the Yangtze River
has superior water transportation conditions, earning it the fame granted by the following
name: “Golden Waterway”. The Yangtze River trunk waterway starts from Shuifu in
Yunnan Province and ends at the estuary, which is divided into the upper, middle, and
lower reaches, as well as the estuary, with a total length of 2843 km. Of the waterway,
97% is maintained and managed by the Changjiang Waterway Bureau, which has divided
it into several jurisdictional sections according to different geographical locations and
environmental characteristics (Figure 1 and Table 1).
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Figure 1. Schematic diagram of Yangtze River trunk waterway and jurisdiction sections. The
acronyms in red represent the jurisdictional units, the corresponding full names can be found in
Table 1; the red dashed line represents the boundary between the upper, middle, and lower reaches
of the Yangtze River.

Table 1. Yangtze River trunk waterway jurisdiction sections.

Jurisdictional Units Abbreviation Maintenance Range (km) Yangtze River Reach

Changjiang Yibin waterway bureau YBB 91.0 Upper
Changjiang Luzhou waterway bureau LZB 210.8 Upper

Changjiang Chongqing waterway bureau CQB 130.4 Upper
Changjiang Fuling waterway division FLD 203.0 Upper

Changjiang Wanzhou waterway division WZD 265.0 Upper
Changjiang Yichang waterway bureau YCB 196.0 Upper and Middle

Changjiang Jingzhou waterway division JZD 189.0 Middle
Changjiang Yueyang waterway division YYD 177.0 Middle
Changjiang Wuhan waterway division WHB 349.2 Middle and Lower
Changjiang Jiujiang waterway division JJD 128.0 Lower
Changjiang Wuhu waterway division WHD 325.3 Lower
Changjiang Nanjing waterway bureau NJB 97.7 Lower

Changjiang Zhenjiang waterway division ZJD 136.6 Lower
Changjiang Shanghai waterway division SHD 131.0 Lower

To clear the rapids and maintain the waterway grade, many improvement buildings
have been built in the upper, middle, and lower reaches of the Yangtze River. As of 2021,
559 improvement buildings have been completed and put into service, which are classified
into three types according to their functions and shape characteristics: dam-type buildings,
riverbed-protecting buildings, and bank-slope-protecting buildings. Primarily, these build-
ings are employed to modify the riverbed morphology and sediment transport, facilitating
the creation of favorable hydraulic structures. They harness the energy of water flow
for channel scouring and ensure the stability of the channel, thus guaranteeing adequate
navigational dimensions, especially during low-water periods. Common improvement
buildings include spur dikes, longitudinal dikes, submerged dikes, lock dikes, and X-type
flexible mattresses. For the convenience of maintenance, the Changjiang Waterway Bureau
evaluates the technical condition of the improvement buildings during the dry season
each year. According to the Technical Code of Inland Waterway Maintenance [24] and
other relevant standards, the technical condition of waterway improvement buildings is
divided into five categories, including the first, second, third, fourth, and “unevaluated”
categories; then, appropriate maintenance decision recommendations are offered for each
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category to guide waterway infrastructure maintenance [14,17]. For instance, structures
with significant damage that negatively impacts their improvement functions may be cate-
gorized as the third or fourth categories, leading the decision-making process for repairs
by management authorities. The specific categorization criteria are shown in Table 2.

Table 2. Inland waterway improvement building technical condition categorization and mainte-
nance standards.

Building Categories Technical Condition of the Waterway Improvement Buildings Recommendations for
Maintenance Decisions

The first Good technical condition and normal function. Do not repair

The second The building has a small amount of deformation, but the building
stability and improvement function are not affected. Postpone repair

The third The building has more obvious damage and still has an improvement
function, but timely repairs are needed. Repair

The fourth The building is seriously damaged or has obvious defects and has
lost or will lose its improvement function. Repair

Unevaluated The building is under repair, under renovation, or being
commissioned within the jurisdiction.

Notes: buildings that are flooded, covered, or have fulfilled their designed functions no longer require maintenance
and, therefore, are not involved in evaluation and categorization.

According to Bocchini (2011) [20], bridge maintenance strategies can be categorized
into preventive maintenance (PM), essential maintenance (EM), and required maintenance
(RM). A comparison of the information suggests that the maintenance strategy adopted
by Changjiang Waterway Bureau for repairing individual buildings conforms to the EM
strategy, as depicted in Figure 2. Resolutely implementing this strategy can effectively
prevent the occurrence of the fourth category’s technical conditions.
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Figure 2. Essential maintenance (EM) schematic diagram (C(t) represents a certain risk index).

2.2. Data Set

The technical condition evaluation results of nearly 500 improvement buildings along
the Yangtze River trunk waterway over the past five years have been gathered, sorted,
and compiled into a dataset for further analysis and research in this article. The dataset
includes 11 jurisdictional units except for FLD, WZB, and NJB, with evaluation results
covering 2017–2022 and classified into the first, second, third, fourth, and unevaluated
categories. No building was classified into the fourth category over the past 5 years. FLD,
WZB, and NJB construction buildings required no maintenance due to water depth and
geographical reasons. The evaluation results for the upper and middle reaches of the
Yangtze River in 2017 were missing and not included in the statistics. Figures 3 and 4,
respectively, display the technical condition category based on jurisdictional regions and
over different time periods.
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Figure 3. Technical condition categories of the Yangtze River trunk waterway according to jurisdiction
area statistics (2021).
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Figure 4. Technical condition categories of the Yangtze River trunk channel according to yearly
statistics (total for the upper, middle, and lower reaches).

Buildings evaluated as the third category or below require repair, incurring mainte-
nance costs. Thus, their predicted results are more instructive for the management. Using
the network-level assessment of the third category buildings as an example, the calculation
and discussion of the maintenance prediction model are conducted.

3. Methods
3.1. Network-Level Assessment Framework

The infrastructure structure and performance within the region have certain corre-
lations and continuities. Specifically, buildings under the same jurisdiction tend to show
similar degradation patterns in similar environmental factors (such as hydrological en-
vironment, geographical location, navigational guarantee, etc.). In addition, the design
specifications, construction standards, and quality of buildings in the same region also
tend to converge [25]. Based on this, this paper proposes a network-level assessment
framework shown in Figure 5, which consists of data collection, maintenance prediction,
and maintenance decision modules.
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The data collection module is mainly responsible for filtering and organizing the
historical condition categories of improvement buildings within the jurisdiction area to
form a reasonable and effective dataset. The dataset includes three attributes: jurisdiction
area, time, and risk level. These are detailed in Section 2.2.

The maintenance prediction module primarily performs data standardization, model
calculation, and error testing with the purpose of predicting future maintenance quantities
for regional buildings. Were there multiple models to choose from, the module would
comprehensively evaluate the model performance and test results to select the best model.

The maintenance decision module converts the final prediction results into the basis
for maintenance budgeting and optimizes the overall allocation plan for future funds, thus
assisting the management department in maintenance decision making.

3.2. Data Standardization

The main purpose of data standardization is to eliminate the differences in quantity
between different time periods and regions, making it easier to fit uniformly. The tech-
nical condition categorization parameters of the buildings are represented by “category
proportion”, and the calculation formula is as follows:

Category proportion = number of statistical samples of this type/total number of statistical samples × 100% (1)

Two points should be noted here: First, the number of “unevaluated” buildings is
artificially controlled, mainly related to the maintenance and construction progress, and
has nothing to do with the natural state, which will cause interference with the statistical
results. Therefore, it should be excluded. Second, the standardized dataset must be divided
into the calculation and testing sets. The time-series sample data from 2017 to 2021 are used
for model calculation (or fitting) and performance evaluation. The data in 2022 are used for
model testing to verify the accuracy and generalization ability of the model.

To ensure prediction accuracy, the range division of the prediction sample set should be
as small as possible. Meanwhile, the number of samples per sample set should be over 25–50
to ensure statistical reliability. According to the statistics in Table 1, the number of buildings
meets the requirements for all jurisdictions except CQB. In practice, the maintenance of
improvement buildings is carried out on a jurisdiction basis. Therefore, the sample set was
divided according to jurisdictions to provide statistics and statistically standardizes on the
technical condition categories of improvement buildings in each jurisdiction.

3.3. Prediction Models

The dataset contains small temporal samples covering only 4–5 historical years of
improvement building category data within the jurisdiction. Considering the data char-
acteristics and application scenarios, complex machine learning methods such as neural
networks, genetic algorithms, and support vector machines do not apply, while simpler
predictive methods such as moving average analysis and regression analysis are more
appropriate. According to an in-depth analysis and complexity assessment of the problem,
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this study identifies three potential prediction models: moving average, linear regression,
and quadratic regression. The next step involves testing the predictive performance of these
three models based on actual data and determining which model to employ for practical
forecasting purposes.

(1) Jurisdiction moving average (JMA)

This method is derived from moving average analysis, a classical time-series analysis
method that calculates the average value of data over a certain time period by gradually
moving through the temporal domain. It can better reflect the trends and changes in the
time-series [26]. The construction planning of the Yangtze River waterway is divided by
decades, and the jurisdictional waterway status can be assumed to be relatively stable
within each decade and will not undergo significant changes. Therefore, the moving
average method is suitable for analyzing and predicting the building status.

First, the moving average method must be adjusted based on the data characteris-
tics. For the dataset classifying the technical conditions of buildings in the Yangtze River
trunk waterway, geographical parameters should be included in addition to the temporal
parameters to form a two-parameter moving average method for network-level assess-
ment and prediction. Furthermore, the excessively small number of sequential samples
in the dataset necessitates further temporal division. Therefore, it can be simplified into a
single-parameter moving average method, i.e., the jurisdiction moving average method.

The specific procedure is as follows: first, conduct a statistical division of jurisdictional
areas (already completed during data standardization, with a moving window size of
approximately 25–30 samples measured per unit of building sample); then, gradually
calculate the time-series sample averages for each jurisdiction. The calculation formula is
as follows:

y = ∑n
i=1 xi

/
n (2)

where y represents the dependent variable of the predictive model, i.e., the proportion of
buildings requiring maintenance within a jurisdiction in the upcoming year, xi represents
the time-series sample for a specific jurisdiction, and n represents the size of the time-
series sample.

To calculate the possible range of fluctuations in the predicted results, confidence
intervals are constructed using t-distribution critical values [27]:

xi ± tα/2· s/√n (3)

where xi is the sample mean, s is the sample standard deviation, n is the sample size, and
tα/2 represents the two-tailed critical value associated with the confidence interval and
freedom degrees, which can be found in the t-distribution table. Here, α is set to 0.05, the
confidence interval is 95%, and the freedom degrees are n− 1.

The standard deviation of the time-series sample set is also the root mean square error
(RMSE) of the calculation results, and the calculation formula is shown in Equation (6).

(2) Linear regression (LR)

Linear regression is commonly used to identify the linear relationship between the
dependent and independent variables. The fundamental idea is establishing a linear
equation to predict the dependent variable while minimizing prediction errors [28]. The
equation takes the following form:

y = α + βx (4)

where y is the dependent variable, x is the independent variable, and α and β are con-
stants representing the intercept and slope, which are obtained through the least squares
method [27] based on historical data.
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(3) Quadratic curve regression (QCR)

When the time-series sample exhibits significant fluctuations, leading to a large sample
standard deviation and, consequently, larger expected deviations, a simple linear fit may
not effectively describe the data. In such cases, introducing a quadratic term into the model
can better fit the data and capture the curved relationship, which is known as quadratic
curve regression [28]. The equation takes the following form:

y = ax2 + bx − c (5)

where a, b, and c represent the coefficients of the quadratic, linear, and constant terms,
respectively. These coefficients are determined through the least squares method based on
historical data.

After obtaining the fitting parameters, future-year proportions for a specific type of
building are calculated using Formulas (3)–(5).

3.4. Error Test

After model calculation, it is essential to evaluate its performance and conduct model
testing to recommend the final predictive model. In this study, a comprehensive comparison
of three models is conducted through error tests, where the calculation error and final result
error are considered. The considered error parameters include the root mean square error
(RMSE) and the coefficient of determination (R2) for the calculation results, as well as the
mean absolute error (MAE), mean square error (MSE), and significance level (p-value) for
the test results.

RMSE and R2 are used to assess the model’s explanatory power. A smaller RMSE
value indicates a better fit or calculation performance. R2 ranges between 0 and 1, with
values closer to 1 indicating better explanatory power of the model. MAE and MSE, on the
other hand, are used to evaluate the model’s prediction accuracy and generalization ability.
Smaller values for both metrics indicate better predictive performance. The formulas are
as follows:

RMSE =
√

∑n
i=1(yi − ŷi)

2/n (6)

R2 = 1−
[
∑n

i=1(yi − ŷi)
2/∑n

i=1(yi − yi)
2
]

(7)

MAE = ∑m
j=1

∣∣yj − ŷj
∣∣/m (8)

MSE = ∑m
j=1

(
yj − ŷj

)2/m (9)

where yi represents the actual values of the calculation sample, ŷi represents the corre-
sponding calculated values, yi represents the mean of the calculation sample, and n is
the size of the calculation sample. yj represents the actual values of the test sample, ŷj
represents the corresponding predicted values, and m is the size of the test sample.

The p-value is used to test the significance of differences between the predicted results
ŷj and the actual values yj, indicating the reliability of the model. Calculation is performed
using paired t-tests [27], and the significance criterion is set at p < 0.05.

3.5. Calculation of Future Maintenance Quantity

The projected number of buildings of a certain category within the jurisdiction in the
coming year is calculated using the following equation:

Projected number of a category = projected category proportion × number of samples in the jurisdiction (10)
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4. Results
4.1. Results of Data Standardization

Based on the original dataset and Equation (1), the proportions of the third category
buildings in each jurisdiction’s sample set are calculated separately. To eliminate the
interference of temporarily unassessed buildings on the overall proportion, only the sum
of the first–third-category buildings is calculated. The percentages are then converted to
decimals. The jurisdiction sample sets are uniformly referred to by the abbreviations of the
governing units, and the results are shown in Table 3. The data for 2022 in the table are
specifically used for model testing.

Table 3. The standardization sample set of the third category buildings in each jurisdiction along the
Yangtze River trunk waterway.

YBB LZB CQB YCB JZD YYD WHB JJD WHD ZJD SHD

Proportion in 2017 0.022 0.000 0.000
Proportion in 2018 0.125 0.095 0.143 0.000 0.026 0.102 0.042 0.044 0.040 0.000
Proportion in 2019 0.083 0.070 0.077 0.000 0.026 0.037 0.024 0.059 0.016 0.000
Proportion in 2020 0.083 0.091 0.071 0.031 0.026 0.019 0.043 0.026 0.013 0.082 0.000
Proportion in 2021 0.077 0.068 0.200 0.031 0.000 0.036 0.043 0.000 0.000 0.102 0.000

Proportion in 2022 0.040 0.044 0.182 0.000 0.000 0.070 0.022 0.000 0.000 0.102 0.000
Total quantity in 2022 25 45 11 31 77 57 45 38 68 49 41

Notes: Blank cells indicate the lack of basic information for the year and jurisdiction to calculate category
proportion. The last row lists the total quantities of the first to third category buildings within the jurisdiction
in 2022.

4.2. Model Calculation and Test Results

Firstly, the data for each jurisdiction from 2017 to 2021 in Table 3 are input into
Formulas (2)–(5) to calculate the model coefficients for JMA, LR, and QCR. Then, Formulas
(6) and (7) are used to calculate the model error parameters RMSE and R2. Finally, the
JMA, LR, and QCR models are utilized to predict the maintenance proportion values for
buildings in each jurisdiction in 2022. The results are all listed in Tables 4–6. Please note that
historical data for Zhenjiang consist of only two points, and historical data for Shanghai
are all 0, making it impossible to fit them with QCR. Particularly, due to the impossibility
of negative values for the proportion and quantity of building categories, any calculated
negative values should automatically be set to zero.

Table 4. JMA model coefficients, error parameters, and predicted proportion (2022).

Jurisdiction Historical Mean RMSE Predicted Proportion 95% Confidence Interval

YBB 0.092 0.022 0.092 0.092 ± 0.035
LZB 0.081 0.014 0.081 0.081 ± 0.022
CQB 0.123 0.061 0.123 0.123 ± 0.097
YCB 0.016 0.018 0.016 0.016 ± 0.029
JZD 0.019 0.013 0.019 0.019 ± 0.021
YYD 0.049 0.037 0.049 0.049 ± 0.058
WHB 0.038 0.009 0.038 0.038 ± 0.015

JJD 0.030 0.022 0.030 0.030 ± 0.028
WHD 0.014 0.016 0.014 0.014 ± 0.020
ZJD 0.092 0.014 0.092 0.092 ± 0.130
SHD 0.000 0.000 0.000 0.000 ± 0.000
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Table 5. LR model coefficients, error parameters, and predicted proportion (2022).

Jurisdiction α β RMSE R2 Predicted Proportion

YBB −0.014 29.220 0.010 0.709 0.056
LZB −0.006 12.204 0.010 0.305 0.066
CQB 0.017 −33.388 0.049 0.124 0.164
YCB 0.013 −25.228 0.007 0.800 0.047
JZD −0.008 15.896 0.007 0.610 0.000
YYD −0.022 43.508 0.021 0.576 −0.005
WHB 0.002 −4.914 0.008 0.116 0.044

JJD −0.006 12.469 0.018 0.188 0.012
WHD −0.003 5.468 0.014 0.068 0.006
ZJD 0.020 −41.143 0.000 1.000 0.122
SHD 0.000 0.000 0.000 0.000

Note: Historical data for SHD are all 0, making it impossible to calculate R2.

Table 6. QCR model coefficients, error parameters, and predicted proportion (2022).

Jurisdiction a b c RMSE R2 Predicted Proportion

YBB 0.009 −35.615 35,976.470 0.005 0.921 0.100
LZB 0.001 −2.776 2809.339 0.010 0.308 0.069
CQB 0.049 −196.385 198,283.400 0.008 0.976 0.407
YCB 0.000 0.013 −25.228 0.007 0.800 0.047
JZD −0.006 25.538 −25,779.100 0.003 0.926 −0.032
YYD 0.021 −83.325 84,159.560 0.001 0.998 0.098
WHB 0.004 −17.442 17,610.040 0.006 0.405 0.066

JJD −0.010 41.796 −42,186.300 0.005 0.930 −0.061
WHD −0.006 24.437 −24,666.100 0.010 0.546 −0.037

4.3. Comprehensive Evaluation of the Model

To comprehensively evaluate the three models, their error parameters are calculated.
First, the average values of RMSE and R2 from Tables 4–6 are calculated. Next, the pre-
dicted proportions (Tables 4–6) and the actual proportions (Table 3) for 2022 are input into
Formulas (8) and (9) to calculate MAE and MSE. Finally, paired t-tests are conducted on the
test results to obtain p-values. All results are listed in Table 7.

Table 7. Summary of error parameters for the JMA, LR, and QCR models.

Model (RMSE) − (R2) − MAE MSE p-Value

JMA 0.021 0.025 0.001 0.658
LR 0.013 0.450 0.022 0.001 0.740

QCR 0.006 0.757 0.062 0.007 0.372

Note: The symbol − represents the statistical average of the error parameters. The R2 of the JMA model cannot be
calculated.

Results from the analysis of RMSE and R2 reflect the goodness of fit for the models,
with smaller values indicating a better fit. Table 7 proves that the models’ goodness-of-fit
ranks as follows: QCR > LR > JMA. The MAE and MSE from the test results directly
indicate the predictive accuracy and generalization ability of the models, with smaller
values indicating more accurate predictions. The results show that the errors of the JMA
and LR models are quite close, with LR having slightly smaller errors, while the QCR model
has significantly larger errors. The t-test results indicate that the p-values of all three models
are greater than 0.05, suggesting that the differences are not statistically significant. This
implies that the differences between predicted and actual values may be due to random
factors rather than model issues. Notably, the p-values for the JMA and LR models are
much higher than those of the QCR model, indicating relatively reliable predictive results.

The larger RMSE and lower R2 in the models are likely due to the simplicity of the
models and the small sample size, which can lead to larger random errors. However,
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this should not directly discredit the usability of the models. The more complex models
may have improved the goodness of fit but could lead to overfitting and reduced model
generalization ability. For practical engineering applications, ease of operation, accuracy of
the final results, and generalization ability are clearly more important than goodness of fit.

Overall, although QCR shows higher goodness of fit, the results exhibit significant
errors, indicating lower predictive accuracy and generalization ability. Therefore, QCR is
not recommended. On the other hand, JMA and LR, despite having lower goodness of fit,
demonstrate fewer errors in the results, suggesting higher predictive accuracy and general-
ization ability. As a result, JMA and LR are recommended as the final predictive models.
The difference in predictive accuracy between the two models is not substantial, and the
choice between them can be based on practical considerations in engineering applications.

4.4. The Final Result of the Number of Future Repairs in Each Jurisdiction

Combining the total counts for 2022 (Table 3), the predicted proportions for the
JMA and LR models (Tables 4 and 5) are input into Equation (10) to calculate the final
maintenance quantities for the waterway improvement buildings in various jurisdictions
along the Yangtze River trunk waterway for 2022 (Figure 6).
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Figure 6. The final predicted quantity and the actual measured quantity of improvement buildings
in need of maintenance in each jurisdiction for 2022. (The error bars in the figure represent the
confidence interval of the JMA model, and in cases where the calculated quantity of buildings is
negative, the values have been automatically adjusted to zero.)

Figure 6 displays the final results predicted by the models and the actual maintenance
quantities for 2022. Except for LZB, the actual counts are within the confidence intervals of
the JMA predictions. The large error bar range for ZJD is related to the small size of the
time-series sample set, which contains only two data points. The small sample size leads to
a small freedom degree for the t-distribution, resulting in a large critical value (12.706) and,
hence, a large boundary for the confidence interval. Thus, a small sample size can reduce
the predictive accuracy of the model, and it is advisable to have a sample size of at least
four or more for better results.

The final results suggest that except for the significant difference between the LR
model’s prediction and the actual values in YYD, the predictions for other jurisdictions are
relatively close to the actual values. The JMA model provides accurate predictions and has
confidence intervals encompassing almost all the actual measurements, thus increasing the
credibility of the final results. Therefore, the JMA model’s predictive performance appears
to be ideal.

5. Comparison and Discussion
5.1. The Advantages, Disadvantages, and Applicability of the Proposed Technology

The existing maintenance decision-making process is formulated based on assessing
the technical conditions of waterway improvement buildings for the current year. In con-
trast, the network-level assessment framework proposed in this study involves forecasting
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maintenance quantities for the future year in advance. Subsequently, maintenance funds
for different regions are allocated ahead of time based on these predictions, optimizing
the maintenance decision-making process. Therefore, this proposed framework is more
forward-thinking and efficient than the existing approach. The Network-level Evaluation
Prediction Model (NEP) proposed in this paper was compared with the efficiency of known
existing technologies, and each characteristic was summarized and listed in Table 8. The
existing technologies included the methods used in the Technical Code of Inland Waterway
Maintenance [24] (TCIWM), the AHP-Improved CRITIC Combination Weighting Optimiza-
tion Model [14] (AHP-ICRITIC), the Fuzzy Bayesian Network Model [16] (FBN), and the
SVM Predicting Model [11] (SVMP).

Table 8. Comparison of characteristics of proposed in this paper and known existing technologies.

Features NEP TCIWM AHP-ICRITIC FBN SVMP

Multicriteria
Attribute

Comprehensive
Qualitative

Comprehensive
Qualitative

Comprehensive
Quantitative

Comprehensive
Quantitative Single Quantitative

Characteristic of
Indicator Weight

Historical
Assessment Data

Based

Subjective Experience
Based

Subjective and
Objective Integration

Based

Trial Calculation
Based

Time Status of
Evaluation Objects Future Present Present Present Future

Number of
Evaluation Objects

Overall Buildings in
the Jurisdiction Area Single Building Single Building Single Building Riverbank Building

Group
Sample Size
Requirement Low Low High Low High

The Method’s
Understandability

and Operability

Simple and Easy to
Understand

Operational
Complexity Rather Complicated Rather Complicated Rather Complicated

The Method’s
Reliability Theoretically Reliable Practically Reliable Theoretically Reliable Theoretically Reliable Theoretically Reliable

Maintenance
Decision-making

Timing
Ahead of Time Lagging Lagging Lagging Ahead of Time

From the table, it can be intuitively seen that the proposed technology has a higher
overall efficiency compared to the known existing technologies. This means that this tech-
nology can more accurately predict the maintenance needs of buildings, thereby improving
the efficiency of remedial work.

The network-level assessment predictive model proposed in this paper is straight-
forward, easy to understand, and does not require a large sample. It has demonstrated
sufficient reliability, making it highly suitable for wide application in practical engineering.
The model is particularly well-suited for small sample predictions. However, the prediction
accuracy is still related to the size of the time-series sample. In real-world applications,
new evaluation data can be continuously added to the sample set, allowing for ongoing
refinement of model parameters and improving prediction accuracy over time.

The premise for applying this model is based on the assumption that the waterway
conditions within the jurisdictional areas remain relatively stable with minimal changes
over the preceding years. Therefore, this model is well-suited for predicting waterway
improvement building maintenance status of the upcoming year and less suitable for sce-
narios with a significantly longer period. Similarly, the model does not apply to situations
with a sudden and dramatic change in waterway conditions within the jurisdictional areas.
Such changes may result from events like the construction of dams upstream, landslides
affecting flow rates, flow velocities, water levels, riverbed alterations, or severe struc-
tural damage and deformations of buildings due to human activities. In such cases, a
reevaluation of the structural stability of buildings, risk factors, and the extent of changes
in waterway elements should be conducted through further simulation experiments or
theoretical analyses.

Additionally, it is essential to note that the predictive accuracy of the proposed model
is limited. Therefore, it should be utilized as a reference for optimizing regional waterway
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infrastructure maintenance strategies but should not be applied for individual building
maintenance assessments. In practical applications, a comprehensive maintenance decision-
making and assessment process should consider not only the model’s predictive outcomes
but also various other relevant factors.

5.2. Further Discussion on the Research Results

Based on the final results presented in this paper, the JMA model demonstrates the best
predictive performance. Conducting network-level assessments of improvement buildings
on a jurisdictional basis is reasonable and aligns with practical management needs. The
research results can provide a scientific basis for setting maintenance budgets for waterway
improvement buildings and offer ideas for inland waterway management and maintenance.
The proposed prediction method applies to not only the Yangtze River trunk waterway but
also other inland waterways, which is of great practical significance.

The theoretical contribution of this study mainly revolves around the improvement of
the network-level evaluation framework for optimizing maintenance decisions of inland
waterway infrastructure. This is an important extension and new application, as most
previous research was limited to road traffic and other related fields. As a result, this
study enriches the literature on predictive maintenance models for infrastructure and paves
the way for future research, promoting a theoretical understanding of water transport
infrastructure management.

From a management perspective, this study provides insights into the optimal al-
location of limited maintenance funds through predictive models. The proposed model
provides a tool for a quick evaluation of overall risk, which may significantly improve
management decision making and infrastructure maintenance practices. By comparing
different models, this study also offers clear guidelines on the choice of predictive models,
where the jurisdiction moving average (JMA) model was identified as the most ideal due
to its larger confidence interval.

At the policy level, this study provides important insights for the improvement,
management, and budgetary decision making for waterway infrastructures. By applying
network-level evaluation, this study recommends a resource allocation approach that
considers the condition of inland waterway construction technology. Decision makers can
use the insights from this study to develop sound and efficient infrastructure maintenance
policies, optimize budget allocation, and ultimately promote the sustainable development
of the water transport industry.

6. Conclusions

This study applies the concept of network-level evaluation innovatively to waterway
transportation infrastructure and proposes an optimal maintenance predictive model. The
results show that, although the QCR model has a high fitting degree, its accuracy and gen-
eralization ability are not high, and therefore it is not recommended. In contrast, the MAJ
and LR models have higher prediction accuracy and generalization ability, especially the
MAJ model, which has the best performance. Using historical inspection data to predict the
future risk status of canal remediation buildings is reasonable and feasible. This provides a
new research idea for the management of the Yangtze River main channel and also lays the
foundation for further research in network-level assessment of waterway transportation
infrastructure. In the future, more detailed data will be collected to enhance predictive
accuracy. Additionally, incorporating soft computing techniques such as Markov models,
random fields, rough sets, and neural networks into network-level assessments will enable
condition predictions over longer periods. Furthermore, this research will expand to the
minimization of overall maintenance costs and the maximization of network performance
indicators, which will involve ongoing improvements to the technical framework and
predictive models for network-level assessments of waterway improvement buildings.
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