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Abstract: Offsite construction methods have shown many advantages over traditional construction
techniques, especially related to efficiency and productivity during the construction phase. Neverthe-
less, offsite construction generally involves oversizing the internal structure of the modules due to the
internal stresses produced during transport and lifting operations, producing an increase in material
usage, direct cost, and carbon footprint. In developing countries, the direct cost of social housing is
the most important factor determining the feasibility of construction. For this reason, oversizing the
internal structure of the modules can play an important role in the adoption of a modern construction
technique such as offsite construction systems. In order to solve this issue, a temporary reusable
stiffener structure is proposed to allow an economical offsite construction system using a lightweight
steel framing structure used in traditional methods. The reusable structure was designed using a
finite element method, and the direct cost and carbon footprint of the structure were evaluated. The
results show that the proposed construction strategy allows for a low cost and reduced environmental
impact due to a lower usage of materials in the modules and the possibility of a circular economy
approach to the reusable structure.

Keywords: offsite construction; prefabrication; modularisation; social housing; transport; lifting;
cranes; rigging

1. Introduction

Emerging economies (EEs) and developing countries are facing an important deficit
in social housing [1], which implies an increasing demand for affordable and sustainable
housing to improve the quality of life of millions of families. However, this problem also
occurs in some developed countries like Australia and New Zealand [2], where the housing
demand is not currently well served. Moreover, housing accessibility and affordability
have also decreased due to several factors and conditions, such as high inflation due
to the SARS-CoV-2 pandemic [3] and post-pandemic that caused rapid residential price
rises [4], increased housing demand because of significant immigration [5], and more
frequent natural disasters due to climate change [6]. As a consequence of the housing
deficit worldwide, housing accessibility and affordability is one of the sustainable objectives
of the 2030 agenda of the United Nations [7].

In order to solve the housing deficit and affordability issues, improvements in produc-
tivity are needed. Particularly in Chile, construction productivity has remained unimproved
for almost 30 years [8]. On the other hand, the construction industry accounted for 39%
of energy- and process-related greenhouse gas emissions in 2018, 28% of which resulted
from manufacturing building materials and products [9]. This means the total life cycle
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must be considered, so Offsite Construction (OSC) methods—which allow more efficient
deconstruction and element reuse, thereby minimising material usage—appear to be a
promising construction technique for tackling this problem.

1.1. Developing Countries and Emerging Economies

In developing countries and EEs, according to the United Nations (UN) classifica-
tion [10,11], there is a significant housing deficit that is increasing over time due to high
population growth rates [1], with an annual increase of 1% projected until 2030 [12]. In
just one EE, Chile, according to projections from the National Institute of Statistics and the
Chilean Construction Chamber, from 2019 to 2035, 2.7 million new housing units will be
needed [13], which implies increasing the amount of housing construction to 205% of its
current annual capacity.

Considering developing countries and EEs, the social housing deficit can be estimated
at over 1 billion units [14]. This growing housing deficit scenario is challenging several
countries to urgently promote new construction strategies to face this problem, such as OSC.

1.2. Offsite Construction

OSC can be defined as a construction process that involves prefabrication, modular
construction, and modern methods of transport and construction. OSC methods involve
either modules or specific building components being produced in a factory and then
transported and assembled on the construction site [15]. In industrialised countries, this
type of construction philosophy can be considered quite consolidated. However, OSC is
still in its early stages in EEs.

The construction industry has been losing efficiency continuously over time [16–18].
In EEs, there are even higher levels of inefficiency in construction compared to developed
countries because the construction industry has traditionally been very labour-intensive.
For example, in Chile, the construction sector has a 52% lower productivity than the
Organisation for Economic Co-operation and Development (OECD) average [19]. In this
context, OSC appears to be a promising technique to enhance the construction industry in
EEs because the system has several benefits compared to traditional construction methods,
such as lower capital costs, higher productivity, higher quality, higher safety, lower waste
generation during the construction process, and better environmental performance [20–25],
among others, which represent a more sustainable behaviour of the constructions during
his life span.

Developed countries represent around 85% of the peer-reviewed research on OSC. On
the other hand, a lack of information about these methodologies in EEs is observed [26].
Many studies on the barriers to implementing OSC have been carried out in markets
like United Kingdom [27–30], India [31,32], China [33–37], Pakistan [38], Singapore [39],
Malaysia [29], Australia [29,30], New Zealand [40], Algeria [41], Ethiopia [42], the United
States and Europe [30], Latin America and the Caribbean [26], Chile [43], and the world [44].
In this type of research about barriers, several constraints are considered, especially those
related to the financial aspects of this type of construction (caused by the lack of access to
funding) and technical issues [43]. Regarding the technical issues, a large portion of social
housing projects do not have optimal access roads to the construction site [25,45,46]; some
of these problems are even prevalent in developed countries due to population growth and
the need to carry out additions to existing houses [47].

In Latin America, we found that implemented OSCs are imported from developed
countries with no important modifications [25], reflecting a lack of continuity in the I + D
process in this area [46]. It is important to avoid unexpected problems in implementing
OSC, like the case of Algeria related to materials [41] and in Chile related to the future price
of the house as an asset [48], by developing local methodologies to address these aspects.
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1.3. Transport and Lifting

In offsite construction of social housing, one critical aspect to consider is the construc-
tion site’s accessibility because some roads may present significant slopes, washboarding,
and low horizontal curve radii, this being one of the causes of the current global housing
affordability problems [3]. These aspects can hinder access by trucks and the cranes used
for lifting [49]. Also, the proximity to primary service lines (elevated power lines) could
make the construction process difficult and increase time and cost.

The above issues are crucial in EEs due to the deregulation of the land market and
deficient or inexistent urban planning, which motivates the intensive use of hillsides by
people with low economic resources to construct their homes [50]. Also, lifting is often
the most expensive part of the installation process [51]. Those constraints suggest that it is
essential to establish border conditions referring to transport limits and verify the viability
of the lifting equipment for the worksite [52].

The literature review reveals some issues related to transportation that must be con-
sidered during the planning of OSC methods. According to the classification proposed by
Correia Lopes et al. [53] related to the prefabrication level, projects focused on expanding
existing homes in the United Kingdom using volumetric pods (3D) present significant
inconveniences regarding the width of the streets and the traffic interruption necessary for
the installation of cranes to lift the pods [47]. Also, some differences arise when panelised
building systems (2D) and volumetric modules (3D) are compared, where 3D methods
present higher transport costs [30,54,55]. When the use of 3D modules is considered, the
distance between the factory and the construction site is crucial to determine the suitability
of prefabrication methods over traditional methods [30]. A considerable increase in costs
exists when volumetric modules require additional permits for the loading and transport
vehicles (oversized cargo) [56]. Furthermore, the comparative advantage of 3D systems
over traditional construction methods is nil when the distance from the factory to the
construction site exceeds 240–320 km [57]. It is important to mention that the volumetric
modules used in bathrooms are a focus only in multi-family buildings, in which the barriers
related to machinery availability and access roads are different when compared to other
types of volumetric modules.

According to Smith [57], there are several aspects to consider when a prefabrication
strategy is developed, including overall dimensions for transport; height, width, length,
and weight restrictions; crane capacity and access onsite; lifting point details; the route to
the site; details for securing transport; crane selection; crane specifications; lighting gear
details and assembly; access routes; and structural loadings, among others [57].

There are many studies regarding transportation, basic concept design, and unit
construction, but most of them do not simultaneously explore problems focused on pre-
fabricated housing. A unique study by Salama et al. [56] is probably the only one that
considers all of these aspects. From the literature review, it is concluded, based on the
authors’ best knowledge, that there are no available studies in this area focused on social
housing difficulties in developing countries, where the availability of this type of machinery
differs from developed countries.

1.4. 3D Volumetric Modules

Volumetric modules are generally classified based on the constitutive material of
their supporting structure into steel building modules, light steel-framed modules, timber-
framed modules, and precast concrete modules. Particularly, light steel-framed modules
consist of a main frame of structural steel in the corners of the module and a secondary
structure of light steel that provides rigidity to the module walls in order to resist the
internal stresses produced during the transport and lifting process [58], making this type of
house overstructured in comparison to the traditional “in situ” construction methodologies.
This problem is presented as a potential limitation in providing low-cost housing in EEs.
Also, this feature is relevant because the higher use of materials means an increase in cost
and carbon footprint due to more energy consumption during the fabrication process and
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fuel needed for transport and lifting activities. Thus, the challenge presents itself to allow
modular prefabrication without incurring this type of practice.

As finishing materials, plasterboard panels are usually utilised in the light steel- and
timber-framed modules, which usually present damage during transport and lifting. There
are a few studies in this area focused on the detection of such damage using modulation
systems for the plasterboard [59]. Meanwhile, other authors have located sensors in places
that commonly suffer damage, such as walls without discontinuities and places near doors
and windows, finding some variability between the modelled and experimental results due
to the difficulties of adequately modelling plasterboard panels [60,61]. Studies have also
been carried out on the screws that connect the plasterboard with the light frame structure,
determining that damage is seen in the finishes in displacements close to 0.5 mm [62].

Based on the literature reviewed, the authors identified the following research gaps:

• There are accessibility barriers to building social housing in developing countries, such
as roads that have high slopes and are too narrow for large trucks.

• Most modular constructions are structurally oversized to resist mechanical efforts due
to transport and lifting.

This paper contributes to the state of the art and practice by proposing a new sys-
tem for modular construction based on an External Temporary and Auxiliary Stiffener
Structure (ETASS) that allows for transport and lifting without structurally oversizing the
modules. As a result, the structural elements of the modules are reduced; thus, the cranes
and trucks needed have a lower lifting capacity, reducing their costs; therefore, the cost of
industrialized social housing could be significantly reduced, making them more afford-
able. Moreover, this system (ETASS) is reusable, which allows us to reduce the long-term
carbon footprint.

Considering the whole above context, two research questions regarding the modular
construction of social housing arise: how can we overcome the barriers related to acces-
sibility issues? and how can we avoid oversizing the housing structure? These research
questions focus on optimizing the housing structure to generate positive economic, social,
and environmental impacts. ETASS is proposed to allow for an economical offsite con-
struction system using a lightweight steel framing structure used in traditional methods.
The reusable structure was designed using a finite element method, and the direct cost
and carbon footprint of the structure were evaluated. The results show that the proposed
construction strategy allows lower costs and reduced environmental impacts due to a lower
usage of materials in the modules in the context of the material savings in Chile.

It is important to highlight that both research questions are related to the paths
of developing affordable, accessible, and environmentally friendly social houses in the
EEs, taking into account the three pillars of sustainability (social, environmental, and
economic) [63,64].

2. Materials and Methods

This research was conducted in seven steps (Figure 1). The first step involved defining
the problem and identifying gaps in the current state of OSC. In the second step, Chilean
regulations (i.e., maximum allowable transportation load and dimensions, structural and
efficiency standards, material specifications, and height clearance of power grid facilities)
were analysed to take them into consideration in designing ETASS.

As a third step, the modular design or “modularisation” process was based on the
single-family units’ public information (i.e., blueprints, technical specifications) obtained
from the Chilean public-market platform [65]. From here, this database was analysed to
find representative social housing to be modularised. Thus, the representative housing
corresponds to the construction project of 12 houses for victims of the 3 January 2019
wildfire in Limache, Chile [65]. Figure 2 presents images of the construction process and
Figures 3 and 4a show the elevation and plan view drawings of the representative house.
The existing information related to this project allowed the analysis of various aspects and
the quantification of various parameters related to architecture, materials, and structure,
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among others. The representative or case-study project presents some particularities that
reveal some of the barriers found in the literature review. For example, it was developed in
the modality of “own site construction” because the houses were built in the same place
where the damaged homes were located. This means that the land cost is not included
in the economic analysis. Also, due to the project’s size, it does not consider economies
of scale, which may be common in other projects. The modularisation process for this
research involved dividing the structure into volumetric modules; after that, weights and
sizes were calculated.
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Integrating the information from the first three steps, in the fourth step, the secondary
reusable structure was designed. The objective of this auxiliary structure is to strengthen
the modules to avoid damage but at the same time be reused in other modules. The
secondary structure was designed using finite element method (FEM) software, specifically
SAP 2000 v23.2.0 educational license [66]. The design philosophy considered the maximum
displacement outputs reported in the existing literature [62].

With the final design of the secondary structure, together with the geometry of the
construction site, interferences, and the access road, the transport and lifting work was
modelled using kranXpert 1.9.9.6 demo version software [67] and various types of ma-
chinery available in the local market for this type of work. In this step, the construction
methodology was proposed for the traditional modular construction process (oversizing
the modules to resist internal stress) and also for the new methodology proposed in this
paper, which is called the innovative construction process.
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In step six, the economic and environmental costs of the two prefabrication options
were compared using a life-cycle assessment approach, especially taking into considera-
tion the embodied carbon of the structure (considering the final structure, the temporary
structure, and finishing) and the costs involved in fabricating and lifting the modules.

Finally, the results of the design of ETASS and its impact on cost and carbon footprint
were analysed in the last step of the methodology. This allowed us to draft conclusions
about the practicability of the innovative method and this type of structure (ETASS) for
the representative single-family units and suggest recommendations for future studies and
related innovations in order to overcome the problems detected in the literature review to
facilitate the implementation of OSC.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. Study cases. Case 1: distances: horizontal: 18.5 m; vertical: −5.3 m (left house) and Case 2: 
distances: horizontal: 9 m; vertical: −3 m (right house) (distances measured from the road axis). 

   
 (a) (b) (c) 

Figure 4. (a) Original architectural blueprints, (b) proposed modularisation, and (c) resultant mod-
ules. 

Integrating the information from the first three steps, in the fourth step, the secondary 
reusable structure was designed. The objective of this auxiliary structure is to strengthen 
the modules to avoid damage but at the same time be reused in other modules. The sec-
ondary structure was designed using finite element method (FEM) software, specifically 
SAP 2000 v23.2.0 educational license [66]. The design philosophy considered the maxi-
mum displacement outputs reported in the existing literature [62]. 

With the final design of the secondary structure, together with the geometry of the 
construction site, interferences, and the access road, the transport and lifting work was 
modelled using kranXpert 1.9.9.6 demo version software [67] and various types of ma-
chinery available in the local market for this type of work. In this step, the construction 
methodology was proposed for the traditional modular construction process (oversizing 
the modules to resist internal stress) and also for the new methodology proposed in this 
paper, which is called the innovative construction process. 

In step six, the economic and environmental costs of the two prefabrication options 
were compared using a life-cycle assessment approach, especially taking into considera-
tion the embodied carbon of the structure (considering the final structure, the temporary 
structure, and finishing) and the costs involved in fabricating and lifting the modules. 

Finally, the results of the design of ETASS and its impact on cost and carbon footprint 
were analysed in the last step of the methodology. This allowed us to draft conclusions 

Figure 3. Study cases. Case 1: distances: horizontal: 18.5 m; vertical: −5.3 m (left house) and Case 2:
distances: horizontal: 9 m; vertical: −3 m (right house) (distances measured from the road axis).

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. Study cases. Case 1: distances: horizontal: 18.5 m; vertical: −5.3 m (left house) and Case 2: 
distances: horizontal: 9 m; vertical: −3 m (right house) (distances measured from the road axis). 

   
 (a) (b) (c) 

Figure 4. (a) Original architectural blueprints, (b) proposed modularisation, and (c) resultant mod-
ules. 

Integrating the information from the first three steps, in the fourth step, the secondary 
reusable structure was designed. The objective of this auxiliary structure is to strengthen 
the modules to avoid damage but at the same time be reused in other modules. The sec-
ondary structure was designed using finite element method (FEM) software, specifically 
SAP 2000 v23.2.0 educational license [66]. The design philosophy considered the maxi-
mum displacement outputs reported in the existing literature [62]. 

With the final design of the secondary structure, together with the geometry of the 
construction site, interferences, and the access road, the transport and lifting work was 
modelled using kranXpert 1.9.9.6 demo version software [67] and various types of ma-
chinery available in the local market for this type of work. In this step, the construction 
methodology was proposed for the traditional modular construction process (oversizing 
the modules to resist internal stress) and also for the new methodology proposed in this 
paper, which is called the innovative construction process. 

In step six, the economic and environmental costs of the two prefabrication options 
were compared using a life-cycle assessment approach, especially taking into considera-
tion the embodied carbon of the structure (considering the final structure, the temporary 
structure, and finishing) and the costs involved in fabricating and lifting the modules. 

Finally, the results of the design of ETASS and its impact on cost and carbon footprint 
were analysed in the last step of the methodology. This allowed us to draft conclusions 

Figure 4. (a) Original architectural blueprints, (b) proposed modularisation, and (c) resultant modules.

3. Results
3.1. Determination of Technical Constraints for Modularisation

In order to establish the constraints that limit or influence the modularisation de-
sign process of social housing construction, a review of the critical regulatory aspects is
summarised in this section.
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3.1.1. Current Regulations for the Construction of Social Housing

The Chilean regulation called “Regulations of the Housing Program for the Solidarity
Fund for the Choice of Housing—DS49” promotes access to housing solutions for families
with social and economic vulnerability through a subsidy granted by the State of Chile [68].
The technical standards for the construction of this type of project [69], the standards of
dimensions and minimum uses for furniture [70], and the general regulation for construc-
tion [71] also specify the quality, safety, and architectural conditions of the houses built
with this regulation’s subsidy.

Regarding the site’s conditions, DS49 establishes an additional subsidy between
approximately USD 5600 and USD 14,186 for the construction of retaining walls, slope
stabilisation, special foundations, improving salty soils, and massive structural fillings,
among other items. These resources apply only to works within the property where the
house will be located and cannot apply to interventions in a public space, as in the case of
access roads or sidewalks.

3.1.2. Transportation Regulation

Resolution No. 1, published in 1995, of the Transportation and Telecommunications
Authority of Chile established the following maximum dimensions for vehicles that circu-
late on public roads in the country [72]:

• Maximum exterior width (excluding rear view mirrors): 2.60 [m]
• Maximum height above ground level: 4.20 [m]
• Maximum length of a truck with a trailer or other combination: 20.50 [m]

Eventually, the regulation allows oversized and overweight transports, which are not
included in the scope of this research.

3.1.3. Interferences Caused by Public Electricity and Telecommunications Networks

The public electricity networks are generally located in the sidewalk between the
construction site and the access road and may have a voltage of over 1000 V according to
the national standard NSEG 5. E.n.71 [73]. This regulation, in Article 107, indicates the
following distances between the sidewalk and the conductors:

• Minimum height of conductors in neutral: 4.6 [m]
• Minimum height of conductors in phase: 5.0 [m]
• Maximum height of all wires: Not established

The above dimensions are considered as physical constraints for rigging manoeuvres.
In the case of telephony or fibre optic cables, the vast majority of the cables are supported
by structures that belong to the electrical service concessionaires. They generally follow
the rules of these services related to minimum heights. However, they are not mandatory
for the public telecommunications service concessionaire but instead constitute only a
reference [74].

3.1.4. Morphology of the Construction Site

Two types of construction sites have been chosen for this research. They are located in
the central region of Chile, specifically in the city of Limache, in the Valparaiso region, and
are owned by the families that benefited from the DS49 state subsidy to rebuild the houses
destroyed by a significant wildfire on 3 January 2019. Two land pictures are presented in
Figure 2.

Concerning the conditions of each construction site, the following aspects must be
highlighted:

• Slopes: The literature indicates that cranes can only work on horizontal surfaces.
In cases with gentle slopes or that are not wholly uniform, support platforms for
stabilisers are used. Even so, it is pointed out that the maximum slope of the access
road cannot be greater than 5% [75].
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• Street width: The cases analysed have 6 m wide streets, so the possibility of extending
the stabilisers of lifting equipment to 100% must be verified in each project.

• Elevation between the access road and construction platform plus maximum horizon-
tal lift distance: These aspects will be analysed based on the maximum load tables
provided by the equipment manufacturers.

3.2. Modular Design

Each home’s modularisation was carried out to break down the original architecture
into several volumetric modules, considering the maximum widths according to national
transportation regulations. The roof structure was left out of the modularisation because,
using current construction technology, modules with roofs could not be broken down onsite
without compromising their waterproofness. The details of the houses’ modularisation are
presented in Figure 4 (both homes have the same floor plan).

According to the information provided by the technical specification platform of the
Technological Development Corporation of the Chilean Chamber of Construction [76], the
weight of each of the modules was calculated, considering the specific weights of each
material according to the catalogues available from manufacturers on this online platform
and the following considerations:

• Finishes like coating mud, joint angles, paint, and tiles are not considered in the
calculation.

• The duplication of the supporting structure that occurs due to adjacent walls between
different volumes is not considered.

• The weight of screws and minor fixings between construction elements is not considered.
• Only the weight from the finished floor level upwards is considered because the floor

structure is made of in situ concrete.
• For better performance during the transport and lifting process, the weights of the

modules assume they were structured without door and window openings.
• Additional reinforcements to the supporting structure for lifting are not considered.

As an example, the results of the weight calculation of module M-1 are presented
in Table 1. According to the results, this module has a weight of 444 kg. This weight is
considered as the net load for the rigging design. It is important to highlight that this is the
heaviest module of the house because of its size and composition of three faces, including
windows and a door.

Table 1. Weight estimation of each module.

Weight Calculation—Module M-1

Element Description Unitary
Weight Unit Qty. Longitude Total Weight

[kg]

Studs C 2 × 3 × 0.85 0.8 mL 14.0 2.4 26.9

Sole plate U 2 × 3 × 0.85 0.7 mL 9.0 2.4 15.1

Top plate U 2 × 3 × 0.85 0.7 mL 9.0 2.4 15.1

Interior finishes
Plasterboard 15 mm 12.0 m2 21.7 260.4

Condensation barrier 0.1 m2 21.7 2.2

Exterior finishes

Asphalt paper 10/40 0.2 m2 10.8 2.2

OSB 9.5 mm 7.1 m2 10.8 76.7

PVC Siding 1.6 m2 10.8 17.3

Electricity

Conduit plug 1/2′′ 0.2 mL 1.0 3.0 0.6

Conduit lighting 1/2′′ 0.2 mL 1.0 5.0 1.0

Conduit switch 1/2′′ 0.2 mL 1.0 2.0 0.4

Wires 1.5 mm 0.12 mL 3.0 10.0 3.6
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Table 1. Cont.

Weight Calculation—Module M-1

Element Description Unitary
Weight Unit Qty. Longitude Total Weight

[kg]

Door Door 11.8 uni 1.0 11.8

Screws Screws (all types used
in Drywall system) 7.5 gL 1.0 7.5

Window Widow 100 × 100 × 3 mm 8.4 uni 1.0 8.4

Total weight [kg] 449.2

3.3. Design of the External Temporary and Auxiliary Stiffener Structure (ETASS)

An ETASS is proposed based on a conceptual and structural design. This structure
must allow the rigging process and stiffen the structure of modules to avoid major displace-
ments during transport and lifting manoeuvres and damage to the finishes.

For the lifting process, four different rigging methods are analysed, all of which
consider an individual structural validation due to the different stresses produced:

• Direct pick points: The crane hook is connected employing slings or cables directly to
“pick points” incorporated in the structure, which produces internal forces throughout
the structure [57].

• Wrap-around slings: These support the module from below in two continuous strips,
so rigidity is required in the lower part of the structure to avoid damage produced by
internal forces and drifts.

• Spreader bars: These are used to provide lifting forces to act vertically on the struc-
ture [57], and they can be implemented considering complex arrangements to have
several “pick points.” They produce lower internal forces than the direct pick point
method, but they also require structural reinforcements.

• Trays: These are used for more minor elements, generally called “pods,” and are
accompanied by specialised secondary equipment that allows the pods to be moved
to their final location [77], which makes reinforcements in the lower part essential.

Some additional considerations for the design are presented below:

• Each module should be installed adjacent to another by at least one of its exterior faces.
Because of that, the rigging accessories should not be located outside the structure in
order to avoid damage to the exterior faces of the other modules.

• In order to avoid oversizing the original structure of the module, the use of hooks tied
to the module itself should be discarded.

• The module does not have a floor structure because the house must have a concrete
floor built onsite.

• The ETASS must be reusable for various architectures and module sizes in order to
provide a solution for developing countries with diseconomies of scale in housing
construction.

The structure proposed is composed of frames of 75 × 75 × 3, stiffener beams of type
C150 × 50 × 3 mm at the top and 100 × 50 × 3 mm at the bottom made of aluminium alloy
type AA6060-T6, and a base plate of 3 mm thickness of ASTM A36 steel, on which the mod-
ule is supported. In order to allow for disassembly and contribution to horizontal rigidity,
telescopic props are positioned horizontally. The details are presented in Figures 5–7.
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Figure 7. Bottom detail of secondary structure.

The bottom beams of the system are connected directly to the sole plate and the studs
by horizontal screws. The top beam connects directly to the top plate using vertical screws.
After positioning the module and disassembling the ETASS, the space at the bottom of
the interior walls, which has a height of 58 mm, is covered with a 68 mm skirting board.
This allows us to include all the finishes in the modules before transport, avoiding in situ
finishing work on the walls (Figure 8).



Sustainability 2023, 15, 16922 11 of 20Sustainability 2023, 15, x FOR PEER REVIEW 11 of 20 
 

 

 
(a) 

 
(b) 

Figure 8. (a) Detail of bottom connection between module and secondary structure. (b) Detail of 
bottom connection after installation of the module. 

For the structural validation of the system, a finite element method (FEM) model us-
ing SAP 2000 v23.2.0 software [66] was developed, taking into consideration the following 
criteria: 
• The maximum permitted displacements related to the height (h) of the element, ac-

cording to the regulations in Chile, are 2/1000 × h [78], that is, 4.8 mm. The defor-
mations specified in the regulation are to prevent the collapse of the structure, but 
not to prevent damage to the finishes, so a maximum deformation criterion of 0.5 mm 
will be used because it has been determined that 10 mm thick plasterboard panels 
begin to suffer damage around this value [62]. This is a conservative assumption con-
sidering the 15 mm thickness of the actual case modules proposed in this study. 
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bottom connection after installation of the module.

For the structural validation of the system, a finite element method (FEM) model
using SAP 2000 v23.2.0 software [66] was developed, taking into consideration the follow-
ing criteria:

• The maximum permitted displacements related to the height (h) of the element, accord-
ing to the regulations in Chile, are 2/1000 × h [78], that is, 4.8 mm. The deformations
specified in the regulation are to prevent the collapse of the structure, but not to
prevent damage to the finishes, so a maximum deformation criterion of 0.5 mm will
be used because it has been determined that 10 mm thick plasterboard panels begin to
suffer damage around this value [62]. This is a conservative assumption considering
the 15 mm thickness of the actual case modules proposed in this study.
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• An amplification factor of 4.3 is adopted to multiply self-weight in positive and
negative directions in two different load combinations, based on the perpendicular ac-
celeration of 32 m/s2 obtained for speeds of 5.6 km/h obtained based on experimental
data [79].

• A transport speed lower than 41 km/h is considered because the damage to plaster-
boards increases considerably above this range [59]. Thus, a lateral wind pressure of
40 kg/m2 is considered according to the simplified calculation method based on the
current regulation in Chile [80].

• A maximum slope of 12% is considered following the urban road geometric design
provisions of current regulations [81].

• A 178 kgf load applied to the pick points is considered, which corresponds to the hori-
zontal component produced at these points, the product of the module’s dead loads.

• The following load combinations (combos) are considered for different scenarios
included in the model (Table 2 and Figure 9):

Table 2. Load combinations and multipliers included in the FEM model.

Combinations Load Multipliers

Combo Dead (Self-Weight) Dead (Module Weight) W (Wind) S (Slings)

Case 1: Transport

Combo 1 1 (Gravity direction) 1 (Gravity direction) 1 (X direction) 0

Combo 2 −4.3 (Gravity direction) −4.3 (Gravity direction) 1 (X direction) 0

Combo 3 4.3 (Gravity direction) 4.3 (Gravity direction) 1 (X direction) 0

Combo 4 1 (12% deviation) 1 (12% deviation) 1 (X direction) 0

Case 2: Lifting Combo 5 1 (Gravity direction) 1 (Gravity direction) 0 1 (X and −X)
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(lifting). (b) Combo 2. (c) Combo 3 (transport).

In the directions parallel to the plane of the longest walls (U2 and U3), the maximum
deformation is 0.43 mm (Table 3), which is less than the deformation at which damage is
produced in the plasterboard panels. Therefore, it is considered that the proposed system
allows prefabrication, including the specified finishes (mainly painting). The final weight
of the proposed structure is 267.54 kgf.

Table 3. Maximum and minimum displacements of ETASS in the superior and inferior supports of
the panels. The bold numbers are the maximum and minimum displacements for each combination.

Joint Displacements

CASE Joint OutputCase CaseType U1 U2 U3 R1 R2 R3

Text Text Text Text m m m Radians Radians Radians

1 78 Combo 1 Combination −3.899 × 10−6 −6.342 × 10−6 −0.000151 −0.000116 −0.000078 −0.000047

1 70 Combo 1 Combination −3.204 × 10−6 0.000012 −0.000142 0.000124 0.000189 0.000031
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Table 3. Cont.

Joint Displacements

CASE Joint OutputCase CaseType U1 U2 U3 R1 R2 R3

Text Text Text Text m m m Radians Radians Radians

1 74 Combo 1 Combination −0.000138 3.734 × 10−6 −0.000298 6.904 × 10−6 0.002846 −0.000013

1 55 Combo 1 Combination 0.000076 −3.459 × 10−6 0.000127 −0.000029 0.002372 −0.000012

1 78 Combo 2 LinStatic 0.000061 −9.285 × 10−6 −0.000138 −0.000125 −0.002279 −0.000062

1 70 Combo 2 LinStatic 0.000041 0.000015 −0.000128 0.000138 −0.002013 0.000024

1 73 Combo 2 LinStatic 0.000221 −2.89 × 10−6 −0.000429 2.047 × 10−6 0.003117 1.328 × 10−6

1 51 Combo 2 LinStatic 0 0 0 0.000013 0.001809 5.663 × 10−6

1 78 Combo 3 LinStatic 0.000061 −9.285 × 10−6 −0.000138 −0.000125 −0.002279 −0.000062

1 70 Combo 3 LinStatic 0.000041 0.000015 −0.000128 0.000138 −0.002013 0.000024

1 73 Combo 3 LinStatic 0.000221 −2.89 × 10−6 −0.000429 2.047 × 10−6 0.003117 1.328 × 10−6

1 51 Combo 3 LinStatic 0 0 0 0.000013 0.001809 5.663 × 10−6

1 78 Combo 4 LinStatic 0.000061 −0.000014 −0.000125 −0.000136 −0.001905 −0.000028

1 70 COMBO 4 LinStatic 0.00004 0.000014 −0.000128 0.000136 −0.002013 0.000024

1 73 COMBO 4 LinStatic 0.000213 −3.115 × 10−8 −0.000421 −3.173 × 10−7 0.003081 −8.588 × 10−7

1 51 COMBO 4 LinStatic 0 0 0 0.000016 0.001811 8.431 × 10−7

2 52 COMBO 5 Combination −0.000353 −0.000034 −0.000027 0.000104 0.001192 0.000186

2 74 COMBO 5 Combination −0.000542 0.000035 −0.000213 0.000024 −0.000253 0.000114

2 1 COMBO 5 Combination −0.000608 0.000033 −0.00029 −0.000997 −0.002713 0.000239

2 56 COMBO 5 Combination 0 0 0 −0.0003 0.000202 −4.024 × 10−6

The top of the secondary structure will be structured with pick points, where two
pairs of slings will be placed that will go from the pick points to a 3.7 m long spreader
bar, according to Figure 10. Considering a total weight of the structure–module system of
711.09 kg and a minimum angle of 30◦ between the slings that join the ends of the spreader
bar with the hook of the crane, we have the following design of the spreader bar:

C = tan30◦ × 711.09 kg = 410.55 kgf; λ =
Kl
r

=
1 × 360 cm

3.49 cm
= 103.14 (1)

CC =

√
2 × π2 × E

σy
=

√
2 × π2 × 2,100,000 kg/cm2

2500 kg/cm2 = 128.70 < 103.14 → σc = 891.92 kgf/cm2 (2)

891.92
kgf
cm2 × 9.29 cm2 = 8285.96 kgf > 711.09 kgf → OK → Spreader Bar : Steel A36 O 4 × 7.29

kgf
m2

→ 30 kgf (3)
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3.4. Design of the Lifting Process Considering Available Machinery

Only cranes available in the local market are considered. This equipment is priced
considering rental with a minimum of 90–180 h, which does not include operator or
fuel costs. For the lifting work simulation, kranXpert 1.9.9.6 demo version software is
used, considering terrain conditions and interferences, and using a standard crane edited
according to the characteristics of the available ones (Figure 11). Availability is pointed out
for each case in Table 4. The total lifting load (below the hook) is 750 kgf.
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Table 4. Available lift equipment and specifications.

Type Crane Model Max. Working
Radius [m]

Working Range
(Height) [m]

Max. Width with
Stabilisation at

100% Extension [m]

Cost
[USD/h]

Case
1

Case
2

Spider URW 376 14.45 −77.07–14.45 4.44 43.48 � ×

Spider URW 506 15.71 −86.57–15.71 5.94 48.54 � ×

Spider URW 295 8.41 −46.8–8.41 3.935 41.02 � ×

Truck HIAB XS 288 12.685 3–12.69 45.13 � ×

Truck PM 32 14.85 0.9–418.4 5.465 60.89 � �

Truck PM 16523 9.95 1.240–13.19 4.7 35.71 � ×

Truck ATLAS 3323E A5 16.49 4–18.3 6 60.89 � �

Truck ATLAS AK1652EA3 12.25 −8–12.8 4.030 35.72 � ×

The lifting costs, including both site cases, reach 60.93 USD/h. It is essential to mention
that this value is the unit price per machine hour, which is not necessarily equal to the final
rental cost of the equipment due to a minimum number of rental hours determined by the
supplier. In addition to this equipment, technological alternatives exist in the world market,
which are presented below:

• Derricks: This equipment requires a large surface to install the guy-wires needed to
provide stability to the machinery. Also, some of the parts usually need mechanical
assistance (crane trucks or winches) to be mounted in the operational position.

• Forklifts: This equipment is usually used in volumetric modules’ installation, but a
flat transit surface is always needed. This last aspect is unusual in the projects in the
scope of this research.

• Tower Cranes: This type of equipment requires less space on the construction platform,
making it possible to avoid interferences. A specially designed, dismountable tower
crane should be a feasible alternative.

4. Discussion
Assessment of Economic and Environmental Cost of the Alternatives

In order to evaluate the cost and environmental impacts of the new alternative ver-
sus the traditional modularisation method, a comparison was performed to evaluate the
embodied carbon and cost of the construction materials. The evaluation takes into consid-
eration the stages of the life cycle of a building according to EN15978 [82]. The benefits of
the proposed methodology are mainly in stages A1–A3 (product stage) and D (benefits and
loads beyond the building life cycle) [83].

In the case of the product stage, the ETASS makes it possible to avoid using a cold-
formed steel frame. The environmental impact is directly related to the production method-
ology of the steel, especially the proportion produced by the melting of recycled scrap
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steel in an electric arc furnace (EAF), which consumes less energy and emits less CO2 than
other methods [84]. Considering the U.S. steel market, EAF produced a carbon footprint
of 0.6 tCO2/tcs (tonnes of CO2 per tonne of crude steel) compared to the 2.1 tCO2/tcs
emitted using the blast furnace and basic oxygen furnace methods (BF/BOF) [85]. However,
considering the data only from the South American region, 31.9% of steel is produced by
the EAF methodology [86], which produces a carbon footprint of 1.6 tCO2/tcs.

Table 5 presents a comparison between both alternatives (traditional versus proposed
methodology) considering only the C100 × 100 × 3 steel frames in all the corners of each
module (horizontal and vertical). According to the results, it is possible to determine that
the proposed alternative is 54.39% less expensive compared with the traditional alternative.
At the same time, it is possible to determine that the proposed alternative has a carbon
footprint 54.44% lower than the traditional construction method. In both cases, the lower
cost and environmental impacts are explained by the fact that the reusable stiffener frame
allows considerable savings in material usage.

Table 5. Summary of economic and environmental comparison of both alternatives, considering one
housing unit.

Traditional OSC Proposed OSC Savings

Steel [kg] 2254 1028 1226

Cost [USD] 15,260 6959 8300

Embodied carbon [tCO2] 3.60 1.64 1.96

5. Conclusions and Recommendations

This paper proposes a novel construction system consisting of a supplementary struc-
ture that allows volumetric modular structures of lightweight steel to resist the efforts
produced by transport and lifting processes in an offsite construction methodology. Con-
sidering the results of this research, the following conclusions can be drawn:

• The traditional modularisation method increases the cost of social housing because the
structure must be oversized. Then, the increased cost is an obstacle to the possibility
of financing the modularisation of social housing in developing countries and EEs.

• The novel offsite construction method allows the prefabrication of social housing
with less direct cost compared to the traditional methodology. Consequently, savings
are produced by avoiding the cold-formed steel structure of the traditional offsite
construction methodologies for modules.

• The novel offsite construction method allows the prefabrication of social housing with
less environmental impact compared with the traditional methodology. It is important
to highlight that the technical evaluation of both cost and environmental impact was
performed according to Chilean regulations for this type of infrastructure.

• Since offsite construction methods are in their early stages in Chile, the market for
machinery and other related equipment needs to be adapted to this new type of
methodology in order to allow the optimisation of cost and productivity enhancements
to construction processes.

• Since this paper is mostly focused on practitioners and scientists, policy makers are
outside the scope of this research. However, we are certain that the results of this paper
can be considered in public policies on social housing to encourage more affordable
and environmentally friendly industrialised housing.

The significance of this research is related to the fact that it is possible to improve
the construction methods for social housing in developing countries and EEs using new
approaches that consider standardised local materials and traditional lifting machinery.
Novel construction systems can allow for improved productivity and reduced cost and envi-
ronmental impacts to overcome the high demand for social housing in EEs and developing
countries. Although the results of this research are focused on Chile and two particular
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locations, the technical, economic, and environmental feasibility of the methodology and
the proposed novel system can be evaluated in other regions and countries as well. Finally,
the results of this paper can be also considered to make public policies that encourage more
affordable and environmentally friendly industrialised social housing in EEs, considering
social, environmental, and economic sustainability.
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