
Citation: Wen, Q.; Zhang, L.;

Chen, Y.; Su, Y.; Yu, J.; Chen, P.;

Zheng, T. Novel Applications of Silk

Proteins Based on Their Interactions

with Metal Ions. Sustainability 2023,

15, 16053. https://doi.org/10.3390/

su152216053

Academic Editor: Asterios Bakolas

Received: 9 October 2023

Revised: 6 November 2023

Accepted: 13 November 2023

Published: 17 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Novel Applications of Silk Proteins Based on Their Interactions
with Metal Ions
Qingmei Wen 1,†, Lei Zhang 2,† , Yilu Chen 3, Yi Su 4, Jingmou Yu 2 , Pu Chen 2,* and Tao Zheng 1,*

1 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
wenqm@ms.giec.ac.cn

2 Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo,
Waterloo, ON N2L 3G1, Canada; l78zhang@uwaterloo.ca (L.Z.); j532yu@uwaterloo.ca (J.Y.)

3 Jiangsu Ecogreen Biotechnology Institute, Nanjing 211100, China; helloyilu@foxmail.com
4 Zhejiang Ecogreen Ecological Technology Co., Ltd., Huzhou 313000, China; suyi@ecogreen.tech
* Correspondence: p4chen@uwaterloo.ca (P.C.); zhengtao@ms.giec.ac.cn (T.Z.)
† These authors contributed equally to this work.

Abstract: Silk secreted by Bombyx mori L. silkworm has become one of the most important bioma-
terials, due to its excellent biocompatibility, controllable biodegradability, superior processability,
and unique mechanical properties. Silk fibroin and sericin, as the two components of silk, contain
abundant polar functional groups, and thus can bind metal ions through electrostatic interaction
and chelation. Based on this binding, silk proteins not only can be used to fabricate ecofriendly
and efficient adsorbents to remove heavy metals from waterbodies, but also can synthesize metal
nanostructures (nanoparticles or nanoclusters) to form silk/metal composites with amazing optical or
electrochemical characteristics. This binding also can be manipulated to optimize silk’s performance.
This review focuses on discussing and summarizing advances in the use of silk fibroin and sericin for
heavy metal ion-contaminated water remediation, biosensing materials, and electrochemical materi-
als from the perspective of the interaction between silk proteins and metal ions. The performance
enhancement of silk using metal ions is also analyzed. Moreover, the silk proteins’ interactions with
metal ions and related structural features that contribute to the above sustainable applications are
illustrated to lay a theoretical foundation. This review will favor the expansion of the applications of
silk in both the traditional textile field and new biomaterials.

Keywords: silk protein; silk peptide; metal ion; mechanical property; heavy metal-contaminated
water remediation; biosensing; electrochemical

1. Introduction

The silk spun by Bombyx mori L. silkworms has been used as a textile material in China
for nearly four thousand years [1,2]. The pristine silk fiber is composed of a core of silk pro-
tein, silk fibroin (SF), and an outer layer of silk protein, silk sericin. The sericin wraps the SF.
SF is obtained from a degumming process to remove the sericin and is the component used
for textiles, while sericin is usually discarded as waste [3]. Today, the use of silk proteins
has expanded from the textile field to many new fields, including environment remediation,
bioengineering, and intelligent electronics, due to their outstanding mechanical properties,
biocompatibility, biodegradability, and processibility [4,5].

The fabrics made with SF are lightweight, and feature air permeability and a charming
luster [6]. Nevertheless, with the increase in silk fabrics’ use in both the commodity textile
world and high-tech fields, and the change in human aesthetic conceptions, silk is gradually
unable to meet new needs in aspects of mechanical properties, color fastness, and flame
retardancy, which promote researchers to modify the properties of silk [7]. Therefore, silk
is used in combination with other functional materials, or its morphology or components
are changed [8–11]. These investigations hope to enhance the mechanical properties, flame
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retardancy, and color fastness of silk fabrics, and at the same time, maintain some intrinsic
properties, like the appealing luster, to cater to new application scenarios.

Regarding the optimization of silk’s mechanical properties, intrinsic and extrinsic
technologies have been used by researchers [12,13]. The intrinsic method means modifying
the genetic sequences of silkworms since silk’s properties highly depend on the amino acid
coding sequences and conformation [14,15]. Generally, genetic modification is complicated
and very expensive. In contrast, the extrinsic method involving the in vivo change of
physiological and biochemical environment and in vitro surface modification is simpler
and more economical. Accumulating research has reported that the change of a single
metal ion content and the whole metal ion environment can impart desirable mechanical
properties to silk proteins through inducing conformation transition, which will offer a
wider application for silk proteins in the traditional textile field at least [16,17].

Silk is known to be very popular in high-quality home products, like clothing, bedding,
sofas, and curtains, but its fire risk must be kept as low as possible because the combustion
of silk close to the skin will cause severe burns. The modification of silk’s flame retardancy
has become one of the focuses of research [18,19]. The traditional flame-retardant agents
are halogenated compounds, organophosphorus compounds, nitrogen-containing com-
pounds, phosphorus–nitrogen synergistic compounds, and zirconium and titanium metal
complexes [18,20]. Unfortunately, these agents have problems with toxicity, environmental
persistence, and bioaccumulation [21–23]. Therefore, the development of environmentally
friendly and sustainable flame retardancy methods is necessary. The research found that
metal salts could hinder the thermal decomposition of polymers during combustion and
metal chelates favored the formation of char [18,24]. Considering that silk proteins contain
abundant carboxyl, amino, hydroxyl, and amide groups, which can chelate metal ions well,
the flame-retardant effect of metal ions on silk fabrics has been investigated [19,25]. The
use of metal ions may be an environmentally sound and efficient method to augment the
flame retardancy of silk fabrics and a detailed summary can shed light on further study.

According to previous reports, approximately 12% of used chemical dyes enter the
sewage effluent, and 20% of this enters nature from the treated sewage effluent [26]. The
accumulation of synthetic dyes, mordants, and finishing materials from the textile industry
will pose a huge threat to the environment, demonstrating the need to find environmentally
sound methods to improve the color fastness of silk. Due to their stable binding to silk,
metal ions are found to facilitate the color fastness of silk fibers, and many studies have
been conducted to explore this, which may substantially reduce the discharge of synthetic
dyes and mordants and offer a new ideal for the dyeing process of silk fibers [27–29].

Apart from the traditional fabric industry, silk has been used in environment remedi-
ation as an adsorbent to remove heavy metal ions from contaminated water [30]. Heavy
metal pollution in waterbodies has been considered a serious problem because it causes
profound harm to the ecosystem and human health due to the high toxicity and persistence
of natural degradation [31]. For instance, Cr6+ can cause epigastric pain, nausea, and vom-
iting [32], and prolonged exposure to Cr6+ can cause lung cancer [33]. The conventional
approaches for the removal of heavy metal from waterbodies primarily involve precipita-
tion by chemical agents, redox reactions, adsorption using activated carbon, electrochemical
treatment, ion exchange using resins, solvent extraction, and evaporation [34]. Among
them, adsorption is very popular because it has the advantages of high efficiency, easy
operation, and wide sources. Due to the contaminated water that remains to be processed
containing not only heavy metals, often with low concentration, but also light metal ions,
often with high concentration, selective and focused adsorption with high efficiency is
challenging. Meanwhile, structural integrity, ion desorption, and no secondary pollution
are required. These requirements render ecofriendly and economical adsorbents well
warranted [35]. Silk proteins adsorb heavy metal ions through chelation and electrostatic
interactions. SF or sericin are often made into films, beads, and particles, or combined with
other ecofriendly adsorbent materials using a mild process outlined in studies on their
adsorption performances [3,36,37]. The silk-based composite adsorbents not only exhibit
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better adsorption efficiency compared to silk, but also maintain the same characteristics as
silk, including selective adsorption, durability, and biodegradability [36,38]. This indicates
that silk-based composite adsorbents have a great potential for practical application in the
treatment of heavy metal ion-contaminated water.

Besides environmental protection and restoration, the biodegradability and tight
adsorption of metal ions of silk proteins also open up new applications for them in biosens-
ing. In recent years, metal nanoparticles (NPs) and nanoclusters (NCs) have occupied
researchers’ attention in biosensing owing to their simple and green synthesis, unique prop-
erties, and cell viability [39–41]. Among these metal nanostructures, noble nanostructures
are more prominent owing to their special optical properties, hierarchical structure, and
catalytic properties [42]. Gold nanostructures can be obtained through simple approaches
owing to their stability in aqueous solutions. Nevertheless, other metal nanostructures, in-
cluding silver nanostructures, are relatively active in aqueous solutions, for instance, silver
NPs usually exist as colloids in aqueous solutions [43], and thus, their applications are limited
because their optical properties are highly dependent on the size and morphologies [44]. If
silver NPs are synthesized in aqueous solutions, stabilizers and redundant processes are
required, which also will change the properties of silver NPs [45]. Finding proper solid
support where silver ions and other metal ions can be reduced to zero-valent atoms in
situ in mild conditions is overwhelmingly difficult. Fortunately, researchers have found
that SF is a good template for silver and gold NPs because the tyrosine of SF has reduced
reducibility [46–48]. Taking the silver ion as an example, under ultraviolet (UV) light, the
phenolic hydroxyl of the tyrosine side chain is oxidized to a carbonyl group, while the
silver ion is reduced to a silver atom. Using biocompatible SF as a template and/or a
component to fabricate metal nanostructures with specific properties on optics and surface
chemistry in situ makes the fabrication more ecofriendly and simpler as well as expands the
application to in vivo micro monitors and smart consumer electronics for the observation
of food quality and environment [49–52].

Another novel field of application for silk proteins, based on their interaction with
metal ions, is electrochemical materials, including energy-storage materials for the prepa-
ration of micro batteries to power implantable devices and carbon-based electrocatalytic
composite materials for the catalysis of hydrogen evolution reactions (HERs), oxygen
evolution reactions (OERs), and oxygen reduction reactions (ORRs) [53,54]. Transient im-
plantable medical bionics offer great possibilities for intelligent controlled release of drugs
and tissue regeneration, like wounding healing [55]. Nevertheless, this technology suffers
from power systems with controlled biodegradation. Silk proteins, as natural proteins, are a
promising material to fabricate implantable micro energy-storage units for bionics because
they have tunable biodegradation, minimal immunogenic response to the human body,
and can entrap metal ions and active molecules for power supply. Owing to chelation and
electrostatic interactions, metal ions can be uniformly deposited on SF-based templates or
two-dimensional (2D) and three-dimensional (3D) porous nanostructures. This advantage
is also favorable for the fabrication of catalysts, which promote the nucleation of metal
NPs on the carboxyl and hydroxyl of SF. Additionally, silk proteins have a high content
of nitrogen, and thus other nitrogen sources are no longer needed when preparing N
self-doping carbon [56]. The silk-based electrocatalysts are inexpensive, efficient, and stable
for HERs and OERs. It has been found that the obtained carbon catalyst exhibited a unique
hierarchical porous structure with pores of varying size, exposing more implantation sites
for catalytic active metals [57–59].

Based on the above introduction to the effects of metal ions on silk’s properties and
the emerging application of silk/metal composites, the review aims to elucidate the opti-
mization of silk properties and the expansion of applications based on its interaction with
metal ions. The novel applications include heavy metal-contaminated water remediation,
silk-based biosensing materials, and silk-based electrochemical materials. The interactions
of silk proteins with metal ions, and their properties that contribute to the above novel
applications, are also clarified to give a theoretical foundation.
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2. Interaction of Silk Proteins with Metal Ions and the Factors Influencing the Interaction
2.1. Amino Acid Composition

Bombyx mori L. silk is composed of SF and sericin, featuring an elliptical cross-section
and a diameter of approximately 30 µm (Figure 1A). The SF contains two SF fibers, each of
which exhibits a triangular or semi-elliptical shape, with a diameter of roughly 10 µm. In
silk, SF comprises 70–80%, while silk sericin accounts for about 20–30% [3,49,60].
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Figure 1. (A) Silk components. The silk cocoon is made of silk fibers spun by silkworms. The silk fiber
consists of SF and sericin. (B) Schematic of H-chain. H-chain has four different domains: crystalline
domain, amorphous domain, N-terminal, and C-terminal. H-chain and L-chain are connected by
a disulfide bond at the H-chain’s C-terminal. (C) Amino acid sequence of the crystalline domain.
It includes several repetitive polypeptide segments, mainly including GAGAGS, GAGAGY (or
GAGAGVGY), and GAGAGSGAAS.

The SF is a macromolecular and fibrous protein comprising three elementary units: a fi-
broin heavy chain (H-chain), a fibroin light chain (L-chain), and a glycoprotein
(P25) [61–63]. The H-chain consists of roughly 5200 amino acid residues, including
glycine (45.9%), alanine (30.3%), serine (5.3%), valine (1.8%), and 15 other amino acids. It is
composed of four different domains: crystalline domain, amorphous domain, N-terminal,
and C-terminal [64,65]. The crystalline domain primarily consists of several repetitive
polypeptide segments, of which two hexapeptides (Gly-Ala-Gly-Ala-Gly-Ser (GAGAGS)
and Gly-Ala-Gly-Ala-Gly-Tyr (GAGAGY)) account for approximately 70%, simplifying
the amino acid sequence of the crystalline domain (Figure 1B,C) [66,67]. The crystalline
domain and amorphous domain alternate within the H-chain. The L-chain has no repetitive
polypeptide segments and is predominantly composed of alanine and aspartic acid. The
H-chain and L-chain are connected by a disulfide bond between Cys-c20 (the cysteine
residue located at the 20th position from the C-terminal of the H-chain) and Cys-172 of the
L-chain [68]. The bond is crucial for fibroin’s normal secretion from the posterior silk gland.
Without it, the secretion of SF will be impeded [69,70]. The dominant crystal structure of
natural SF constitutes Silk I and Silk II [71,72]. The Silk II is an antiparallel β-sheet structure
and is a stable crystal structure due to the powerful hydrogen bond between neighboring
peptide blocks, which imparts excellent mechanical performances such as high tensile
strength and toughness to SF [71,72]. Like SF, sericin is also a macromolecular protein.
However, it is globular and usually discarded during the silk degumming process [73,74].
It envelopes SF like glue, cementing two SF fibers together into SF, and facilitating the
flow of SF in silkworms [75,76]. Silk sericin is generally believed to constitute 18 amino
acids, among which the two most abundant amino acids are aspartic acid and serine, which
account for approximately 33.4% and 16.7%, respectively [77,78].
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The amino acid composition of SF and sericin set the basis for the interaction of silk
proteins with metal ions. For one thing, the oxygen atom of carboxyl groups and the nitrogen
atom of amino groups in amino acids contain lone pairs of electrons. After dehydration
condensation, the oxygen atom and nitrogen atom in amide groups can coordinate with metal
ions. In addition, the terminal carboxyl groups, terminal amino groups, and some groups in
the side chains of amino acid residues (like the hydroxyl of sericin [79,80]) can also adsorb
metal ions through coordination. Furthermore, silk proteins possess amphoteric behavior.
When the pH of a solution exceeds its isoelectric point (3.6–5.2 [81,82]), it releases protons,
becoming negatively charged, and therefore it can bind with metal ions electrostatically.

2.2. Interaction of Silk Proteins with Metal Ions

The bond between animal proteins and metal ions deeply affects the function and
application of animal proteins. The interaction of silk proteins with metal ions includes
electrostatic interaction and chelation [34,35,83–85]. The electrostatic interaction is generally
the ionic interaction between the negatively charged functional groups of silk proteins
and positively charged metal ions. The silk proteins possess abundant polar functional
groups with a negative charge, which include -COOH, -NH2, -OH, -CO-NH-, -CO-, and
-S-S- [86,87]. These negatively charged functional groups provide binding sites for metal
ions. In addition, these polar functional groups contain atoms with lone pairs of electrons,
including O and N [54,88,89]. These atoms are prone to chelate with electron-deficient metal
ions, forming coordinate bonds. The electrostatic interaction and chelation impart a strong
affinity for metal ions to silk proteins. The preferential interactions of an SF peptide and
two artificial peptides (RLWRLLWRLWRRLWRLLR (C6M1) and RLLRLLLRLWRRLLRLLR
(C6)) with Cu2+ than anthocyanin and the resulting protective effect on anthocyanin set
excellent examples [90–92].

The formation of silk/metal composites usually results from the combined effect of
these two interactions, which can be demonstrated with the following examples. In an
ultrafiltration experiment using sericin biopolymer, the removal efficiencies of five metal
ions (Pb2+, Co2+, Ni2+, Cu2+, and Zn2+) increased, and their permeate fluxes decreased with
increasing sericin dose at neutral pH before reaching a plateau [83]. This was attributed
to the higher availability of anionic reactive sites and more atoms containing lone pairs of
electrons with increasing sericin dose, leading to more metal ions forming complexes with
sericin. The chelation reaction between divalent metal ions and poly dentate ligands (PDLs)
of sericin (S), such as NH2-, -S-S-, and -COOH, can be written as Equation (1). Furthermore,
this study found that -NH2 was very effective in promoting metal ion binding to sericin and
served as an example for illustrating chelation (Figure 2A). Stable sericin/metal complexes
were formed due to abundant active amino groups chelating with metal ions. The structure
of the active amino groups changed with pH: -NH2 tended to be deprotonated at basic pH,
making sericin negatively charged, while it tended to be protonated at an acidic pH, making
sericin positively charged. In addition, each bivalent metal ion chelated with four -NH2.
This illustration of sericin’s charge is consistent with a study in which silk microparticles
were used to adsorb Cr6+ in aqueous solutions [93]. The study found that the net charge
of sericin was positive at pH 1–2. The reason was that the isoelectric pH of sericin was
approximately 4.0 due to carrying more acidic amino acid residues, for example, glutamate
acid and aspartic acid, than basic amino acid residues [82,94]. The dominant existing
forms of Cr6+ were H2CrO4, HCrO4

−, and Cr2O4
2− at pH below 1, 2–6, and above 6,

respectively [95]. At pH 1–2, owing to the electrostatic interaction of the negative metal ions
with the positively charged sericin, sericin microparticles adsorbed Cr6+ effectively and the
adsorption capacity exhibited a downward trend as pH increased from 1 to 5. Note that the
study reflects that although sericin still interacted with metal ions due to a combination
of electrostatic interaction and chelation, the charge of the substance participating in the
binding and the binding site could be different and varied with reaction parameters, such as
pH and the properties of metal ions. Another study also demonstrated that the interaction
between sericin and metal ions was dominated by chelation and electrostatic interaction
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between sericin’s active amino groups and metal ions (Figure 2B) [96]. Due to the stronger
chelation and electrostatic interaction between sericin and metal ions, metal ions in aqueous
solutions first interacted with sericin and then with anthocyanin, making anthocyanin a
suitable indicator for the saturation state of adsorption for the filter membrane. Due to the
formation of coordinate bonds, the adsorption using silk proteins was mainly chemical and
follows a pseudo-second-order kinetic model [93,97–99].
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Figure 2. (A) Sericin/metal complex between metal ions and sericin’s active amino groups.
Adapted with permission from ref. [83]. Copyright 2014, Elsevier. (B) Binding between
sericin/anthocyanin (SC) nanocomplex and Zn2+ and Al3+. Due to anthocyanin’s different color
changes after chelating with different metal ions, anthocyanin is a suitable indicator for the saturation
state of adsorption for the filter membrane. Adapted with permission from ref. [96]. Copyright 2022,
The Royal Society of Chemistry. (C) Potential protonation and deprotonation processes at acidic and
alkaline pH of sericin. Both protonation and deprotonation are assumed to occur at active amino
groups. Adapted with permission from ref. [83]. Copyright 2014, Elsevier.

Metal-Sericin Complexation:

Pb2+/Co2+/Ni2+/Cu2+/Zn2+(aq) + n[PDL(S)]2−(aq)→ [Pb/Co/Ni/Cu/Zn-PDL(S)n](aq) (1)

where PDL is short for poly dentate ligand, and S is short for sericin.

2.3. Factors Influencing the Interaction of Silk Proteins with Metal Ions

Several factors influence the interaction of silk proteins with metal ions, such as pH,
contact time [93], temperature [34,97], and metal ion properties [97,100–102] (Figure 3).

pH plays a crucial role in the chemical formula (partially due to pronation and depro-
tonation (Figure 2C) and the surface charges of sericin and metal ions. Therefore, pH is the
main influencing factor for the adsorption of metal ions by sericin [93,103]. The adsorption
capability is a function of contact time, which can be employed to determine the adsorption
kinetic model. Throughout the adsorption process, the adsorption capability of a sericin-based
adsorbent typically exhibits a rapid increase, followed by a gradual increase before reaching
a plateau. The plateau signifies that the adsorption of metal ions is saturated because active
sites are no longer available in the adsorbent materials [93]. The equilibrium time is defined as
the duration of the adsorption process, while the maximum or saturated adsorption capacity
refers to the amount of adsorbed metal ions. In practical applications, contact time affects the



Sustainability 2023, 15, 16053 7 of 34

cost-efficiency of adsorbents for metal ions. Temperature is another critical factor influenc-
ing the interaction mechanism between metal ions and silk proteins. The adsorption can be
classified as either endothermic or exothermic, based on the variation of metal ion adsorption
capacity with temperature. If the capacity increases with rising temperature, the adsorption
is endothermic, and vice versa. The binding-free energy for silk proteins to different metal
ions primarily pertains to the properties of metal ions, including charge-accepting ability, ionic
radius, and valence state. The electrostatic interaction between the negatively charged ligands
in silk proteins and metal ions, as well as the charge–dipole interaction between metal ions
and noncharged ligands in silk proteins, is stronger when metal ions carry a higher net charge.
For groups IA and IIA, a larger ionic radius results in a smaller charge density, endowing ions
with lower electronegativity and subsequently reducing their affinity to silk proteins. However,
this rule does not apply to groups IB and IIB due to significant relativistic effects [104]. For
groups IB and IIB, although the ion with a larger radius has a smaller charge density, the
relativistic effect leads to a strong stabilization of the vacuum 6s orbital, which enhances the
charge-accepting ability and thus its interaction with negatively charged ligands. For instance,
Hg2+ and Au+ had a stronger charge-accepting ability than Zn2+ and Ag+ that belong to the
same groups in the periodic table, respectively. When two metal ions have similar valence
states and radii, the one with a stronger charge-accepting capability demonstrates a greater
affinity to silk proteins and forms a more stable silk protein/metal complex than the other, for
which the interactions of sericin with Mg2+ and Zn2+ set a good example [104].
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3. Favorable Properties of Silk Proteins for Application Expansion
3.1. Biocompatibility

The use of pristine silk-based biomaterials in surgeries or in vivo studies will likely trig-
ger an inflammatory response, allergy, and immunogenicity [106]. However, SF, obtained
by completely removing the sericin layer from pristine silk using the degumming process,
causes a minimal immunogenic reaction, which lays the foundation for their increasing
applications in biomaterials [107–109]. In a study, SF was used as a bridging agent to self-
assemble 2D MXene nanosheets into a continuous wave-shaped lamellar macrostructure,
which endowed the obtained SF/Ti3C2Tx MXene films with good biocompatibility [110].
Results showed that these films had a good viability (99.5% ± 0.8% after 144 h) for human
skin fibroblast-HSAS cells in a cytotoxicity test, and therefore were safe for subcutaneous
implantation. Similarly, SF was used to enhance the biocompatibility and biodegradability
of the designed multifunctional biocomposite scaffold in another study [111]. Results
showed that the obtained SF, cellulose, and β-cyclodextrin-based hydrogel modified by
magnetic copper-doped cobalt ferrite (CuCoFe2O4) had a cell viability of 84.74% after
three days and 80.55% after seven days in an MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-
phenytetrazoliumromide) assay using Hu02 cells, and there was no significant difference
in statistical analysis between it and untreated cells. Its hemolytic effect was also low
(below 3%). Therefore, this hydrogel had good biocompatibility.

The previous comparative tests between pristine silk and sericin-free silk speculated
that it was sericin that triggered the immunoreaction [112–114]. However, sericin by itself
has been observed to cause minimal immune responses [115,116]. It can promote the mi-
gration of fibroblast at a concentration of 100 µg/mL in vitro scratch assays, shortening the
wound length, and ameliorates the re-epithelialization of a burned surface and its complete
healing in a clinical study, without any infection or severe immune reaction [117]. Sericin
has almost no adverse effects on the viability of NCM460 cells (94.8%) at a concentration
of 100 µg/mL after 48 h co-incubation and the encapsulation by it can greatly increase
the cell viability of caffeic acid [118]. Furthermore, a study demonstrated the similarity of
immunogenicity between SF and sericin because after being implanted subcutaneously into
ten Sprague-Dawley rats for nearly five months, the pristine silk and SF did not induce any
infection or other anomalies, the surgical wounds healed well, and a mass of connective
tissue wrapped the implants [119]. The immune reaction reported in previous studies may
pertain to sericin’s dose and molecular weight because the collagen–SF–sericin scaffolds
show no evident inhibitory effect on the proliferation, attachment, and spreading of fibrob-
last cells, and low-molecular-weight sericin at a concentration of 1 mg/mL shows great cell
viability for fibroblast and macrophages and human adipose stem cells [115,120,121].

3.2. Biodegradability

Biodegradability is another important property that enables new uses for silk proteins.
Silk is degraded mainly by enzymatic activity. Since it is composed of amino acids, silk
proteins will be degraded into soluble peptides and free amino acids, which do not cause
environmental pressure and can be absorbed in in vivo studies. The enzymes used for the
degradation of silk proteins involve various proteases (like protease XIV, chymotrypsin,
carboxylase, and lysozyme [122]). The protease acts on the surface of silk materials, reduces
the hydrophilic segments in the structure, and progressively removes the β-sheet structure
in silk proteins. The degradation by protease XIV occurs on both the crystalline and
amorphous domains [123,124].

The degradation of silk proteins is affected by numerous factors, including temperature,
processing method, structure, porosity, SF concentration, etc. [123,125–129]. In a study, after
21 days of degradation, as the SF content increased from 21.3% to 44.8%, the weight loss of
porous SF/cellulose nanofibril sponges increased from 15.4% to 19.1% in phosphate-buffered
saline (PBS) solution and from 29.3% to 44.0% in protease XIV solution [130]. In another
study, the degradation rate of a silk I scaffold was different after different post-treatments
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including ethanol and high-temperature/high-pressure, which might have resulted from the
crystallinity variation and the formation of a few β-sheet crystals [131].

The degradation rate of silk proteins is often evaluated via mass loss, mechanical
properties, morphology variation, and molecular weight [124,132–134]. In a study, the mass
of milled silk particles reduced rapidly to 40%, the volume median particle size decreased
from 6.4 to 1.8 µm after 12 days, and the morphological changes in silk particles and fibers
were analyzed using SEM, based on which, a model reflecting the degradation mechanism
of milled silk particles was established [124]. Another study reported that the native and
PEGylated silk NPs had a mass loss of 60% and 40%, respectively, of the original mass,
increased size, and reduced amorphous content in the silk secondary structure [135].

3.3. Mechanical Property and Processability

Bombyx mori L. silk exhibits an ultimate tensile strength of 740 MPa and a modulus of
10 GPa. Its breaking strain is 20% and the Young’s modulus is 4.53–57.11 GPa [136,137]. The
mechanical property of SF differs from Bombyx mori L. silk slightly due to the removal of
sericin. The comparison among pristine silk, SF, and several other natural polymers demon-
strates that pristine silk and SF possess higher tensile strengths [136,138,139]. To obtain the
desired mechanical properties for better applications, silk proteins can be modified using
different methods, including processing technologies, solvent composition, temperature,
and molecular weight [140–143]. Specifically, as the molecular weight of sericin increased,
the gel strength increased, and the bending strength and bending strain of the sericin
sponge remarkably increased in both dry and wet states [143]. Another study found that
the SF hydrogel made based on the conformation transition induced by hexafluoroiso-
propanol and deionized water, in turn, possessed a Young’s modulus of 6.5 ± 0.2 MPa, ten
to hundred times higher than that of the conventional hydrogel (0.01–1 MPa) [144,145].

Besides biocompatibility and biodegradability, the unique physical and chemical
structures impart silk proteins with versatile processability [146,147]. Extensive literature
indicates that silk can be processed into various shapes, including films, hydrogels, sponges,
microparticles, and microneedles [5,148–152]. A smart microneedle for glucose-responsive
insulin delivery was created by SF and phenylboronic acid/acrylamide. After optimization,
the needle region was made by SF and phenylboronic acid/acrylamide, and the base layer
was made by SF. This microneedle enabled insulin release in a way corresponding to the
insulin’s change [5]. Another study prepared SF NPs with a diameter of 229–2286 nm
and load efficiency of 22–40% using emulsification. The smaller NPs (with a diameter of
about 200 nm) showed a shorter plasma circulation time and greater maximum plasma
concentration than the larger NPs (with a diameter of about 800 nm).

4. Application Based on the Interaction between Silk Proteins and Metal Ions

The interaction of silk proteins with metal ions and their outstanding properties not
only enhances their applications in the conventional textile industry, but also ushers in novel
applications in environmental remediation, bioengineering, and electrochemistry [18,153,154].

4.1. Performance Optimization of Silk Fabric

Silk textiles have been used in China for nearly four thousand years, though they are
plagued with unsatisfactory mechanical properties and flammability [1,2]. To solve these
problems, much work has been carried out, finding the binding of metal ions with silk
proteins enabled the optimization of mechanical properties and the improvement of flame
retardancy and color fastness [19,25].

4.1.1. Mechanical Property Optimization

The silk fibers’ mechanical properties pertain to the metal ion environment in silk
glands, especially in the anterior gland. A study reported that the content of metal ions
in the anterior silk gland is higher than that in both the middle and posterior silk glands,
and a specific metal ion environment in the anterior silk gland is kept for the silk proteins’
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transport and conformational transition [155]. In another study, the silk fibers’ mechanical
properties were improved by genetically interrupting the ionic environment for silk forma-
tion (Figure 4A) [16]. As silks’ Ca2+ content decreased due to overexpressing endoplasmic
reticulum Ca2+-ATPase (an ion-transporting protein) in the anterior silk gland, more β-sheet
and α-helix structures were observed, and the silk fibers’ tenacity and extension increased
noticeably. The study was an in vivo demonstration of the relationship between metal ion
content and silk fibers’ mechanical properties.
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Figure 4. (A) Red fluorescence only detected in the anterior silk gland of BmCP231 (an anterior silk
gland-specific promoter) transgenic silkworm under a red fluorescent protein-excitation wavelength
light. Schematic of ion transportation from silks to gland cells, and a comparison of the stress-strain of
Over-NKA (red), Over-SERCA (green) and WT (blue) silk fibers (NKA and SERCA are the silkworm’s
Na+/K+-ATPase α subunit (BmNKAα) and endoplasmic reticulum Ca2+-ATPase, respectively, and
WT is wild-type). Adapted with permission from ref. [16]. Copyright 2015, American Chemical
Society. (B) Schematic illustration of the sonicating liquid metal in the alginate solution and the
liquid metal nanodroplets shelled in the alginate microgel. (C) Transmission electron microscopy
(TEM) image of the LM/NaAlg nanodroplets. (D) (d.1,d.2) Photographs of the mature larvae fed
with control diet and LM/NaAlg-2 diet, respectively. (d.3,d.4) SEM images showing the morphology
of the degummed silk fibers and the cocoons of the mature larvae fed with the control diet and
LM/NaAlg-2 diet, respectively. Adapted with permission from ref. [156]. Copyright 2022, Gao et al.

The silk fibers’ mechanical properties can be optimized through an in situ changing
the metal ion environment through feeding or injecting metal ions into silkworms. The
silk fibers spun by silkworms fed with Ca2+ and PO4

3− had more α-helix and random coil
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structures and fewer β-sheet structures, leading to higher fracture strength, elongation,
and toughness modulus [8]. The mechanical properties of silk fibers spun by silkworms
fed with liquid metal alginate-coated NPs (LM/NaAlg) were greatly improved, with a
breaking strength of 814 MPa and a breaking elongation of up to 70% (Figure 4B–D) [156].
Characterization results indicated that LM/NaAlg perfectly combined with the silk fibers
spun by these silkworms and LM/NaAlg hindered the conformation transition of SF
from the random coil and α-helix structure to the β-sheet structure by forming hydrogen
bonds between LM/NaAlg and SF. Moreover, silk fibers spun by silkworms that were
fed or injected with ethylenediaminetetraacetic acid (EDTA), a strong metal chelating
agent [157,158], in their fifth instar larvae exhibited a significant conformational transition
from β-sheet structure to β-turn structure and their strength, toughness, and Young’s
modulus decreased greatly [11].

Additionally, silk fibers notably shrunk and curled after being treated with neutral
calcium salts (e.g., CaCl2) at specific concentrations, leading to the development of elastic
silk materials [159,160]. The shrinkage and curling occur because Ca2+ chelates with fibroin
at the -OH of the serine side chain and the tyrosine side chain of SF macromolecular chains.
This coordination disrupts some hydrogen bonds and Van der Waals force between fibroin
peptide chains, causing fibroin protein molecules to rearrange, altering the orientation of
the original stretched fibroin macromolecular chain. These results indicate that silk fibers’
mechanical properties can be modified through in vivo changing the metal ion environment
and in vitro metal ion treatment.

4.1.2. Flame Retardancy Enhancement

The enhancement of the flame retardancy of silk fibers with metal ions, resulting in an
extended lifetime and reduced fire risk, has been demonstrated in many
investigations [18,156,161–163]. After being immersed in Fe3+, Al3+, and Ti4+ solutions, silk
fabrics had a suppressed smoke generation, an increased limiting oxygen index (LOI) with
increasing metal ions concentrations, and an increased char length with increasing washing
cycles, indicating that both fire retardancy and washing resistance were improved by metal
ions (Figure 5A) [18]. The inflated structure features of char residues were consistent with
the typical intumescent fire-retardant effect. Another reason is that the binding sites be-
tween metal ions and peptide chains are usually the carbonyl and amino of side chains near
specific amino acid residues, like tyrosine residues. This binding seizes the excitation energy
required for free carbonyl formation from tyrosine residues, thus preventing the breakage
of peptide chains. Further, silk fabrics treated with casein phosphopeptide-ferrous salt
(CPP-Fe2+) and casein phosphopeptide-titanium salt (CPP-Ti2+) exhibited a good, durable
flame-retardant capability, with an LOI of 27.8% and 28.0%, respectively, and a residual char
length of less 15 cm after 20 washes. In addition, the CPP-Fe2+ treated fabrics also exhibited
a brilliant yellow color and a good rubbing fastness (Figure 5B–D) [164]. Likewise, silk fab-
rics treated with three flavonoids (baicalin, quercetin, and rutin) and two metal ions (Fe2+

and Ti4+) possessed a good char-formation capacity, leading to a flame-retardant capacity
and smoke suppression, and antibacterial and antioxidant abilities [19]. Their color fastness
and rubbing fastness were enhanced with the mordanting treatments because coordination
bonds were formed among silk fibers, metal ions, and flavonoids. These performances
remained almost unchanged even after 20 washes. A further study of ref. [164] manifested
that silk fabrics treated with 20% tannic acid and 2 g/L ferrous salt exhibited excellent
flame retardant capability, antibacterial ability, and washing durability [25]. The fabric’s
LOI rose from 23.6% to 27.5%, the antibacterial rate rose from 22% to 95%, and the length
reduced from 30.0 cm to 11.2 cm. These performances remained almost the same as before
being washed even after 20 washes.
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4.1.3. Color Fastness Improvement

The improvement of the color fastness of silk fibers with metal ions is mainly due to the
chelation between silk proteins and metal ions. The coordinate bonds formed between the
polar functional groups (e.g., -NH2 and -OH) of silk proteins and metal ions can induce the
conformational transition of silk peptides [165], which can change the available combination
site between dyes and silk fibers (i.e., dye site). In addition, the conformational transition
from the random coil (Silk I) to β-sheet can create a relatively stable solution environment,
and thus enhance the combination between fibroin protein and dyes [166–168]. In a study, silk
fabrics were mordanted with two metallic mordants (SnCl4 and CuSO4) and three natural
mordants (tannic acid, pinecone, and lemon peel) and were dyed with the dye extracted from
spent coffee grounds [27]. Three mordanting methods were used, including pre-, meta-, and
post-mordanting. Results showed that metallic mordants led to higher color strength than
natural mordants, and the dyed silk fabrics with all mordants exhibited appropriate color
fastness to light and washing, especially under the post-mordanting method. Additionally, silk
fabrics, dyed with dopamine with the help of Fe3+ and sodium perborate oxidant, possessed
improved light fastness (Level 4) and an improved anti-UV property with a UV protection
factor greater than 30 and UVA < 4%. Its hydrophobicity and weft-breaking strength were
better than the pristine silk fabrics. Fe3+ acted as the catalyst of the oxidation polymerization of
dopamine and the bridge between dopamine and fibers [169].

In addition to the improvement of mechanical properties, flame retardancy, and color fast-
ness, binding with metal ions also can improve silk fabrics’ anti-UV, antibacterial, antioxidant
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properties, etc. [170–175]. For instance, in another study, multifunctional silk fabric was created
by coating polydopamine on the silk fabric’s surface and then treating the polydopamine-
coated fabric with FeSO4 [170]. The results showed that the Fe2+ treated silk fabric had a much
higher UV protection factor (38.77%) than untreated silk fabric (3.84%). Anti-infection and
osteogenesis are vital for successful bone defect repair. In a study, a synthetic bone grafting
material, polyetheretherketone (PEEK), was coated with the SP that contained CuO micro-
spheres and Ag nanoparticles to reduce inherent bioinertness [171]. Under a physiological
environment (pH 7.4), the SP released Cu2+ and Ag+, promoting the production of alkaline
phosphate, collagen, and NO and the Ca2+ deposition. An in vivo study showed the PEEK
that was coated with the SP containing CuO microspheres and Ag nanoparticles had the
largest new bone volume compared to uncoated PEEK and CuO-coated PEEK. To sum up,
metal ion treatment will impart novel applications to silk fabrics.

4.2. Heavy Metal-Contaminated Water Remediation

Due to the strong chelation between metal ions and silk proteins, and the biodegrad-
able and inexpensive nature of silk proteins, they can be employed to remove heavy metal
ions (like Cr6+ and Pb2+) from water [64]. The potential application of silk proteins in heavy
metal-contaminated water remediation has been widely studied (Table 1).

Table 1. Metal ions removal in aqueous solutions by employing silk protein-based biomaterials.

Precursor
Material

Biomaterial
Form Adsorbate Adsorption

Parameter Adsorption Property Ref.

Sericin,
copper
phosphate

Powder for
batch method
and film for
continuous
method

Pb2+,
Cd2+,
and
Hg2+

Sericin
concentration
(0.01, 0.1, and
1 mg/mL)

• Powders with 1 mg/L sericin reached saturate
adsorption within the least time;

• Adsorption capacity: 75.3% for Pb2+, 64.3% for Cd2+,
and 99.8% for Hg2+ with 1 mg/L sericin;

• High selectivity for Pb2+ (vs. Ca2+).

[105]

SF, cellulose
acetate (CA)

Nanofibrous
membrane Cu2+

CA content,
Cu2+

concentration,
and running
time

• Adsorption peaked at 22.8 mg/g with 20% CA;
• Adsorption rose sharply in 1 h and reached

equilibrium at ca. 2 h;
• Adsorption rose with Cu2+ concentration but the

rising rate declined gradually.

[34]

Sericin and
medium
molecular
weight
chitosan

Powder for
batch method

Cr6+ and
methyl
orange
dye

Initial adsorbate
concentration,
contact time,
pH, co-ion, and
ionic strength

• Adsorption capacity rose with increasing initial
adsorbate concentration, contact time, and
chitosan/sericin conjugate dosage, and declined
with increasing pH and ionic strength;

• No significant effect of the four anions.

[36]

Sericin and
kraft lignin Bead Cr6+

Blend ratio, pH,
initial Cr6+

concentration

• Adsorption capacity rose with increasing blend
ratio when the ratio was ≤50:50;

• Adsorption capacity peaked at 68.42 mg/g and
then declined with increasing pH, and rose with
increasing initial Cr6+ concentration
and temperature;

• Adsorption was controlled by
pseudo-second-order kinetic and Freundlich
isotherm was the best;

• Adsorption capability remained at 50–60 mg/g
during seven recycles.

[97]
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Table 1. Cont.

Precursor
Material

Biomaterial
Form Adsorbate Adsorption

Parameter Adsorption Property Ref.

Sericin Microparticle Cr6+ pH and contact
time

• Adsorption capacity peaked at pH 2 and then
declined with increasing pH;

• Adsorption rate rose rapidly and peaked for ca.
24 h and removal efficiency rose with increasing
sericin dosage;

• Adsorption was controlled by pseudo-second-order
kinetic and Brunauer–Emmett–Teller (BET) isotherm
was the best.

[93]

SF, chitosan,
and starch Film Cr6+

Contact time,
pH, adsorbent
dosage,

• Removal efficiency rose with increasing contact
time and adsorbent dosage, varied with pH, and
peaked at ca. 72% at pH 5.5;

• Adsorption was controlled by
pseudo-second-order kinetic, and Freundlich
isotherm was the best.

[176]

SF and wool
keratose
(WK)

Membrane Cu2+ -

• WK/SF blend membrane had a higher Cu2+

adsorption capability (2.88 µm/mg) than the other
three membranes;

• Removal efficiency remained at over 90% during
six cycles.

[177]

SF and wool
keratose Mat Cu2+ WK/SF blend

ratio and pH

• Adsorption capacity rose with increasing pH
(4.5–8.5);

• Blend ratio had no significant effect on the
adsorption ability.

[178]

SF Powder U6+ and
Th4+

pH, contact
time,
temperature

• The adsorption ability of U6+ rose with pH and
that of Th4+ peaked at pH 3;

• U6+ and Th4+ adsorption capacities reached the
equilibrium within 24 h;

• U6+ adsorption capacity at pH 6 declined with
temperature, but that of Th4+ at pH 3 rose
with temperature.

[179]

SF Powder Th4+

pH, initial Th4+

concentration,
SF dosage,
solution volume,
co-ion, retention
time, and
temperature

• Distribution coefficients and adsorption yield
peaked at 84.42% at pH 4 and rose with decreasing
initial Th4+ concentration, increasing SF dosage
and solution volume;

• Adsorption yield reached 69.41% in the first
seven minutes;

• Th4+ adsorption was reduced by Ce3+ and Fe3+

and competed with Sr2+ adsorption, and Langmuir
isotherm was the best.

[180]

SF and
nylon-6

Nanofiber
membrane Cu2+

pH, membrane
number, flow
rate, and initial
Cu2+

concentration

• Adsorption capacity peaked at pH 5, rose with
increasing membrane number, increasing initial
Cu2+ concentration before 30 ppm, and decreasing
flow rate;

• Adsorption capacity in the bath method was
higher than that in the continuous method.

[181]
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Table 1. Cont.

Precursor
Material

Biomaterial
Form Adsorbate Adsorption

Parameter Adsorption Property Ref.

Sericin and
anthocyanin Film (coating)

Zn2+,
Al3+,
and
Cd2+

Sericin dosage,
adsorbate
concentration,
contact time,
temperature,
and co-ion

• Sericin/anthocyanin (SC) composites and films
could indicate the saturation state of Zn2+ and
Al3+ adsorption;

• SC composites have metal ion selectivity but the
anti-interference stability needs to be improved;

• Zn2+ adsorption conformed to both
pseudo-first-order and pseudo-second-order
kinetics and Freundlich isotherm was the best.

[96]

A 3D flower-like hierarchical biohybrid structure was fabricated using sericin, copper
sulfate, and PBS (Figure 6A,B) [105]. The strong chelation of the amide backbone and sericin’s
polar side chains with metal ions led to kinetically controlled growth of the flower’s thin petals
in the early growth stage. The subsequent experiment found the fabricated biohybrid flowers
had a large BET surface area, and due to these results plus the surface polar functional groups
of sericin, the flowers exhibited superior adsorptions of Pb2+, Cd2+, and Hg2+ in both batch
filtration and continuous filtering process. In addition, the fabricated flower demonstrated
selective adsorption for Pb2+ over Ca2+, indicating the sericin-mediated flower compounds
were a promising adsorbent for water treatment. The silk fibroin/cellulose acetate (SF/CA)-
blend nanofibrous membrane was fabricated by an electrospinning approach and had a higher
affinity for Cu2+ than its components (Figure 6C,D) [34]. The obtained membrane constituted
randomly oriented ultrafine fibers with a diameter of 100–600 nm and displayed improved
anti-felting performance after treatment with 100% ethanol. The optimal fibroin content for
Cu2+ adsorption was 80%, leading to a maximum adsorption capability of 22.8 mg/g. This high
value manifested a synthetic effect between SF and CA during Cu2+ adsorption. Particularly, in
another study, SC nanocomposites were fabricated to visually demonstrate the degree of metal
ions adsorbed by sericin [96]. Anthocyanin is a natural pigment and its color changes when
interacting with certain metal ions [90,182]. Using Zn2+ and Al3+ as metal ion models, it was
observed that both the SC solution and the filter film coated with SC nanocomposites exhibited
a gradual change in color from pink to blue (Zn2+) and violet (Al3+) as the concentration of Zn2+

and Al3+ increased. The ultraviolet and visible (UV-Vis) adsorption of SC solution exhibited
a redshift with increasing metal ion concentration. The change in color of SC solutions and
their redshift of UV-Vis adsorption indicated that sericin reacted with metal ions first, followed
by anthocyanin once sericin was saturated. The visual color difference occurring at 100 mM
Zn2+ and 0.1 mM Al3+ suggested that SC nanocomposites reached saturation for Zn2+ or Al3+

adsorption at these concentrations. Furthermore, the adsorption capability of the filter film was
significantly improved by the SC nanocomposite coating, with an increased removal efficiency
from 22.22% to 93.16% for Zn2+ and from 10.46% to 53.97% for Al3+.

Apart from Pb2+, Cd2+, Hg2+, and Cu2+, Cr6+ is another representative toxic heavy
metal ion produced by chemical-intensive industries, and the adsorption capability of sericin-
based structures has been explored. For example, a chitosan/sericin conjugate demonstrated
maximum adsorption capabilities for Cr6+ and methyl orange dye up to 139 and 385 mg/g,
respectively, under specific operation conditions [36]. Cr6+ was likely immobilized by chi-
tosan/sericin conjugate through electrostatic interaction and reduced to Cr3+ (an oxidation
state of Cr with 100–1000 times less toxicity than Cr6+ [183]) during the adsorption process.
Furthermore, the adsorption capabilities were highly pH dependent. Similarly, sericin/lignin
particles prepared by coagulation exhibited a higher Cr6+ adsorption capability than sericin
particles alone [97]. The maximum adsorption capability occurred at a sericin-to-lignin ratio
of 50:50 (w/w) and followed the Freundlich isotherm. In addition, the recovery of >90% of
the adsorbed Cr6+ by sericin/lignin particles was achieved in a 1 M NaOH solution. The
adsorption–desorption process remained stable for over seven cycles, with a recycling effi-
ciency of 82%. Another sericin-based material, ethanol-precipitated silk sericin was prepared
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by the electrospinning approach and exhibited a higher Cr6+ adsorption capability than sericin
macroparticles [93]. The intra-particle diffusion model simulation indicated that the Cr6+

adsorption process roughly involved three stages: instantaneous external surface adsorption,
intraparticle diffusion, and near equilibrium.
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4.3. Silk-Based Biosensing Materials

The use of silk or its derivatives as templates for the synthesis of biosensing materi-
als (e.g., metal NCs) has recently gained increasing interest from researchers for several
reasons [46,184–188]. First, silk proteins share common features with often-used protein
or peptide templates, such as bovine serum albumin and transferrin [189]). These fea-
tures involve the possession of abundant functional groups (like -S-, -OH, and -COOH)
that can chelate with metal ions, endowing the proteins with an affinity for metal ions
and the ability to immobilize on supports [190]. Additionally, silk proteins contain tyro-
sine and tryptophan, which exhibit reducibility in strong alkaline environments and can reduce
metal ions to atoms [191]. Second, silk demonstrates excellent biocompatibility, controllable
biodegradability, and outstanding processability [192–194]. Third, as a natural protein fiber,
silk fibers are inexpensive compared to synthetic protein fibers and have a simple molecular
design [107,195,196]. The practicability of silk-based biosensing materials in biomedical and
non-biomedical fields has been widely studied.

4.3.1. Silk/Noble Metal Nanostructure Composites and In Vivo Micro Monitors

Silk-based biomaterials, consisting of silk proteins and other non-immunogenic mate-
rials, can be used for biolabeling, bioimage, and real-time, sensitive in vivo monitoring of
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analytes in body fluids to realize safer medical treatment and healthcare. Much attention
from medical academia has been paid to it [197].

Due to its distinctive optical properties, low cytotoxicity, and small size, the noble metal
NC has been a hot spot of research, and its synthesis with biocompatible silk as a template
has been studied recently [46,47,198]. For instance, luminescent gold silk was prepared using
an in situ method, wherein the silk’s surface was coated with luminescent AuNCs [198].
Compared with pristine silk, the gold silk possessed better optical properties, including long-
wavelength fluorescence (red), enhanced fluorescence stability (no photobleaching after 30-min
UV irradiation), an extended fluorescence lifetime (322 ns), and a larger quantum yield (8%).
Additionally, golden silk displayed better mechanical properties, an inhibitory effect on UV
light, and high biocompatibility. The X-ray photoelectron spectroscopy measurement revealed
that AuNCs combined with silk via Au-S bonds. These results indicated that silk coated with
luminescent AuNCs was a promising material for both the textile and biomedical industries,
including biosensing, bioimaging, cell adhesion, and tissue engineering. In another study, the
in situ growth of AgNCs on SF fibers modified by poly-acrylic acid (PAA) was realized [47].
The in situ synthesis, based on silk fibers, avoided the excessive surface modification and
reductant procedures of the synthesis based on bulk materials. Because PAA had abundant
carboxylic acid, the binding of Ag+ to the surface of SF fibers was achieved through the
exchange with H+. Upon exposure to UV light, silver ions were reduced to silver atoms.
The prepared SF/AgNCs were proved to be luminescent through UV-Vis adsorption and
fluorescent emission measurements. Its emission bond was approximately 550 nm, attributed
to Ag2–Ag8. Furthermore, the antimicrobial ability of SF/AgNCs against Staphylococcus aureus
and Escherichia coli was demonstrated. The results indicated that SF/AgNCs could be used for
biolabeling, specialized fabrics, biosensing, and antimicrobial materials. Similarly, the floriated
AgNCs were synthesized using SF fibers as a biotemplate, reductant, and support, at room
temperature [46]. The hierarchical morphology of SF fibers provided a large loading surface
area and highly uniform metal loading for AgNCs. This study manifested that the SF fiber is a
felicitous solid support for in situ synthesizing metal NCs via mild reactions.

In addition to synthesizing noble metal NCs with outstanding optical quality, the fabri-
cation of biosensors and bio-probes was realized for in vivo activity and analyte levels (like
biopotential [199], glucose [200], O2 [148], and antigens [201]), where the silk proteins serve
as substrates/superstrates, protective layers, and insulators. Some examples are detailed as
follows. A nontransient SF-based bio-interface was fabricated for directly recording various
in vivo electrical activity [199]. The study used water-stable SF as a substrate and superstrate to
support the electrode construct and was enabled by two key novel concepts: SILK-SEAL (a silk
sandwich sensor) and QUICK-SILK (a band-aid to ‘paste’ the silk devices onto tissue surfaces).
The obtained film devices achieved biopotential recordings from the peripheral nerve and the
cortex in a rodent stroke model, indicating that the silk sensors could be used as non-dissolvable
bio-interfaces in preclinical studies. A biocompatible, cost-effective, and chemically tunable
metal–insulator–metal resonator was designed for color filters and superabsorbers using SF
and Ag [202]. Results showed that the silk metal–insulator–metal resonator had comparable
transmission, adsorption, and quality factor performances to nanostructured plasmonic devices.
The absorptive features could be detected even through 1.95 mm thick biological tissue in
the first optical window in the tissues (700–900 nm), indicating that this silk resonator could
achieve highly sensitive, real-time, and in vivo monitoring for analytes in body fluid.

Further, detecting specific analytes in body fluids using biocompatible devices has been
investigated. A flexible biocompatible glucose biosensor chip was fabricated using natural SF as
substrate and biocompatible silicone rubber as an encapsulating material
(Figure 7A–C) [203]. The Pt working and counter electrodes of the sensor chip were fab-
ricated using thin-film technology, while its Ag/AgCl quasi-reference electrode was fabricated
using thick-film technology. The biocompatible glucose biosensor chip had a mean glucose
sensitivity of 0.24 ± 0.006 µA/mM in pure PBS, 0.26 ± 0.02 µA/mM in the PBS, to which
low-concentration ascorbic acid, noradrenaline, and adrenaline were subsequently spiked,
and 0.16 ± 0.01 µA/mM in pure Rigner’s solution (pH 7.4), indicating that the biosensor
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chip exhibited an acceptable sensitivity and great application potential in real blood sam-
ples. In another study, SF and a chromophore, Pd2+ tetramethacrylated benzoporphyrin
(PdBMAP), were used to synthesize a silk/chromophore composite to develop a practical
subcutaneous oxygen sensing platform (Figure 7D–G) [148]. The results showed that β-sheet
proteins formed a network through physical crosslink, entrapping and stabilizing PdBMAP.
In vivo experiments using three physical states (hyperoxia, normoxia, and hypoxia) proved that
the silk/chromophore composite films were suitable for real-time continuous oxygen sensing.
This study suggests that silk is an auspicious alternative as a host substrate in implantable and
physiological sensing. An aptasensor based on TiO2 NPs and an SF composite as the probe
oligonucleotide platform was fabricated for prostate-specific antigens [201]. The aptasensor
had a high selectivity for prostate-specific antigens over bovine serum and lysozyme, and
satisfactory reproducibility and stability. The response after it was stored in phosphate buffer
for seven days retained 94% of its initial response. The aptasensor detected the prostate-specific
antigen in serum real solutions successfully. Moreover, the carbonized silk/AuNPs patch for
sweat non-invasive urea detection was fabricated via two steps [204]: First, Au NPs were
deposited by heating, during which the tyrosine of silk as a self-reducing agent, and had a
conductivity in the range of semiconductivity (795 ± 54) × 10−6 S/cm. The silk/AuNPs patch
was then carbonized. When used as the working electrode of an electrochemical sensor for
sweat urea, the carbonized silk/AuNPs patch had a detection range of 0–100 mM with a limit
of 20 mM. When used as bioship laser desorption/ionization mass spectrometry (LDI-MS), the
silk/AuNPs patch had a detection limit of 8 mM, enabling us to distinguish between normal
individuals and kidney prone patients.
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Figure 7. Schematic exploded-view illustration of the construction of a flexible silk electrode array
for electroneurograms (A) and micro-electrocorticograms (B) measurements. (C) Photograph of a
two-channel silk electrode array deployed as a band-aid on the sciatic nerve of a rat. The diameter
is about 600 µm. Adapted with permission from ref. [203]. Copyright 2021, Elsevier. (D) Schematic
diagram of the continuous oxygen monitoring platform by the phosphorescent silk/chromophore com-
posite film. (E) Schematic outlining the silk/chromophore film production. (F) Implantation of the
silk/chromophore composite film on the back of the animal and its silk/chromophore composite film
after 3, 7, 14, and 28 days. (G) Integration of the film into the tissue after 7 days. Adapted with permission
from ref. [148]. Copyright 2022, Wiley-VCH GmbH.
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4.3.2. Silk/Base Metal Composite and Smart Environmental and Health Electronics

In addition to silk/noble metal nanoparticle composites and in vivo micro monitor for
biomedicine, silk/metal composites can also be used for physical and chemical detection.
Good flexibility enables the material to withdraw various deformations, such as bending,
which is vital for creating optoelectronic and biomimetic devices [205]. Silk/metal composites,
with excellent flexibility and optical and optoelectronic properties, have been used to develop
consumer electronics for food and environment quality monitoring and personal healthcare.

A highly flexible electronic textile sensor was fabricated using the functionalized silk
fiber coiled yarns from carbon nanotubes, Ag nanowires, and ionic liquid [EMIM]Tf2N
(Figure 8A–D) [206]. The fabricated textile had an extremely high sensitivity (1.23%/◦C)
and stability compared with other sensors in temperature sensing [207–209]. Based on
the capacitance change of each cross-point of two yarns, the pressure sensing function
of the sensor was achieved and very position-dependent, with a sensitivity of 0.136/kPa.
Furthermore, a special textile that could sense temperature and pressure with a position
precision of 1 mm2 was fabricated and successfully employed to produce intelligent gloves
with capabilities of sensing temperature and weight distributions. In one study, the SF-
capped copper NCs (SF/CuNCs) were synthesized using Cu(NO3)2·3H2O and SF [187].
The SF/CuNCs exhibited monodispersion and higher sensitivity and selectivity to S2− over
various metal ions, anions, and micromolecules. Their practicability as fluorescent nanosen-
sors for detecting S2− was demonstrated in tap and river water samples. SF/CuNCs had a
valence between 0 and +1, which confirmed SF served as a protective agent and a reducing
agent during synthesis and was consistent with previous studies [188,192]. Like the study
in [206], a noble metal Au NP as a functional component and silk as a substrate was used
for designing a wireless passive antenna (Figure 8E) [210]. The antenna was conformal
and could adhere to curved surfaces tightly. The antenna, with biodegradable and edible
components, was demonstrated as a sensor for food quality change by monitoring the
ripening process of apples and bananas and the spoilage process of cheese and milk.

Aside from metal ions, silk proteins can also combine with natural nonmetallic ma-
terials to form biosensing composites. For instance, silk protein/anthocyanin compos-
ites can be used to detect metal ions in aqueous solutions and show the saturation state
of metal ion adsorption by the composite [96,211–213]. This is because anthocyanin, a
natural water-soluble pigment, exhibits significant color changes upon interaction with
metal ions. Owing to the stronger interaction between silk proteins and metal ions com-
pared to anthocyanin, the silk protein component in the composite preferentially com-
bines with metal ions, thereby protecting the anthocyanin [73,90,96,214]. In one study,
sericin/anthocyanin nanocomposites were fabricated to enhance the physicochemical sta-
bility of anthocyanin [90]. The results showed that the retention ratio of anthocyanin in the
composite increased significantly, from 33% to 97.93%, in Cu2+ solution after 6 h incubation.
Another study showed that the sericin/anthocyanin solution and filter film exhibited a
gradual color change from pink to blue in response to varying Zn2+ concentrations, with
a visually discernable difference at 100 mM Zn2+. For Al3+, the color changed from pink
to purple, and the visually noticeable difference occurred at 0.1 mM Al3+ (Figure 2B) [96].
These studies manifest that sericin was an appropriate choice for fabricating biosafe and
effective metal ion detection instruments, with potential applications in chemical and
biological analysis.
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Figure 8. Schematic of the strategy for the fabrication of silk fibers-wrapped combo temperature–pressure
sensors: (A) Coiling supporting yarns by silkworm silk fibers. (B) Coating the silk fiber coiled yarns with
temperature or pressure sensing materials (Ag nanowires for pressure sensing, and the mixture of carbon
nanotube and an ionic liquid for temperature sensing) and coating the protection or dielectric layers on
the functional yarns/fibrous sensors. (C) Photographs of the smart gloves with the textile-based pressure
and temperature sensors at the ends of four fingers. (D) Schematic illustration and image of placing a cup
of hot water on the multimode sensing textile (scale bar = 5 mm) and the position-related 3D temperature
and pressure sensing: the temperature and pressure distributions of the cup on the combo sensing textile
in terms of the relative resistance and capacitance changes, respectively. Adapted with permission from
ref. [206]. Copyright 2019, Wiley-VCH GmbH. (E) Schematic of steps for rapid transfer of silk antennas
onto curved substrates. (1) Water vapor is applied to the back of non-crystalline functionalized silk films,
yielding (2) a functionalized film in which the back surface of the film has been partially melted. (3) This
melted surface is conformally applied to arbitrary surfaces, yielding (4) applied functional sensors on a
variety of surfaces. Adapted with permission from ref. [210]. Copyright 2012, Wiley-VCH GmbH.

4.4. Silk-Based Electrochemical Materials

Aside from biosensing use, silk/metal composites show an increasing application in
electrochemistry, especially in electrocatalysis and energy storage for power supply, owing
to the strong binding between silk proteins and metals and the outstanding properties of
silk materials mainly including good flexibility, degradability, and biocompatibility that
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imparts silk/metal composites with the properties of conductive materials and various
application forms [154,215].

4.4.1. Energy-Storage Materials for Power Supply

The interaction of silk proteins with metal ions endows them with excellent electrochemi-
cal and electroconductive properties. Accordingly, they are used to make micro energy-storing
devices to supply power to implantable devices, wearable smart electronics, etc. [216–218].

In silk-based energy storage devices, the degradable micro battery has captured the
most attention of researchers. As natural proteins with exceptional processibility, silk
proteins in these micro batteries are used as substrates, encapsulation coatings, insulating
spacers, or functional components of all-solid-state electrolytes and electrodes [219–222].
Specifically, a sandwich-structured garnet Li7La3Zr2O12 (LLZO) ceramic fabric composite
solid electrolyte (LLZO CF-CSE) was fabricated by using silk as a template (Figure 9A) [223].
The LLZO CF-CSE exhibited remarkable electrochemical stability (wide electrochemical
short window of 5.1 V vs. Li+/Li) and thermostability. The lithium metal battery prepared
using LLZO CF-CSE could stably run with a short circuit for 700 h at 50 ◦C. The all-
solid-state lithium battery Li|LLZO CF-CSE|LiFePO4 had high reversible capacity and
excellent cycle stability. Its specific capacity was 149.3 mAh/g after 100 cycles at 0.2 ◦C,
and 107.2 mAh/g after 500 cycles at 0.1 ◦C. Furthermore, silk proteins have been a popular
component for transient implantable energy devices [55,217]. For instance, a biodegradable
ion-conducting membrane was designed by immobilizing a biocompatible ionic liquid
(choline nitrate, [Ch][NO3]) in silk (Figure 9B,C) [55]. By using this membrane as an
electrolyte, a biodegradable thin-film Mg battery was fabricated, which used Au-SF as
its cathode and AZ31-SF as its anode, and was encapsulated by silk. Results showed
that the designed polymer electrolyte [SF-[Ch][NO3]] (1:3)] had an ionic conductivity of
3.4 Sm/cm and a two-day degradation profile. The encapsulated thin-film battery had a
capacity of 0.06 mAh/cm2 at a current density of 10 µA/cm2 and a degradation profile of
45 days. Additionally, the dendrite formation precludes the reversible cycle in lithium-ion
metal batteries [224,225]. However, a Ni/silk/Li anode, fabricated using a flexible Ni/silk
fiber and Li metals, could reduce the wanton formation of lithium dendrites by inducing
uniform Li deposition (Figure 9D) [226]. The flexible Ni/silk fiber was prepared using
the catalyzer Ni particles to graphitize silk fibers. The results showed that the Ni/silk/Li
anode exhibited better electrochemical performances than the silk-Li anode. It had a longer
lifespan of 800 h, an overpotential of 23.5 mV, and a high coulombic efficiency of 98.35% for
the half cells. These properties manifested that the Ni/silk/Li anode enabled the mitigation
of dendrite formation. The prevention of lithium dendrites by silk-based materials also has
been demonstrated in other studies [227–230].

In addition to micro batteries, the silk proteins also have been applied in flexible
supercapacitors [231–234]. In a study, silk textile is directly carbonized to make a con-
ductive free-standing substrate for preparing low-cost, flexible, tough, and up-scalable
supercapacitor electrodes [216]. The results showed that the prepared electrode’s areal ca-
pacitance was 362 mF/cm2, clearly greater than that of the MXene-based flexible electrodes.
The cyclic voltammogram (CV) test with up to 10,000 cycles demonstrated the prepared
electrodes also had outstanding stability. The CV curves of the supercapacitor made from
carbonized silk cloth and Ti3C2Tx changed a little under bending at 120◦, indicating the
Ti3C2Tx was tightly coated on carbonized silk cloth. Likewise, a hydrogen electrode was
created by stimulating the collagen fiber network and proteoglycan in cartilage using a
silk nanofiber network and polyvinyl alcohol [235]. The supercapacitor had the highest
capacitance (13.62 F/cm2) among the currently reported polyvinyl alcohol capacitors and
an energy density of 1.2098 mWh/cm2, owing to the effective connection between the
silk nanofiber network and carbon nanotubes. Overall, using silk-based materials imparts
higher capacitance and resilience to capacitors.
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electrolyte (LLZOCF–CSE). Adapted with permission from ref. [223]. Copyright 2022, Elsevier.
(B) Fabrication procedures and a digital image of a polymer electrolyte film (SF:[Ch][NO3], weight
ratio of 1:3) and schematic of an encapsulated battery with a silk pocket. (C) Optical images demon-
strating the biodegradation profile of an encapsulated battery (device size of 3.6 × 2.7 × 0.017 cm3) in
buffered protease solution at 37 ◦C. Adapted with permission from ref. [55]. Copyright 2017, Ameri-
can Chemical Society. (D) Scheme of Li plating process on the Ni/silk/Lithium anode. Adapted with
permission from ref. [226]. Copyright 2023, Wiley-VCH GmbH.

4.4.2. Carbon-Based Electrocatalytic Composites

Silk/metal composites with catalytic activity also have been studied [236,237]. The
advantages of SF for constructing catalytic components are attributed to its elemental
composition and molecular structure [238]. First, the SF molecule is rich in C, O, N, and S
atoms; accordingly, they can act as precursors for fabricating heteroatom-doped carbon,
especially N-doped carbon. Second, the SF’s amino acids have special spatial effects and
strong chelation with metal ions, which are beneficial to the formation of enhanced active
sites, smaller particle sizes, and an enhanced dispersity of active particles. Therefore, SF
molecules are superior catalyst carriers. Third, the SF’s structures facilitate the fabrication
of porous carbon nanomaterials, which have better geometry, high surface area, and
heat transfer properties, and then enhance the heat and electron transfers in catalysis.
Rapid and environmentally friendly synthesis of flower-like gold nanoparticles/reduced
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graphene oxide (Au NPs/RGO) composites was achieved using regenerated silk fibroin
(RSF) (Figure 10A) [239]. RSF was obtained by breaking the hydrogen bonds in SF and
dissolving it in water. RSF could be easily and tightly absorbed onto the RGO surface owing
to the formation of hydrogen bonds and π-π stacking between them. Meanwhile, it could
absorb metal NPs because -COOH and -NH2 groups provided binding sites for nucleation.
In other words. RSF served as an adhesive, connecting RGO and Au NPs to form flowerlike
Au NPs/RGO. The electrochemical experiment showed that the flower-like Au NPs/RGO
composites exhibited better catalytic performance for ORR than branched Au NPs/RGO
composites and spherical Au (I, II) NPs/RGO composites [239]. In contrast to using noble
metals, novel nitrogen (N) and trace iron (Fe) co-doped 3D porous carbon (NFex-C) was
synthesized as an excellent ORR catalyst from a salt-induced silk gel (Figure 10B) [240]. The
salt-induced silk gel spontaneously improved the porosity and boosted the ORR activity.
The cyclic voltammetry and linear sweep voltammetry tests showed that NFex-C had a
remarkably higher positive initial potential (0.274 V vs. Ag/AgCl) and half-wave potential
(E1/2) (0.095 V vs. Ag/AgCl) than commercial Pt/C catalysts. In the same year, 2D porous
carbon nanosheets with atomically-dispersed Fe–Nx–C active sites and very large specific
surface areas (about 2105 m2/g) were created through dissolving RSF in FeCl3 and ZnCl2
aqueous solution and thermal treatment (Figure 10C) [241]. The obtained silk-driven carbon
nanosheets demonstrated excellent electrochemical properties to ORR with a half-potential
of 0.853 V and outstanding stability with just 11 mV loss in E1/2 after 30,000 cycles, and also
good catalytic activity to OER. By contrast, nanoscale nickel-cobalt-iron (NiCoFe) alloys were
anchored in boron (B) and nitrogen (N) co-doped SF carbon aerogel to synthesize a specialized
OER electrocatalyst [242]. The optimized electrocatalyst (BN/CA-NiCoFe-600) possessed low
overpotential (321 mV at a current density of 10 mA/cm2), low Tafel slope (42 mV/dec),
and superior stability and durability. The electron and heat transfer were improved by
the SF aerogel. Other SF-derived carbon aerogels anchored with metal ions have been
created as electrocatalysts for OER [57], HER [57,236,243], and CO2-to-CO conversion [244].
The above research demonstrates the applicability of silk proteins as precursors to design
efficient and cost-effective electrochemical catalysts.
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5. Conclusions

As one of the most popular natural fibers, silk produced by the Bombyx mori L. silk-
worm, silk’s applications have been extended from traditional textiles to the environmental
protection field and advanced biomaterials. Silk is composed of SF and sericin. These two
silk proteins process many polar functional groups including carboxyl, hydroxyl, amino
group, and amide group, enabling strong adsorption of silk proteins to metal ions. Based
on this adsorption, plus the outstanding properties including biocompatibility, biodegrad-
ability, and processability, silk’s performance can not only be modified but also can be used
to protect the environment and can be combined with metal nanostructures to prepare
advanced biomaterials. Regarding performance optimization, silk’s mechanical perfor-
mance, flame retardancy, and color fastness can be enhanced through binding with some
metal ions, making silk meet today’s new expectations for textiles. For environmental
protection, SF and sericin can be used alone or combined with other natural or synthetic
polymers to fabricate environmentally sound and efficient adsorbent materials generally
in the form of film and particle. Concerning advanced biomaterial, silk proteins can be
combined with metal ions to form biosensing materials and electrocatalytic materials, and
during most of the combinations, the metal ions are reduced to zero-value metal atoms. In
biosensing materials, the silk/noble metal nanostructure composites can be used to produce
in vivo micro materials due to their biocompatibility, while silk/base metal composites are
promising for smart environmental and health consumer electronics. The electrochemical
materials include energy-storage materials to supply power to implantable devices and
carbon-based electrocatalytic composites. The review indicates that these novel applica-
tions of silk proteins, based on their interactions with metal ions, shed light on further
study of the property modification and the potential use in other fields of silk proteins and
similar natural polymers.
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Abbreviations

Au NPs/RGO gold nanoparticles/reduced graphene oxide
BET Brunauer–Emmett–Teller

BN/CA-NiCoFe-600
boron (B), nitrogen (N) co-doped SF carbon aerogel that was anchored
with nickel-cobalt-iron (NiCoFe) alloys

CA cellulose acetate
CPP casein phosphopeptide

CuCoFe2O4
SF, cellulose, and β-cyclodextrin-based hydrogel modified by magnetic
copper-doped cobalt ferrite

EDTA ethylenediaminetetraacetic acid
EDX energy dispersive X-ray spectroscopy
E1/2 half-wave potential
FE-SEM field emission scanning electron microscopy
Fe-SilkPNC porous carbon nanosheets with automatically-dispersed Fe-Nx-C
HER hydrogen evolution reaction
H-chain heavy chain
LDI-MS laser desorption/ionization mass spectrometry
LLZO CF–CSE Li7La3Zr2O12 ceramic fabric composite solid electrolyte
LM/NaAlg liquid metal alginate-coated NPs
LOI limiting oxygen index
L-chain light chain
MTT 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide
NC(s) nanocluster(s)
NFex-C nitrogen (N) and trace iron (Fe) co-doped 3D porous carbon
NP(s) nanoparticle(s)
OER oxygen evolution reaction
ORR oxygen reduction reaction
PAA poly-acrylic acid
PBS phosphate-buffered saline
PDL(s) poly dentate ligands
PdBMAP Pd2+ tetramethacrylated benzoporphyrin
PEEK polyetheretherketone
RGO reduced graphene oxide
RSF regenerated silk fibroin
S sericin
SC sericin/anthocyanin
SF silk fibroin
STEM scanning transmission electron microscopy
TEM transmission electron microscope
UV (A) ultraviolet (A)
UV-Vis ultraviolet and visible
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WK wool keratose
2D two-dimensional
3D three-dimensional
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