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Abstract: Primary and secondary mill scales (MSs) are waste products produced by the surface
oxidation of steel during the hot (800 to 1200 ◦C) rolling process in downstream steelmaking. While
the primary MS is comprised of FeO, Fe3O4, and Fe2O3 in a range of proportions, the secondary MS
primarily contain red ferric oxide (Fe2O3) (red MS). We report a novel route for extracting iron from
red MS and transforming it into ferro-aluminium alloys using carbothermic reduction in the presence
of alumina. The red MS powder was blended with high-purity alumina (Al2O3) and synthetic
graphite (C) in a range of proportions. The carbothermic reduction of red MS-Al2O3-C blends was
carried out at 1450 ◦C and 1550 ◦C under an argon atmosphere for 30 min and then furnace-cooled.
The red MS was completely reduced to iron at these temperatures with reduced iron distributed
around the matrix as small droplets. However, the addition of alumina unexpectedly resulted in a
significant increase in the number and sizes of iron droplets generated, much higher reactivity, and
the formation of ferrous alloys. A small amount of alumina reduction into metallic aluminium was
also observed at 1450 ◦C. There is an urgent need to identify the true potential of industrial waste
and the materials within it. This study showed that red MS is a valuable material source that could
be transformed into ferro-aluminium alloys. These alloys find application in a range of industrial
sectors such as construction, automotive, infrastructure, etc.

Keywords: valorisation; ferroalloys; red mill scale waste; carbothermic reduction; construction;
nanomaterials

Sustainability 2023, 15, 16810. https://doi.org/10.3390/su152416810 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su152416810
https://doi.org/10.3390/su152416810
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0009-0004-3629-6891
https://orcid.org/0000-0003-4520-4659
https://orcid.org/0000-0002-1027-6428
https://orcid.org/0000-0003-0776-2465
https://orcid.org/0000-0001-6090-9361
https://doi.org/10.3390/su152416810
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su152416810?type=check_update&version=1


Sustainability 2023, 15, 16810 2 of 14

1. Introduction

The iron and steelmaking industry is facing significant environmental challenges
in terms of energy consumption, greenhouse gas emissions, industrial waste generation,
and pollution-related issues [1]. Being one of the largest global industries, there is an
urgent need to enhance the environmental sustainability of various processes within steel
manufacturing. With global steel production increasing from 850 million tons (MTs) per
annum in 2000 to 1879 MTs in 2021 [1], the generation of waste by-products such as slags,
dust, sludges, mill scales, etc., has also seen tremendous increases. While a significant
proportion of these wastes tend to be reutilised within the industry, these choices may not
be the most appropriate options for material extraction. Currently, iron-bearing mill scale
(MS) wastes generated during the downstream processes of hot rolling and finishing are
receiving increasing attention and are the focus of this investigation.

In view of depleting natural resources and the economic and environmental costs
associated with primary mining, industrial wastes could play a significant role as alternative
material resources. Supplementary Figure S1 shows the distribution of average mill scale
waste (in million tons (MTs); 39 MTs global total) generated in different regions of the world
in 2021. China was the leading producer of mill scale waste with significant productions in
other global regions as well. There is an urgent need to develop effective new techniques for
valorising such industrial waste, and their commercial utilisation in various sectors. In the
construction industry, steel and ferroalloys find extensive applications as structural frames,
cladding, and roofing in buildings, bridges, and large structures [2]; the construction
industry accounts for more than 50% global demand for steel. Other applications of
ferroalloys include utilisation in the automotive sector, transport networks, infrastructure
projects, utilities, pipelines, etc. Ferroalloys produced from recycling mill scale waste
would find application in a wide range of industrial scenarios. A brief background on
the generation, recycling of mill scales, and low-temperature carbothermic reduction of
alumina is provided next.

1.1. Background
1.1.1. Generation of Mill Scales

Mill scales are produced during the oxidation of steel surfaces during the hot rolling
process for transforming semi-finished steel products into finished products. Steel strips
are typically hot-rolled in the temperature range from 800 to 1200 ◦C. During this operation,
hot steel is exposed to an oxidizing atmosphere, leading to surface oxidation in the form of
primary mill scales [3–5]; the oxidation of steel and the formation of scales in this process
are difficult to control and unavoidable. These mill scales are removed either mechanically
or using high-pressure water, material cooling, and gravity separation [6,7]. The amounts
of primary mill scales generated depend on rolling mill practices and are typically ~2% of
the total steel rolled [8,9].

Even after the removal of primary scales, carbon steel is re-oxidised very quickly at
elevated temperatures, so the rolling always involves steel surfaces covered with scales.
This secondary scale needs to be removed completely to avoid surface defects and corrosion
in the finished products and to prevent wear on the rolls. Pickling, the chemical removal
of scales by immersion in an aqueous acid solution, is one of the most common processes
to remove secondary scales from steel surfaces. Inorganic acids, such as hydrochloric
acid, sulfuric acid, hydrofluoric acid, or a mixture of acids, have been used as pickling
liquor [10–12]. Hydrochloric acid has been the preferred choice during steel production. The
thickness of the scale depends mainly on the processing parameters of the hot rolling mill,
mainly, the coiling temperature; the rolling process itself also has a marked influence [13].
A schematic representation of the formation of primary and secondary mill scales is shown
in Figure 1.
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Figure 1. Formation of primary and secondary mill scales during the hot rolling of steel: a schematic
representation.

The primary mill scale contains iron oxides in three chemical forms, namely, wüstite
(mostly FeO), magnetite (Fe3O4), and hematite (Fe2O3) from the metal surface outwards;
it can also contain other impurities such as C, Si, Ca, Na, Al, or Mn and other metal
oxides depending on the steel being rolled. On the other hand, the secondary mill scale is
primarily composed of red ferric oxide (Fe2O3) caused by the oxidation of the innermost
layer of wüstite; the thickness of this secondary layer is typically less than 0.1 mm. The
secondary mill scale is also referred to as the red mill scale (red MS) [14]. This layer initially
protects the steel surface from atmospheric corrosion provided no breaks occur in this layer;
however, this protection disappears in the presence of any surface cracks.

1.1.2. Recycling of Mill Scale Waste

Being a rich source of iron, primary mill scales are utilised as iron ore sinters/pellets in
ironmaking furnaces [15,16], iron powders [17–20], and briquetting [21–23], among others.
In the case of secondary mill scales, ferric oxide powder dissolves into pickling liquors,
generating large volumes of spent acid solutions with high iron contents [24]; the concen-
tration of iron ions in spent hydrochloric acid can be up to 15–30% (w/w) [25]. Some of the
extractants used include, among others, TBP (tributyl phosphate), CYC (cyclohexanone),
IA (itaconic acid), OA (phosphoric acid), etc. [26]. Due to the presence of large amounts
of metal and acids, pickling residue is a hazardous waste requiring strict processing to
minimise environmental damage [27]. Several attempts have been made to recover acid
from the pickling liquor using solvent extraction [28], evaporation and crystallisation [29],
diffusion dialysis [30], and chemical precipitation to recover iron contents [31]. Solvent
extraction has been used to purify, separate, and concentrate valuable metal ions in leaching
liquors, spent pickling acids, and metallurgical wastes [32,33].

1.1.3. Low-Temperature Carbothermic Reduction of Alumina

We first present a brief overview of the commercial production of aluminium. Alu-
minium is produced from the bauxite ore primarily with the electrolytic reduction of
alumina using the Hall–Heroult process [34]. This process is ranked among the most
energy and CO2-intensive industrial processes [35]. The direct carbothermic reduction
of alumina: Al2O3 + 3C = 2Al + 3CO (g), proposed as an alternative process for primary
aluminium production, requires temperatures above 2100 ◦C and suffers from critical de-
sign issues such as aluminium carbide and oxycarbide formation, aluminium vaporisation,
and low metal yields [36]. There is a pressing need to discover new ways to produce
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aluminium-based products that are energy efficient, economical, and environmentally
sustainable.

Based on a novel and innovative concept, our group has succeeded in lowering con-
ventional alumina reduction temperatures (~2100–2500 ◦C) significantly and successfully
produced ferro-aluminium alloys during carbothermic reduction in the Fe2O3-Al2O3-C
system at 1550 ◦C [37]. Bypassing the primary production routes of both Al and Fe, this
single-step approach to making ferrous alloys also results in significant reductions in energy
consumption and CO2 emissions [38].

1.2. Aim of This Investigation

In this article, we present a novel route to extract iron from the red mill scale and
its transformation into ferro-aluminium alloys. Carbothermic reduction investigations
were carried out on the red MS-alumina system in the temperature range 1450–1550 ◦C for
30 min. The small particle size of red MS (~20–80 nm) and associated large surface area is
expected to provide higher reactivity as compared to standard Fe2O3 powders (typically
a few microns). We report detailed investigations on the carbothermic reduction of the
‘red MS-Al2O3’ system over a range of compositions and temperatures and the formation
of ferroalloys. It is expected that the novel, efficient, and economic transformation of
iron-bearing red MS waste will be a significant advance towards waste valorisation and
environmental sustainability.

2. Materials and Methods
2.1. Red MS Characterisation

The red mill scale waste used in this study was obtained from the steel pickling plants
of ArcelorMittal, Temirtau, Kazakhstan. Using the spray roasting process [39], the spent
acid pickling solution was sprayed into a hot reaction atmosphere (800 ◦C) to recover solid
iron oxide particles (red MS). The basic characteristics of these powders were determined
as having an average particle diameter of 142 nm, a surface area of 8.79 m2/g, and a
density of 5.24 g/cm3. These characteristics were determined using Brunauer–Emmett–
Teller (BET) adsorption isotherms from the Quantachrome Nova 1200e (USA) surface area
analyser. Additional data on BET measurements have been provided in Supplementary
Table S2. A scanning electron microscopic image shown in Supplementary Figure S2
clearly shows small particle sizes of red MS. From the XRF data, the elemental composition
of these powders was determined to be Fe (65.9–74.2 wt.%), O (24.8–33.6 wt.%), and Cl
(0.3–0.7 wt.%) (see Supplementary Table S1), thereby indicating Fe and O as the key
constituents with Cl as a minor impurity.

2.2. Experimental

The red MS powder was blended with high-purity alumina (Al2O3) and synthetic
graphite (C) in a range of proportions. The BET surface area of Al2O3 used was in the range
of 13.23–48.9 m2/g. Three sets of blends were prepared: (20 g red MS + 8 g C); (20 g red
MS + 10 g Al2O3 + 10 g C); and (20 g red MS + 20 g Al2O3 + 10 g C). This choice of
blends was based on a fundamental discovery by Khanna et al. [37], wherein the reduction
temperature of alumina was lowered from 2100–2500 ◦C to just 1550 ◦C in the presence
of molten iron, leading to the formation of ferro-aluminium alloys. In the present study,
red mill scale waste replaced Fe2O3 in the above-mentioned system, and the formation of
ferroalloys was investigated for a range of operating parameters. Excess amounts of carbon
were used to ensure that the reductant did not become a rate-controlling factor in this
investigation. All experiments were repeated at least three times to ensure reproducibility.

The carbothermic reduction of (red MS-Al2O3-C) mixtures was carried out at
1450 ◦C and 1550 ◦C for 30 min in a Carbolite TZF 17/600 tube furnace (MISIS, Moscow,
Russia) [40]. The furnace was purged with pure argon gas prior to the experiments, and a
continuous gas flow (2 L/m) was maintained during the heat treatments. Blended powder
mixtures (20 g) were placed in a corundum crucible and loaded into the furnace. The
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furnace was heated to 1450 ◦C (or 1550 ◦C) at a heating rate of 5 ◦C/min; the heat treat-
ment was conducted for 30 min. The heat-treated specimens were furnace-cooled and
taken out at room temperature. Detailed characterisation was carried out using analytical
techniques such as Scanning Electron Microscopy (SEM)/Energy Dispersive Spectroscopy
(EDS) and X-ray diffraction (XRD). SEM/EDS investigations were carried out on Tescan
Vega 3 (TESCAN, Brno–Kohoutovice, Czech Republic with Oxford instruments EDS detec-
tor) with sub-micron resolution. The specimens were carbon coated prior to microscopic
investigations; EDS was carried out for microscopic and elemental analysis. The XRD data
were collected using a desktop X-ray diffractometer (Difrey 401, Scientific Instruments, St.
Petersburg, Russia) with Cu Kα radiation (45 KV, 40 mA) in the angular range of 10–90◦, a
step size of 0.1◦, and a time step of 5 s.

3. Results
3.1. Carbothermic Reduction of Red MS

The SEM results for the (20 g red MS + 8 g C) system after heat treatment for
30 min at 1450 ◦C and 1550 ◦C are shown in Figure 2. Corresponding results for ele-
mental mapping and XRD are also included in this figure. Bright and dark regions in SEM
images respectively represent reduced iron and unconsumed carbon. This aspect is clearly
indicated in the elemental mapping as well. Reduced iron appears to be locally distributed
at 1450 ◦C and spread around the matrix. The X-ray diffraction results present structural
features of the heat-treated residue; diffraction peaks for carbon and BCC iron were clearly
identified and were in excellent agreement with respective JCPDS files (C: 00-025-0284;
Fe: 03-065-4899). At 1550 ◦C, the SEM and elemental mapping images indicated the spread-
ing of iron (now molten) containing regions with a tendency for clustering. The XRD
patterns remained unchanged as the temperature increased to 1550 ◦C.

3.2. Reduction Behaviour of Red MS-Al2O3-C Blends

The scanning electron microscopic results for the (20 g red MS + 10 g Al2O3 + 10 g C)
system, heat treated at 1450 ◦C for 30 min, are presented in Figure 3; these contain a high-
resolution SEM image, elemental profiles, and EDS results. Bright metallic droplets are
clearly seen atop the graphite chunks; several distinct regions of unreacted alumina can
be seen as well. These compositional features are reflected in the corresponding elemental
profiles and EDS results for points #1 and #2. A small peak of aluminium (1.1%; shown
with a white arrow) was noticed at point #1. This result, which indicates the carbothermic
reduction of alumina at 1450 ◦C, was totally unexpected. This feature will be discussed in
detail in the next section.

The results for the (20 g red MS + 20 g Al2O3 + 10 g C) system, heat-treated at
1450 ◦C for 30 min, are presented in Figure 4; these also contain a high-resolution SEM
image, elemental profiles, and EDS results. A small peak for aluminium can also be seen
in the metallic droplet at point #1. Some regions containing unreacted alumina were seen
as well.

The scanning electron microscopic results for the (20 g red MS + 10 g Al2O3 + 10 g C)
system, heat-treated at 1550 ◦C for 30 min, are presented in Figure 5; these contain a high-
resolution SEM image, elemental profiles, and EDS results. Bright metallic droplets are
clearly seen atop the graphite chunks. Much higher levels of Al (5.7%) were detected in
the metallic droplet. The results for the (20 g red MS + 20 g Al2O3 + 10 g C) heat-treated at
1550 ◦C are presented in Supplementary Figure S3. The amounts of Al in the metallic droplet
were found to depend on the blend composition and the temperature. At 1450 ◦C, the amounts
of Al in the (20 g red MS + 10 g Al2O3 + 10 g C) and (20 g red MS + 20 g Al2O3 + 10 g C) systems
were 1.1% and 0.7%, respectively; the corresponding values at 1550 ◦C were determined to
be 5.7% and 1.3%, respectively. These results indicate that the increasing proportions of
Al2O3 in the mix tended to reduce the amount of Al in the metallic droplet. However, the
amounts of Al were found to increase with increasing temperatures.
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3.3. Structure Determination

The X-ray diffraction results for the (20 g red MS + 10 g Al2O3 + 10 g C) system
are presented in Figure 6; the data for both 1450 ◦C and 1550 ◦C are plotted. These
measurements were carried out on the bulk powder residues. While both plots showed
diffraction peaks for Al2O3, C, and metallic iron; two peaks for Fe3AlC (marked in red)
were observed in the XRD patterns for 1550 ◦C (JCPDS files: Al2O3 (00-042-1468; Fe3AlC:
04-005-5393). The peak height for ‘Fe’ at 1550 ◦C was significantly smaller compared with
the corresponding peak at 1450 ◦C. These results clearly mark the transformation of metallic
iron into Fe3AlC at 1550 ◦C. Although small amounts of aluminium were seen in the EDS
spectra at 1450 ◦C, these were not reflected in the XRD patterns. Corresponding XRD results
for the (20 g red MS + 20 g Al2O3 + 10 g C) system are provided in Supplementary Figure S4.
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4. Discussion

Although secondary mill scales are produced in significant quantities, research into
their likely applications has been limited. There has been a tendency to dump residual
iron-bearing waste acids into landfills. Landfilling such hazardous waste is undesirable
as well as environmentally unsustainable, as iron-based reactions/products can gener-
ate localised heat, leachates, and gases, causing local strains and instabilities during the
natural weathering of landfills [41]. Only a few studies have been reported on transform-
ing red MS waste into nano-powders and superparamagnetic nano-adsorbents for water
decontamination [42,43].

In this investigation, we presented detailed results on the carbothermic reduction of
the red MS-Al2O3-C system at 1450 ◦C and 1550 ◦C. While several of the results followed
expected trends in the carbothermic reduction in the Fe2O3-Al2O3-C system [37,38], there
were some novel and unexpected findings as well. These aspects are discussed next.

4.1. Impact on Reactivity

Due to nanosized particles and their associated high surface area, red MS was expected
to be quite reactive. It was completely reduced to iron during carbothermic reduction at
1450 ◦C and 1550 ◦C for 30 min (Figure 2). The reduction of Fe2O3 to Fe can start at
temperatures above 1200 ◦C and become quite rapid at higher temperatures [44]; the
observed reduction behaviour of red MS is therefore in accordance with well-known trends.
However, there was very limited diffusion of reduced iron regions in the matrix, and these
tended to be localised. Something significant occurred with the addition of alumina, a
highly stable refractory oxide, to the system. A big change took place in terms of the
number of iron droplets generated and their sizes. In Figure 7 (1450 ◦C) and Figure 8
(1550 ◦C), we plotted SEM images for the three blends under investigation (A: 20 g red
MS + 8 g C; B: 20 g red MS + 10 g Al2O3 + 10 g C; C: 20 g red MS + 20 g Al2O3 + 10 g C).
For ease of comparison, lower magnification (50 µm) SEM images were plotted in the left
columns and higher magnification (5 µm) SEM images in the right columns of both figures.
With the addition of 10 g of alumina into the blend, the numbers and sizes of iron droplets
were found to increase significantly at 1450 ◦C, whereas there were further increases in
droplet sizes at 1550 ◦C. With the addition of 20 g of alumina, there was little further change
except the presence of unreacted alumina. Such increases in reduction reactivity were
completely unexpected and were only observed for the red MS-alumina-C system. No
such increases were previously reported in the carbothermic reduction reactions in the
Fe2O3-alumina-C system [37,38]. It appears that the nano-sizes of red MS particles and
their relatively higher surface area as compared with the standard micron-sized Fe2O3
powders used in this study could play a key role in enhancing the reaction kinetics and the
associated formation of ferroalloys. These results also indicate that the presence of alumina
leads to much higher levels of iron extraction from the red MS.
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Figure 7. Relatively lower- (50 µm; left column) and higher-resolution (5 µm; right column) images of
various blends heat-treated at 1450 ◦C: (A) 20 g red MS + 8 g C, (B) 20 g red MS + 10 g Al2O3 + 10 g C,
and (C) 20 g red MS + 20 g Al2O3 + 10 g C.

4.2. Lower Temperature for Alumina Reduction

In Figures 3 and 4, small amounts of “Al” were detected in the metallic droplets after
the reactions of the red MS-Al2O3-C system at 1450 ◦C, thereby indicating alumina reduction.
This feature was not observed in previous studies on the Fe2O3-Al2O3-C system [37,38].
Typically, temperatures of ~1550 ◦C are required for the alumina reduction to initiate. The
low-temperature carbothermic reduction of alumina takes place in a number of sequential
stages [38]. These stages are:

(1) The reduction of iron oxide and its subsequent carburisation in the molten state.
(2) The disintegration of alumina into sub-oxide gases AlO and Al2O (Al2O3 + C = 2AlO + CO,

Al2O3 + 2C = Al2O + 2CO); this reaction is known to have a slow kinetics [45].
(3) AlO and Al2O gases are captured by the carburised molten iron.
(4) The subsequent reduction of these gases to Al by the solute carbon.
(5) The dissolution of reduced Al into molten iron due to its high affinity resulted in the

formation of ferro-aluminium alloys.
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various blends heat-treated at 1550 ◦C: (A) 20 g red MS + 8 g C, (B) 20 g red MS + 10 g Al2O3 + 10 g C,
and (C) 20 g red MS + 20 g Al2O3 + 10 g C.

A molten iron droplet was seen clearly in the SEM image at 1450 ◦C (Figure 3); this
droplet had very high levels of carbon as well. The molten state of iron at this temperature
is in good agreement with the Fe-C phase diagram [46]. The molten state of carburised
iron is the key requirement for alumina reduction at low temperatures. This condition is
achieved only at ~1550 ◦C in the case of the Fe2O3-Al2O3-C system. Khanna et al. [37]
previously lowered the reduction temperature of alumina from 2100–2500 ◦C to 1550 ◦C; it
appears now that these temperatures could be lowered even further to 1450 ◦C by replacing
Fe2O3 with red MS.

Among various intermetallic compounds in the binary Fe-Al phase diagram (Figure S5),
both FeAl and Fe3Al have good strength and corrosion resistance and are considered very
attractive for several high-temperature applications [47,48]. The formation of Fe3Al was
previously reported by our group during heat treatments of the Fe2O3-Al2O3-C system at
1550 ◦C for 2 h [37]. In the present study on the red MS-Al2O3-C system, the heat treatments
were carried out at 1450 ◦C and 1550 ◦C for 30 min only. The impact of longer heating times
on the formation of Fe-Al alloys is currently being investigated at these temperatures.

Being the first study in the field, only a few process parameters and blend compositions
were investigated for the extraction of iron and the formation of ferrous alloys. With several
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new research directions emerging from this investigation, process optimisation will be
carried out with further studies at 1400–1500 ◦C, heat-treatment times ranging from 10 to
180 min, alumina concentrations of 5–15 g (for 20 g red MS), and graphite concentrations of
5–10 g. Oxides other than alumina, such as SiO2 or MnO2, will also be investigated.

5. Conclusions

1. A novel processing route was developed for extracting iron from red mill scales and
its conversion to ferro-aluminium alloys. The key innovation of this study lies in
blending red MS with Al2O3 prior to the carbothermic reduction. The yield of iron
and ferrous alloys from red MS was significantly enhanced when mixed with alumina
in a range of concentrations.

2. Most studies on extracting iron from iron-bearing wastes do not use blends; instead,
the waste is treated alone as a low-grade iron resource [49]. The interactions between
alumina and red MS led to significant increases in reduction reactivity. This break-
through result means that higher quantities of metal could be extracted using red
MS-Al2O3 blends than MS alone, leading to higher yields and significant economic
benefits during waste processing.

3. This study showed that red MS could be used to prepare iron aluminides as well as Fe-
Al alloys in a range of compositions. These alloys are known for their low density and
good mechanical strength and can be up to 30% lighter than commercial stainless steel
and other structural materials [50–52]. Iron aluminides find applications in power
generation systems due to their excellent high-temperature corrosion resistance in
oxidizing and sulfidizing environments [53].

4. This study showed that secondary red mill scales are a valuable material source
for preparing high-value ferrous alloys. This study has the potential to open new
research areas in industrial waste management wherein the use of nanosized reac-
tants could offer significantly higher process efficiencies and productivity in a range
of applications.

5. Instead of dumping industrial waste into landfills or trying to just get rid of it in any
way possible, there is an urgent need to identify the true potential of the waste and
the materials within it. In addition to utilising red MS waste for producing new alloys,
new research directions have opened on the role of nanosized reactants in reduction
reactions. It is expected that these energy-efficient waste recycling options will lead
to waste valorisation and economic as well as environmentally sustainable resource
utilisation and management.
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