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Abstract: In this study, the author improved and modified g-C3N4 by doping it with the metals
Ag and Cu, which changed the photochemical properties of g-C3N4, narrowed the band gap, and
improved the photocatalytic performance regarding quantum efficiency. Organic hydrocarbons
such as 1,2-dichloroethane (DCE) are very stable prepared materials produced as intermediates to
obtain polyvinyl chloride, and the prepared photo-catalyst is an innovative method for extreme
decomposition of chlorinated hydrocarbons. However, some significant results were obtained using
different analysis techniques. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy
(FTIR) showed that the addition of Ag and Cu-NPS partially altered the structure of pure graphitic
carbon nitride (g-C3N4-Pure). Scanning electron microscopy (TEM) analysis revealed that the mor-
phological features of Ag-Cu/g-C3N4 contain quantum dots of Ag and Cu nanoparticles in addition
to 2d-g-C3N4. The better separation of the photo-generated charge carriers is attributed to better
photoactivity in the case of 0.3 g Ag-Cu/g-C3N4 with a reaction time of less than 30 min. Furthermore,
the Ag-Cu/g-C3N4 recycling experiment showed that the catalyst remained stable after three stages
of the pyrolysis experimental cycle. Another clear indicator of DCE degradation is the measurement
using the titration of the Cl ions released by the decomposition.

Keywords: 1,2-dichloroethane (DCE); photocatalytic degradation: g-C3N4; Ag-Cu/g-C3N4; waste
liquid; organic pollutants; photo-generated charge

1. Introduction

Photocatalytic strategies are complicated because many impartial influential parame-
ters, collectively with initial pollutant concentration, catalyst loading, pH, response time,
and dissolved oxygen, will impact the degradation of overall performance due to the tool’s
response [1]. DCE is one of the most critical chlorinated unstable natural compounds
and is extensively utilized in industries as solvent, dry cleaner, degreaser, and chemical
intermediate inside the manufacturing of artificial resins, plastics, and pharmaceuticals [2].
It is a synthetic chemical that not always located clearly inside the environment. It is a toxic,
unstable, flammable, colorless liquid with a chloroform-like odor [3]. Furthermore, it was
found to be a possible human carcinogen due to its conversion into chloro-cetaldehyde,
which is considered to have mutagenic properties and has been indexed as a concern. A
variety of methods, which include physical, chemical, and biological, have been studied
for DCE degradation [4–8]. Due to the high chemical stability and low biodegradability of
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DCE, advanced oxidation processes (AOPs) have recently received much attention [9,10].
To our knowledge, there are no reports of using Ag-Cu/g-C3N4 for the photocatalytic
degradation of organic wastes such as methyl orange, methyl blue, or bisphenol A. But,
Yongsheng Fu et al. used a Ag/g-C3N4 catalyst to degredate methyl orange (MO), methy-
lene blue (MB), and neutral dark yellow GL (NDY-GL) under visible light irradiation.
Photo-irradiation was carried out using a 500 W xenon lamp with UV cut-off filters (JB450)
to remove radiation below 420 nm completely and ensure illumination by visible light
only [11]. Among the various types of semiconductor photo-catalysts, TiO2 is the most
widely used in photocatalysis and has high photocatalytic efficiency for AgNP on the sur-
face of TiO2 P25. The obtained hybrid material shows a photocatalytic activity consisting of
the degradation of 45% of the MO after 150 min [12]. The photocatalytic activity (PCA) of
CuO NPs was evaluated via the photo-degradation of textile dye reactive red 120 (RR120)
and methyl orange (MO) under sunlight irradiation. The result depicts around 90 % and
95% decolorization efficiency at 60 min, respectively [13]. However, TiO2 has two main
problems: a limited photoabsorption range and low quantum efficiency, which limit the
practical applications of TiO2 [12–14]. Therefore, it remains difficult to search for a more
efficient photo-catalyst. Ag@g-C3N4 nanospheres degrade methyl blue in visible light with
an efficiency of 85%, 1.8 times higher than pure g-C3N4 [15]. The chemical composition of
g-C3N4 is generally nonstoichiometric and is often represented as C3N4 + xHy (0 < x < 0.6,
0 < y < 2) [16]. For simplicity, the family of graphitic carbon nitride with a C/N ratio
between 0.65 and 0.75 is called g-C3N4, although not precisely defined [17]. Owing to
the chemical stability and unique electronic band structure, the polymeric semiconductor
g-C3N4, as a low-cost, stable, and metal-free visible-light-active photo-catalyst, has been
widely used in water splitting, organic photosynthesis, and pollutant degradation [18–20].
However, g-C3N4 photo-catalysts synthesized using traditional thermal polycondensation
methods have small specific surface areas and wideband gaps; these defects severely sup-
press the photocatalytic activity [18,19]. g-C3N4 has a typical graphite layer structure, so the
nanostructured design can enlarge the specific surface area of g-C3N4 and increase the num-
ber of active sites. Research has shown that theoretical g-C3N4 nanosheets exhibit higher
specific surface area up to 2500 m2 g−1 [21]. The synthesis of g-C3N4 nanomaterials can
effectively overcome the disadvantages of bulk g-C3N4 materials, such as a small specific
surface area, low mass-transfer effects, and a high photo-generated carrier recombination
rate, to improve the photocatalytic efficiency [22]. The semiconductor coupling of g-C3N4
expands the visible light response range because of different band gaps between the semi-
conductor and g-C3N4. The heterojunction structure and close contact interface improved
the photocatalytic performance [23]. g-C3N4 has a band gap equivalent to 2.7–2.8 eV. This
band gap provides a flexible channel to achieve control of the HOMO (highest-occupied
molecular orbital) and the LUMO (lowest-unoccupied molecular orbital) [23]. g-C3N4 has
three forms: the s-triazine-bases hexagonal structure, the tri-s-triazine (heptazine)-based
structure, and the s-triazine-based orthorhombic structure [24]. Among the modification
methods, metal loading is an important method to improve the performance of g-C3N4.
In addition, the utility of metal/g-C3N4 composites is not restricted to photocatalysis;
however, it can be carried out to natural systems, biosensors, fungicides, and so on. There
have been detailed reports on the preparation and catalytic activity of g-C3N4, but few
reports on metal/g-C3N4 composites in particular. Herein, we summarize recent progress
in metal/g-C3N4 composites from synthetic methods to structures to applications [24,25].
Metals play an important role in enhancing the catalytic activity of g-C3N4. Its structure
contains nitrogen triangles with six long-pair electrons; this unique structure is available
for metal loading [26]. Therefore, metal loading is a proper method of designing new metal-
semiconductor composites and has also been employed to modify the electronic structure
of g-C3N4 [27,28]. The insertion of metal atoms effectively improves the photo-generated
carrier mobility of g-C3N4, narrows the band gap, and further expands the visible-light
response range [29]. Semiconductor photocatalysis was reported as a favorable strategy for
degrading organic contaminants because of their superior electronic structure, low cost, and
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excellent physicochemical properties [30,31]. The mechanism behind the degradation of
organic pollutants is the production of strong oxidative holes and reducible electrons. These
electrons and holes further produce hydroxyl (OH•−) and superoxide (O2

•−) radicals, re-
spectively, which favor the effective degradation of organic pollutants [32]. In the literature,
g-C3N4-based composites are suitable for the degradation of both the liquid and gas phases
of organic pollutants [33]. Due to its photochemical stability, fascinating electronic band
structures, and effective light harvesting accompanied by suitable bandgap energy of 2.7 eV,
graphitic carbon nitride (g-C3N4) has been considered a promising metal-free photocatalyst
for solving the energy crisis and environmental problems such as degradation of organic
pollutants, and CO2 photoreduction [34–36]. At the end of the introduction, we present
Table 1, which documents all the research and photocatalysispreviously conducted on the
cracking of 1,2 dichloromethane [4,7,11,12,37–39].

Table 1. Comparison between the prepared material and the prepared previously reported works.

Catalyst Performance Reference

Reductive biodegradation of 1,2-dichloroethane via
methanogenic granular sludge in lab-scale

UASB reactors

1,2-DCE was converted mainly to ethane (65–80%),
and the hydraulic retention time varies between

10 and 20 h.
[4]

Degradation of 1,2-dichloroethane in V/TiO2
Complete photocatalytic degradation of 1,2-DCE was

achieved after 120 min using UV radiation. [7]

Degradation of 1,2-dichloroethane in Fe/TiO2

The photocatalytic performance is a function of
retention time, and it would have competitive

adsorption on the active site of TiO2 between water
vapor and 1,2-DCE.

[11]

Degradation of 1,2-dichloroethane in immobilized
PAni-TiO2

The photocatalytic degradation of 1,2-DCE was about
60%, 90%, and 95% after 120 min, 240 min, and

300 min, respectively.
[12]

Degradation of 1,2-dichloroethane in a simulated
wastewater solution: a comprehensive study by

photocatalysis using TiO2 nanoparticles and zinc oxide

It was found that with the UV method, just 55% of
1,2-DCA was removed after 6 h under 40 W UV
radiation, but with the H2O2/UV method, the

removal reached 88% for a similar length of time and
radiation intensity.

[37]

Degradation of 1,2−dichloroethane in UV-M lamp.
UV-N/S2O4

2−
Complete degradation of 1,2-DCE after 300 min of

irradiation time. [38]

Degradation of gaseous 1,2-dichloroethane using a
hybrid cuprous oxide catalyst Degradation efficiencies of 83.8 and 82.2%. [39]

Prepared material:
photocatalytic degradation of 1,2 dichloroethane using

Ag-Cu/graphite bimetallic carbon nitride radiated
using UV

Degradation efficiencies of 0.3 g/100 mL
Ag-Cu/g-C3N4 with a reaction time of less than

30 min of 100% with stable material and good reused
several times.

-

2. Materials and Methods
2.1. Materials

All chemical compounds used in this project were of analytical reagent grade. The
1,2-dichloroethan (DCE) (C2H4Cl2, ACS reagent ≥ 99%, Merck, Rahway, NJ, USA) changed
into used because of the goal pollutant. Urea (>97% Sigma–Aldrich, St. Louis, MO, USA)
changed into used to synthesize the g-C3N4 photo-catalyst. Cu(NO3)2 · 3H2O (2% mg in
20 mL water) and silver nanopowder and urea (AR, Sino Pharm Chemical Reagent Co.,
Ltd., Shanghai, China). Nitric acid was obtained from Sigma–Aldrich.

2.2. Laboratory Preparation of the Waste Liquid 1,2 Dichloroethane (DCE)

We prepared more concentrations of DCE 8400, 25,200, and 50,400 ppm as a scale of
polluted materials with a (0.84) density of 1,2 dichloroethane.
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2.3. Synthesis of the g-C3N4 Photo-Catalyst

Graphitic carbon nitride (g-C3N4) was synthesized through the thermal_solvothermal
processing of urea (10 g) supersaturated liquid in a crucible with a lid under ambient
pressure in the air [40,41]. After drying at 80 ◦C, the urea was installed in a muffle furnace
(Isotemp Programmable Muffle Furnace Series, Fisher Scientific, Hampton, NH, USA) and
heated to 550 ◦C for three hours to finish the reaction. The yellow-colored product obtained
was washed with nitric acid (0.1 mol L−1) and distilled water to eliminate any residual
alkaline species (ammonia) adsorbed at the patterned floor, after which it dried at 80 ◦C for
twenty-four hours. The weight of the yellow-colored powders was 0.4 g. The product was
sonicated with ultra-pure water and nitric acid (1:1) for 2 h; the suspended product was
centrifuged, washed several times with a mixture of ethanol and distilled water, and dried
at 80 ◦C in a muffle and then a desiccator until it reached room temperature.

2.4. Preparation of Ag-Cu/g-C3N4 Catalysts [42]

The as-prepared graphic carbon nitride was dispersed in 200 mL of water and stirred
well for 10 min. Then, we took 0.01 M of AgNO3, 0.01 of Cu(NO3)2·3H2O, and 1 g of
PVP as a surface modification and placed them in the solution of graphitic carbon nitride.
The solution was stirred well for 18 h under room temperature. Bulk bimetallic Ag-Cu
is transformed into nanoparticles after 18 h of stirring with sodium borohydride and is
distributed through g-C3N4 molecule. After filtration and washing with ethanol and water,
that solution was sonicated with ethanol and distilled water. The samples were centrifuged
at 3000 rpm, then collected and dried at 80 ◦C under a vacuum for 12 h. The bimetallic
catalysts were denoted as Ag-Cu/C3N4 (1:1) with a yield of 0.8 gm, as shown in Figure 1.
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Figure 1. Picture of graphitic carbon nitride before and after doping with bimetallic silver and copper
(Ag-Cu).

2.5. Characterization of g-C3N4 and Ag-Cu/g-C3N4 Catalysts

Fourier-transform-infrared (FT-IR) spectra were recorded on a Bruker VECTOR 22 spec-
trometer (Bruker, Mannheim, Germany) using the KBr pellet technique. The crystallinity
and phase of Ag-Cu/g-C3N4 catalysts were characterized using X-ray diffraction (XRD) on
a Bruker D8 Advanced diffractometer with Cu Kα radiation (λ = 1.5418 Å), and the scanning
angle ranged from 10◦ to 100◦ of 2θ. The energy-dispersive X-ray Sem_SED_006, signal
SED landing voltage of 20.0 kV WD 10.0 mm magnification ×450 and a vacuum-mode high-
vacuum analysis was performed on both g-C3N4 and Ag-Cu/g-C3N4. High-resolution
transmission electron microscopy (HR-TEM) micrographs were taken with a JEM-1400
Plus_2022 (Jeol Ltd., Tokyo, Japan).

2.6. The Photocatalytic Reactor Lab

Adsorption tests were conducted in a 500 mL PYREX® glass beaker (Glendale, AZ,
USA) to assess the dynamic behavior for removing (DCE) under a (XE300-UV) Lamp Bulb,
300 W Xenon Short Arc, Fused Silica Glass (London, ON, Canada). To this end, the effects
of dosage and initial concentration were pre-assessed on (DCE) removal. The adsorption
kinetics of (DCE) were investigated at 25 ◦C using different weights of photocatalytic
degradation (0.8, 0.5, 0.3, and 0.1 g) for Ag-Cu/g-C3N4 at 1000 rpm stirring. The pH of the
reaction solution was adjusted at 11 values by adding the NaOH solution to generate the
OH˙ radical, which helped to decompose the DCE [42].
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The UV radiation tests were carried out on the radiation of (XE300-UV) Lamp Bulb,
300 W Xenon Short Arc, and used silica glass. Adsorption tests were completed in the
500 mL PYREX® glass beaker to evaluate the dynamic behavior for removing (DCE); see
Figure 2. To this end, the effects of dosage and preliminary concentration were pre-assessed
on (DCE) removal. The adsorption kinetics of (DCE) were investigated at 25 ◦C using
the different weights of photocatalytic degradation (Ag-Cu/g-C3N4) (0.1, 0.3, 0.5, and
0.8 g/100 mL) at 1000 rpm of stirring. Three concentrations of the laboratory waste liquid
(DCE) have been prepared (8400, 25,200, and 50,400 ppm). At first, the (DCE) solution was
magnetically stirred without light irradiation for 30 min to obtain the adsorption_desorption
equilibrium of (DCE) at the surface of the Ag-Cu/g-C3N4. After that, a simple (5 mL)
measure was taken. We continued stirring at room temperature, then took a sample every
5 min and repeated this for 90 min. Firstly, the visible light must turn on, and the combined
solution of the DCE and the Ag-Cu/g-C3N4 photo-catalyst becomes an exposed parallel
under the visible light, followed by UV (300 W Xenon, UV lamp, λ = 325 nm and the same
steps are performed again. During the irradiation process, for every 5 min, about 5 mL
aliquots of the samples were collected from the solution and then centrifuged at 3000 rpm to
remove the contaminated catalyst. The change in the concentration of DCE molecules was
measured from the absorbance of the degradable DCE samples using a Unicam-9423-UV-E
spectrophotometer (Porto, Portugal) at its characteristic absorption peak wavelength of
DCE at 550.6 nm. The photocatalytic degradation is illustrated in Figure 2.

Sustainability 2023, 15, x FOR PEER REVIEW 5 of 20 
 

of dosage and initial concentration were pre-assessed on (DCE) removal. The adsorption 
kinetics of (DCE) were investigated at 25 °C using different weights of photocatalytic deg-
radation (0.8, 0.5, 0.3, and 0.1 g) for Ag-Cu/g-C3N4 at 1000 rpm stirring. The pH of the 
reaction solution was adjusted at 11 values by adding the NaOH solution to generate the 
OH˙ radical, which helped to decompose the DCE [42]. 

The UV radiation tests were carried out on the radiation of (XE300-UV) Lamp Bulb, 
300 W Xenon Short Arc, and used silica glass. Adsorption tests were completed in the 500 
mL PYREX® glass beaker to evaluate the dynamic behavior for removing (DCE); see Fig-
ure 2. To this end, the effects of dosage and preliminary concentration were pre-assessed 
on (DCE) removal. The adsorption kinetics of (DCE) were investigated at 25 °C using the 
different weights of photocatalytic degradation (Ag-Cu/g-C3N4) (0.1, 0.3, 0.5, and 0. 8 g/100 
mL) at 1000 rpm of stirring. Three concentrations of the laboratory waste liquid (DCE) 
have been prepared (8400, 25,200, and 50,400 ppm). At first, the (DCE) solution was mag-
netically stirred without light irradiation for 30 min to obtain the adsorption_desorption 
equilibrium of (DCE) at the surface of the Ag-Cu/g-C3N4. After that, a simple (5 mL) meas-
ure  was taken. We continued stirring at room temperature, then took a sample every 5 
min and repeated this for 90 min. Firstly, the visible light must turn on, and the combined 
solution of the DCE and the Ag-Cu/g-C3N4 photo-catalyst becomes an exposed parallel 
under the visible light, followed by UV (300 W Xenon, UV lamp, λ = 325 nm and the same 
steps are performed again. During the irradiation process, for every 5 min, about 5 mL 
aliquots of the samples were collected from the solution and then centrifuged at 3000 rpm 
to remove the contaminated catalyst. The change in the concentration of DCE molecules 
was measured from the absorbance of the degradable DCE samples using a Unicam-9423-
UV-E spectrophotometer (Porto, Portugal) at its characteristic absorption peak wave-
length of DCE at 550.6 nm. The photocatalytic degradation is illustrated in Figure 2. 

 
Figure 2. The photocatalytic reactor lab scale. 

The Beer_Lambert law states that there can be a linear relationship between concen-
tration and the absorbance of the solution, which allows the choice to be calculated 
through a manner of measuring its absorbance [43]. To display this linear dependence, 
four standard concentrations of DCE in water on an identical moderation were measured 
using the Unicam-9423-UV-E spectrophotometer at 556.6 nm. From the absorption spec-
tra, a linear calibration curve of the absorbance, in place of attention, was created. This 
calibration curve can be used to determine the amount of unknown DCE solution by 
measuring its absorbance according to the Beer_Lambert law. The molar absorption coef-
ficient (Ɛ M−1 cm−1) can be calculated. The photolysis test was conducted to determine the 
amount of DCE that degraded due to irradiation of 300 W Xenon, UV lamp, λ = 325 nm 
for 60 min or more. For all tests, after 5 min, a sample was withdrawn to calculate the 
amount of DCE removal using the Beer_Lambert law, which is used in spectrometry and 
states that the absorbance of a species varies linearly with both the concentration of a so-
lution C and the coefficient of extinction Ɛ; when light passes through a distance, the path 
length is denoted by l, known as [43]: 

Figure 2. The photocatalytic reactor lab scale.

The Beer_Lambert law states that there can be a linear relationship between concentra-
tion and the absorbance of the solution, which allows the choice to be calculated through
a manner of measuring its absorbance [43]. To display this linear dependence, four stan-
dard concentrations of DCE in water on an identical moderation were measured using the
Unicam-9423-UV-E spectrophotometer at 556.6 nm. From the absorption spectra, a linear
calibration curve of the absorbance, in place of attention, was created. This calibration
curve can be used to determine the amount of unknown DCE solution by measuring its ab-
sorbance according to the Beer_Lambert law. The molar absorption coefficient (EM−1 cm−1)
can be calculated. The photolysis test was conducted to determine the amount of DCE
that degraded due to irradiation of 300 W Xenon, UV lamp, λ = 325 nm for 60 min or
more. For all tests, after 5 min, a sample was withdrawn to calculate the amount of DCE
removal using the Beer_Lambert law, which is used in spectrometry and states that the
absorbance of a species varies linearly with both the concentration of a solution C and the
coefficient of extinction E; when light passes through a distance, the path length is denoted
by l, known as [43]:

As = ε · Cl (1)

The Langmuir–Hinshelwood (L–H) version is normally used to explain the kinetics
of photo-degradation of natural pollution because the response usually happens among
the adsorbed substrates at the catalyst surface and the photo-generated oxidants. The L–H
kinetic Equation (3) can be expressed as follows [44]:

r = Ka · Kr·C/(1 + Ka C) (2)
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where r is the rate of photo-degradation, C is the DCE concentration at time t, kr is the
charge constant, and Ka is the adsorption equilibrium constant. The equation may be
simplified to an obvious first-order Equation (4):

ln (C/C0) = Ka · Kr·t = K0 · t (3)

When the completion of the reaction is confirmed by setting the absorption of DCE
using the Unicam-9423-UV-E spectrophotometer at 556.6 nm and from the absorption
spectra, the photo-catalyst is filtered, washed well with methanol, dried at 200 ◦C, and
reused once more.

3. Results
3.1. FTIR Analysis

The FTIR spectra of the g-C3N4 and Ag-Cu/g-C3N4 catalysts with distinct Ag and Cu
content materials are provided in Figure 3. All the absorption peaks of the Ag-Cu/g-C3N4
catalysts with different Ag and Cu content materials are almost the same as those of g-C3N4.
The broad absorption peaks within 3215–3223 cm−1 for g-C3N4 are attributed to the N-H
stretching vibration and the O−H of the physically adsorbed water, respectively. The
absorption peaks at approximately 1607, 1559, 1406, 1314, and 1235 cm−1 can be ascribed
to the typical stretching modes of CN heterocycles [45]. In addition, the sharp absorption
peak at 808 cm−1 is assigned to the characteristic breathing mode of tri-s-triazine units [45].
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3.2. XRD Analysis

The crystallinity and degree of Ag-Cu/g-C3N4 catalysts were characterized via X-ray
diffraction (XRD). For g-C3N4 and Ag-Cu/g-C3N4, from Figure 4a,b, there are diffraction
peaks at 2θ of 13.0◦ and 27.5

◦
, which may be listed to the (100) crystal plane bobbing up

from the in-planar ordering of tris-triazine devices with a distance of 0.675 nm and a (002)
crystal plane of the stacking of the conjugated fragrant device with an interplanar distance
of 0.326 nm, respectively. For Ag-Cu/g-C3N4, there are observable peaks at 2θ of 38.1◦

and 44.3◦, which may be assigned to the (111) and (200) crystal planes of the face-focused
cubic shape of Ag, respectively; for Cu/g-C3N4, there are observable peaks at 2θ of 64.40
and 77◦, which may be assigned to the crystal plane of the face-focused cubic shape of Cu,
respectively. The intensity of the g-C3N4 diffraction peaks decreases with increasing Ag
content. However, due to the relatively low Ag content, no clear Ag diffraction peak was
observed for most samples of Ag and Cu [45].
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Figure 4. XRD diffraction patterns of (a) original C3N4 + x Hy [40–42] and (b) Ag-Cu/C3N4 + x
Hy [45].

3.3. EDX and SEM Analysis

The energy-dispersive X-ray Sem_SED_006 in Figure 5a,b indicate the EDX evaluation
of g-C3N4 with 29.69 ± 0.20 mass % for C and 70.31 ± 0.80 for N after adding two molecules
of ammonia to the resin, which was confirmed due to the high alkalinity of resin, which
appears at 3215–3223 cm−1 at FTIR, while Ag-Cu/g-C3N4 illustrates the life of Ag, Cu,
C, N, and O (33.45 ± 0.45, 20.26 ± 0.50, 11.02 ± 0.16, 19.46 ± 0.43, and 15.81 ± 0.47),
respectively, as essential factors. The levels of the peaks are associated with the attention
of every element. Also, the dispersion of those species in stated samples may be decided
in dot mapping. The presence of oxygen with a mass of 15.81 ± 0.47 may be due to the
presence of 3H2O molecules resulting from the hydrated form or adsorption of oxygen.
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The SEM analysis of both g-C3N4 and Ag-Cu/g-C3N4 confirms the presence of both
molecules in the nano state, Figure 5 [46].

3.4. TEM Analysis

High-resolution transmission electron microscopy (HR-TEM) micrographs, Figure 6,
show the two images (a and b) of the TEM of Ag-Cu/g-C3N4, and we notice that many dots
have different nano sizes such as 7.87, 8.5, 10.64, 10.48, and 3.81, which may be attributed
to quantum dots and 2D nanosheets, which confirmed the nanostructure of Ag-Cu/g-
C3N4 [45]. This is attributed to the highly photocatalytic ability of Ag, Cu, and g-C3N4
due to the quantum dot particles and narrowband gap and to the high surface area of
the pours catalyst due to the exit of many pours in the surface structure as seen in the
(HR-TEM) image [47].
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3.5. Photocatalytic Degradation Activity of Ag-Cu/g-C3N4

The photocatalytic degradation activities of Ag-Cu/g-C3N4 at various gm/100 mL
concentrations (0.1, 0.3, 0.5, and 0.8 g) were examined towards the photocatalytic degrada-
tion of DCE (8400, 25,200, and 50,400) ppm and also under similar experimental conditions
for making a comparison.

3.5.1. Decomposing DCE under the Visible-Light Region

We used a 300 W Xe lamp (PLSSXE300C) to simulate solar light, which operates in
continuous mode. First, the visible absorption spectra of the DCE (50,400 ppm) solution
in the presence of different weights (0.1,0.3,0.5, and 0.8 g) of Ag-Cu/g-C3N4, Figure 7a,b,
show no degradation with visible light irradiation but slight absorption and no liberated
Cl ion detected via titration with AgNO3, which is indicated only by the absorption of
DCE on the service of a catalyst without degradation. This is clearly shown by the slow
concentration of the resulting DCE shown in Figures 7 and 8 and Table 2 The result also
shows that the wavelength of the light incident on the catalyst is smaller than the band gap
of Ag, Cu nanoparticles (2.51 eV), (1.98–2.02 eV), and the band gap of g-C3N4 (2.7–2.8 eV),
which slightly accelerates the decay of the narrowband gap in visible light in addition to
silver and copper. Another element had to be introduced soon into the g-C3N4 content to
degrade the DCE components in the visible spectrum [48,49].
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Table 2. Pseudo-first-order apparent constant values for the 50,400 ppm DCE adsorption using
different doses of Ag-Cu/g-C3N4.

DCE (ppm)

Ko (min−1)
R2

Weight of Ag-Cu/g-C3N4/100 mL

0.1 0.3 0.5 0.8 0.1 0.3 0.5 0.8

50,400 0.011 0.0115 0.0122 0.0154 0.9849 0.9914 0.9925 0.9957

3.5.2. Decomposing DCE under the UV-Light Region

It was found that Ag-Cu/g-C3N4 showed better degradation efficiency in the case of
a low concentration of DCE (8400 ppm), taking a shorter time, as shown in Figure 9a–c.
The blank experiment result indicates that the degradation of DCE can be neglected in the
absence of catalysts and in a dark system. The DCE photocatalytic degradation reaction
processes over different concentrations of Ag-Cu/g-C3N4 catalysts were successfully fitted
with the pseudo-first-order kinetic model.
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The efficiency of the sorption processes is highly influenced by the quantity of the
sorbent and contact time. The effect of sorbent dosage was studied using 0.1, 0.3, 0.5, and
0.8 g Ag-Cu/g-C3N4 g/100 mL to remove 8400, 25,200, and 50,400 ppm DCE.

DCE removal% =(C0 − Ct )/C0 × 100 (4)

where C0 is the initial concentration and Ct (ppm) is the concentration at time t.
From Equation (4), it is possible to calculate the percentage of the DCE degradation in

relation to the reaction time, the optimum dose for Ag-Cu/g-C3N4 to degrade the DCE,
and the optimal concentration for DCE degradation.

From Figure 9a–c, a comparative survey of the photo-degradation results of DEC on
binary Ag-Cu/g-C3N4 catalysts are summarized in Table 3, which shows that the degrada-
tion ppm of DCE on the Ag-Cu/g-C3N4 catalyst can reach as high as 100 degradations for
60 min at 0.3 and 0.5/100 mL at 50,400 ppm. In comparison, it reached100% degradation at
25,200 and 8400 ppm dose concentrations, which is attributed to the low DCE concentra-
tion. The low catalyst dose (0.3, 0.5 g/100 mL) is faster than other doses for all different
concentrations of 50,400 ppm of DCE, which is attributed to the Lowe steric hindered and
soft coagulation of catalyst Ag-Cu/C3N4 at a low concentration. From Figure 9a–c, it is
clear that the lower the concentration of DCE, the faster the degradation, and also the
lower the concentration of Ag-Cu/g-C3N4, leading to the fast rate of degradation until a
certain concentration (0.1 g/100 mL), due to a lower dose. The slow degradation at high
concentrations of Ag-Cu/g-C3N4 is due to the effect of the steric hindrance and the start of
the coagulation of molecules [45].

Table 3. Degradation% vs. time of degradation for different concentrations of DCE (a, 50,400 ppm),
(b, 25,200 ppm), and (c, 8400 ppm) using different doses of Ag-Cu/g-C3N4 (0.1, 0.3, 0.5, and
0.8 g/100 mL).

Time

Dose 50,400 ppm 25,200 ppm 8400 ppm
0.1

Cat. *
0.3

Cat. *
0.5

Cat. *
0.8

Cat. *
0.1

Cat. *
0.3

Cat. *
0.5

Cat. *
0.8

Cat. *
0.1

Cat. *
0.3

Cat. *
0.5

Cat. *
0.8

Cat. *
5 9.1 12.0 13.0 12.1 13.0 17.5 17.0 14.3 17.8 28.0 23.2 20.0

10 15 23.0 23.0 19.0 23.0 35.0 29.5 27.0 27.4 45.9 40.0 30.0
20 29.2 40.1 40.1 35.1 40.0 61.9 50.0 47.22 54.8 78.0 67.8 54.8
30 45.0 62.0 59.1 54.2 58.2 80.9 69.0 68.25 77.0 100 91.1 80.0
40 62.0 84.1 75.0 66.8 78.0 99.1 80.1 90.1 95.0 100 100 97.0
50 79.0 96.0 93.0 79.2 96.0 100 95.2 99.0 100 100 100 100
60 94.5 100 100 98.8 100 100 100 100 100 100 100 100

Cat. * is Ag-Cu/g-C3N4.

3.6. Kinetics of the Process

Adsorption kinetics are generally ruled using movie diffusion and intra-particle dif-
fusion. However, the adsorption capability required for equilibrium attention has been
investigated using the pseudo-first-order-kinetic reaction [50]. DCE molecules absorbed
from the aqueous solution multiplied fast over time, and the equilibrium was finished
within 60 min. The kinetic reaction has been proven in Figure 10 for being appropriately
outfitted with the experimental information with the coefficients of determination (R2) of
more than 0.8 [37,44].



Sustainability 2023, 15, 16114 12 of 19Sustainability 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 
Figure 10. (a–f) The relation between irradiation time (min) and (C/Co) or ln(C/Co) for 50,400, 
25,200, and 8400 ppm for DCE using different doses (0.1, 0.3, 0.5, and 0.8 gm/100 mL) of Ag-Cu/g-
C3N4. 

A plot of ln(Co/C) vs. time is represented in Figure 10, which illustrates the rate of 
degradation of different concentrations (50,400, 25,200, and 8400 ppm DCE) at different 
doses (0.1, 0.3, 0.5, and 0.8 gm) of Ag-Cu/C3N4. The values of ko and the linear regression 
coefficients of photo-degradation of the DCE, which correspond to different concentra-
tions, are listed in Table 3. 

The kinetic and regression constants (R2) are presented in Table 4 and Figure 11, 
showing that the reaction rate constants (Kapp) were increased by decreasing the dose of 
Ag-Cu/g-C3N4 (0.8 g to 0.3 g/100 mL) and returned to decreasing at 0.1 g/100 mL, which is 
logically due to increasing the degradation efficiency of different photocatalytic dosages 
(0.3, 0.5, 0.8, and decrease at 0.1 gm) due to decreasing of the steric hinder of photons 
generated on Ag-Cu/g-C3N4 [45]. Figure 11 shows a higher rate of degradation for 8400 
ppm DCE than 25,200 and 50,400 ppm, respectively, which is attributed to a decrease in 
the steric hindrance of the dichloroethylene molecule (DCE) in the low concentration (8400 
< 25,200 < 50,400 ppm degradation). Figure 11 and Table 3 also confirm that the best dose 
of catalyst is 0.3 g/100 mL. 

Table 4. Pseudo-first order apparent constant values for the different degradable DCE. 

DCE ppm 
Ko (min−1) 

R2 
Weight of Ag-Cu/g-C3N4 g/100 mL 
0.1  0.3 0.5 0.8 0.1  0.3 0.5 0.8 

50,400 0.0233 0.049 0.0334 0.0274 0.9704 0.9322 0.9776 0.9867 
25,200 0.0284 0.0597 0.0379 0.0337 0.9937 0.9532 0.9933 0.9907 
8400 0.0422 0.0763 0.0607 0.0473 0.9886 0.9916 0.9993 0.9935 

Figure 10. (a–f) The relation between irradiation time (min) and (C/Co) or ln(C/Co) for 50,400, 25,200,
and 8400 ppm for DCE using different doses (0.1, 0.3, 0.5, and 0.8 g/100 mL) of Ag-Cu/g-C3N4.

A plot of ln(Co/C) vs. time is represented in Figure 10, which illustrates the rate of
degradation of different concentrations (50,400, 25,200, and 8400 ppm DCE) at different
doses (0.1, 0.3, 0.5, and 0.8 g) of Ag-Cu/C3N4. The values of ko and the linear regression
coefficients of photo-degradation of the DCE, which correspond to different concentrations,
are listed in Table 3.

The kinetic and regression constants (R2) are presented in Table 4 and Figure 11,
showing that the reaction rate constants (Kapp) were increased by decreasing the dose
of Ag-Cu/g-C3N4 (0.8 g to 0.3 g/100 mL) and returned to decreasing at 0.1 g/100 mL,
which is logically due to increasing the degradation efficiency of different photocatalytic
dosages (0.3, 0.5, 0.8, and decrease at 0.1 g) due to decreasing of the steric hinder of
photons generated on Ag-Cu/g-C3N4 [45]. Figure 11 shows a higher rate of degradation for
8400 ppm DCE than 25,200 and 50,400 ppm, respectively, which is attributed to a decrease
in the steric hindrance of the dichloroethylene molecule (DCE) in the low concentration
(8400 < 25,200 < 50,400 ppm degradation). Figure 11 and Table 3 also confirm that the best
dose of catalyst is 0.3 g/100 mL.

Table 4. Pseudo-first order apparent constant values for the different degradable DCE.

DCE ppm

Ko (min−1)
R2

Weight of Ag-Cu/g-C3N4 g/100 mL

0.1 0.3 0.5 0.8 0.1 0.3 0.5 0.8

50,400 0.0233 0.049 0.0334 0.0274 0.9704 0.9322 0.9776 0.9867

25,200 0.0284 0.0597 0.0379 0.0337 0.9937 0.9532 0.9933 0.9907

8400 0.0422 0.0763 0.0607 0.0473 0.9886 0.9916 0.9993 0.9935
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On the basis of the previous work [49] and the above experimental results, a possible
mechanism for the photocatalytic degradation DCE is proposed as follows: the electron–
hole pairs can be quickly generated in the g-C3N4 upon UV-light excitation (Scheme 1)
due to the SPR effect of bimetallic Ag-Cu nanoparticles, followed by the instant transfer of
photo-generated electrons from the CB of g-C3N4 to the Ag-Cu nanoparticles at the interface
of the Ag-Cu/g-C3N4 catalyst, which shifts the Fermi level to a more negative potential
than the standard redox potential of O2/O2

•− (−0.046 V vs. NHE), thereby the dissolved
oxygen can be readily reduced by negatively charged Ag nanoparticles to produce O2

•−

radicals [51,52]. Finally, the DCE molecules can be oxidized by O2
•− radicals.
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Scheme 1. Possible photocatalytic mechanism of both g-C3N4, Ag, and Cu.

From the start, we indicated that the reaction proceeds through the adsorption–
desorption mechanism and that the lower the concentration of DCE, the faster the degra-
dation in time, and also the lower the concentration of the Ag-Cu/g-C3N4, the faster the
degradation will be in order to reduce the steric hinder and coagulation of Ag-Cu/g-C3N4
and by comparing the reaction in the presence of visible light and the in the presence of
UV-light irradiated.

Scheme 1 illustrates the photocatalytic mechanism of Ag-Cu/g-C3N4 composites
during DCE decomposition under UV irradiation. Ag and Cu nanoparticle modification
enhances the photocatalytic performance of g-C3N4 due to the synergistic effect of two
aspects: one is the SPR effect of metals Ag and Cu, and another is the decrease in the
recombination rate photo-generated e− h+ pairs [52]. When Ag-Cu/g-C3N4 is irradiated
by the simulated UV irradiation, the e− h+ pairs are separated, e− is excited to CB of
g-C3N4, and h+ remains at VB of g-C3N4. Then, e− transfers to Ag and Cu NPs due to
the high Schottky barrier of Ag and Cu, and finally, transfers to the photo-catalyst surface
to join the reduction reaction. The generated e− comes from two routes, one from the
plasmon-excited Ag and Cu NPs and the other from the photoexcited g-C3N4 nanosheets.
This e− reacts with O2 to generate O2

− radicals that can discompose DCE molecules into
CO2, HCl, and H2O. Thus, it is concluded that the adsorbed Ag and Cu NPs have two
functions: one is as the electron pool, and the other is the capture of the photoinduced
electrons. As pictured in Figure 12A–C, an obvious absorption edge of Ag-Cu/g-C3N4
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appears at about 550.6 nm, corresponding to the band gap of 2.7 eV, implying its UV-
induced photocatalytic activity [16,53,54]. The strong and broad absorption band in the
UV region for the Ag-Cu/g-C3N4 catalysts can be attributed to the localized SPR effect
of metallic Ag and Cu nanoparticles, which shows efficient Plasmon resonance in the UV
region [36,55]. Such an enhanced light absorption of the catalysts facilitates the yield of
more electron–hole pairs, which subsequently results in a higher photocatalytic activity.
Moreover, the SPR effect of metallic Ag and Cu nanoparticles causes the enhancement of
the local electromagnetic fields, which speeds up the generation rate of photo-generated
electron–hole pairs in the near-surface region of g-C3N4 [49,52,56,57]. The photo-generated
electrons can be instantly scavenged by Ag and Cu nanoparticles at the interface of the
Ag-Cu/g-C3N4 catalyst, creating a Schottky barrier that effectively reduces the probability
of the recombination of photo-generated electron_hole pairs [42,43,58]. Figure 12A–C
shows the PL emission spectra of the 50,400, 25,200, and 8400 ppm degradation using
0.3 g/100 mL Ag-Cu/g-C3N4 under the excitation wavelength of 550.6 nm. The strong
emission peak of Ag-Cu/g-C3N4 centered at 550.6 nm suggests a high recombination
probability of photo-generated electron–hole pairs.
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Figure 12. (A–C) Time-dependent UVVis absorption spectra for the degradation of 50,400, 25,200,
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Scheme 2 proposes a mechanism of the Ag-Cu/C3N4 photocatalytic degradation [49].
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The decomposition occurs through the dehydrochlorination into vinyl chloride in
the presence of OH˙ radical hydrolyzed by humidity alkaline OH and addition reaction
occurs in the C = C bond to form intermediate ethyl chloride ion. This intermediate can be
attacked by a nucleophilic oxygen species from the catalyst to form a chlorinated alkoxide
species, which readily decomposes to gradually generate acetaldehyde, ace-tates, and CO2
in addition to HCl [45,59–61].

Table 5 and Figure 13a–c show the result of the chloride ions released due to the
degradation of DCE using different doses of Ag-Cu/g-C3N4, indicating a high concen-
tration of Cl ions—equal to 0.3 g/100 mL at all DCE concentrations (50,400, 25,200, and
8400 ppm, respectively), which is the best low-dose catalyst due to low steric hindrance
and poor Ag-Cu/g-C3N4 coagulation. Figure 13 also illustrates the clearance of different
DCE concentrations (50,400, 25,200, and 8400 ppm) at different doses of 0.1, 0.3, 0.5, and
0.8 g photocatalytic Ag-Cu/g-C3N4 at 1000 rpm. The released Cl ion can be observed at
different DCE concentrations of the order of 8400 and 25,200. The 50,400 ppm that initially
affects the low concentration is broken down more than the high concentration. The Cl
ion method determines a solution of chloride ions by titration with silver nitrate. A silver
chloride precipitate forms as the silver nitrate solution is slowly added. The endpoint of the
titration is reached when all the chloride ions have precipitated, as shown in Equation (5).

AgNO3 + HCl → AgCl ↓ + NO3
− (5)

Table 5. Detection of liberated Cl ion resulted from the degradation of different concentrations of
EDC molecules using different doses of photocatalytic Ag-Cu/g-C3N4 at 1000 rpm.

Time of
Degradn.

Cl Ion Conc.
and Cat.
Dos *.

Cl Ion from Degraded 50,400 ppm DCE Cl Ion from Degraded 25,200 ppm DCE Cl Ion from Degraded 8400 ppm DCE

0.1 * 0.3 * 0.5 * 0.8 * 0.1 * 0.3 * 0.5 * 0.8 * 0.1 * 0.3 * 0.5 * 0.8 *

0 0 0 0 0 0 0 0 0 0 0 0 0
10 60 100 80 50 98 130 100 75 120 160 150 125
20 100 150 130 79 180 242 223 140 160 314 260 225
30 145 185 165 131 270 350 312 230 253 432 390 324
40 180 230 200 170 365 450 403 308 371 570 502 443
50 235 270 250 212 400 500 455 360 463 700 633 573
60 272 310 290 250 420 523 465 390 500 765 690 607

* concentration of the Ag-Cu/g-C3N4 in 100 mL solution of the batch reactor.
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4. Conclusions

In summary, the degradation of the residual DCE liquid released using the intermedi-
ate purification technique (DCE) is used to prepare the vinyl chloride monomer, which is
then used to manufacture the polyvinyl chloride polymer. DCE is a poorly biodegradable
and chemically stable environmental pollutant. Therefore, heterogeneous Ag-Cu/g-C3N4
photocatalysis was chosen as a nonselective method to degrade DCE via oxidation through
reactions with reactive species (hydroxyl radicals and peroxy radicals) to HCl and CO2.
The kinetics and chloride ions released via the degradation of the DCE molecule can be
detected via the titration of AgNO3 using a potassium chromate indicator. Using a modified
photocatalytic coupling-adsorption–desorption–oxidation method, the removal efficiency
of these DCEs from the aqueous solution was confirmed. Using degradation, it was found
that the overall performance increased with the increasing catalyst loading dose and de-
creasing overdose due to the increasing steric hindrance of the generated photon and initial
nanocatalyst coagulation. The kinetic mechanism is mainly based entirely on hydroxyl
radicals and O2˙ offensive. Therefore, this liquid photocatalytic decomposition technology



Sustainability 2023, 15, 16114 17 of 19

of water-immiscible stable impurities and elements is capable of improving the quality of
petrochemical industrial effluent.

Author Contributions: Conceptualization, E.G.B.; methodology, E.G.B., M.T., A.A.E., H.A.A., A.S.M.
and F.S.; software, H.A.A. and F.S.; validation, E.G.B., M.T., A.A.E., H.A.A., A.S.M. and F.S.; formal
analysis, H.A.A., A.S.M. and F.S.; investigation H.A.A., A.S.M. and F.S.; resources, E.G.B., M.T.,
A.A.E., H.A.A., A.S.M. and F.S.; data curation, M.T., H.A.A., A.S.M. and F.S.; writing—original
draft preparation, H.A.A., A.S.M. and F.S.; writing—review and editing, E.G.B., M.T. and A.A.E.;
visualization, E.G.B., M.T., A.A.E., H.A.A., A.S.M. and F.S.; supervision, E.G.B., M.T. and A.A.E.;
project administration, E.G.B. and M.T.; funding acquisition, E.G.B. and A.A.E. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The author’s confirm that there were no ethical in preparing
this manuscript.

Informed Consent Statement: This article does not contain any studies involving animal studies or
human participants performed by any of the authors.

Data Availability Statement: Data supporting reported results can be found in the papers included
in the References section.

Acknowledgments: This work was supported by the Petrochemical Department at the Faculty of
Engineering, Pharos University, Chemical Department, Faculty of Science, Alexandria University,
and the National Institute of Oceanography and Fisheries at Alexandria.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mohammadi, M.; Sabbaghi, S.J.E.N. Photo-catalytic degradation of 2, 4-DCP wastewater using MWCNT/TiO2 Nano-composite

activated by UV and solar light. Environ. Nanotechnol. Monit. Manag. 2014, 1, 24–29. [CrossRef]
2. Miia, V.; Vilhunen, S.; Vepsäläinen, M.; Kurniawan, T.A.; Lehtonen, N.; Isomäki, H.; Sillanpää, M. Degradation of 1,2-

dichloroethane from wash water of ion-exchange resin using Fenton’s oxidation. Environ. Sci. Pollut. Res. 2010, 17, 875–884.
3. Khataee, A.R.; Fathinia, M.; Aber, S.; Zarei, M. Optimization of photocatalytic treatment of dye solution on supported TiO2

nanoparticles by central composite design: Intermediates identification. J. Hazard. Mater. 2010, 181, 886–897. [CrossRef]
4. De Wildeman, S.; Nollet, H.; Van Langenhove, H.; Verstraete, W. Reductive biodegradation of 1,2-dichloroethane by methanogenic

granular sludge in lab-scale UASB reactors. Adv. Environ. Res. 2001, 6, 17–27. [CrossRef]
5. Liu, X.; Vellanki, B.P.; Batchelor, B.; Abdel-Wahab, A. Degradation of 1,2-dichloroethane with advanced reduction processes

(ARPs): Effects of process variables and mechanisms. Chem. Eng. J. 2014, 237, 300–307. [CrossRef]
6. Eydivand, S.; Nikazar, M. Degradation of 1,2-dichloroethane in simulated wastewater solution: A comprehensive study by

photocatalysis using TiO2 and ZnO nanoparticles. Chem. Eng. Commun. 2015, 202, 102–111. [CrossRef]
7. Lin, Y.-H.; Hung, W.-C.; Chen, Y.-C.; Chu, H. Photocatalytic degradation of 1,2-dichloroethane by V/TiO2: The mechanism of

photocatalytic reaction and byproduct. Aerosol Air Qual. Res. 2014, 14, 280–292. [CrossRef]
8. Lin, Y.-H.; Hung, W.-C.; Chen, Y.-C.; Chu, H. Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Water

Res. 2009, 43, 2936–2946.
9. Stasinakis, A.S. Use of selected advanced oxidation processes (AOPs) for wastewater treatment—A mini review. Glob. NEST J.

2008, 10, 376–385.
10. Nader, B.; Mirbagheri, S.A.; Ehteshami, M.; Ghaznavi, S.M. Optimization of Fenton process using response surface methodology

and analytic hierarchy process for landfill leachate treatment. Process Saf. Environ. Prot. 2016, 104, 150–160.
11. Hung, W.-C.; Chen, Y.-C.; Chu, H.; Tseng, T.-K. Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their

performance for photocatalytic degradation of 1,2-dichloroethane. Appl. Surf. Sci. 2008, 255, 2205–2213. [CrossRef]
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