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Abstract: Predicting the heavy metals adsorption performance from contaminated water is a major
environment-associated topic, demanding information on different machine learning and artificial
intelligence techniques. In this research, nano zero-valent aluminum (nZVAl) was tested to eliminate
Cu(II) ions from aqueous solutions, modeling and predicting the Cu(II) removal efficiency (R%)
using the adsorption factors. The prepared nZVAl was characterized for elemental composition
and surface morphology and texture. It was depicted that, at an initial Cu(II) level (Co) 50 mg/L,
nZVAl dose 1.0 g/L, pH 5, mixing speed 150 rpm, and 30 ◦C, the R% was 53.2 ± 2.4% within 10 min.
The adsorption data were well defined by the Langmuir isotherm model (R2: 0.925) and pseudo-
second-order (PSO) kinetic model (R2: 0.9957). The best modeling technique used to predict R% was
artificial neural network (ANN), followed by support vector regression (SVR) and linear regression
(LR). The high accuracy of ANN, with MSE < 10−5, suggested its applicability to maximize the
nZVAl performance for removing Cu(II) from contaminated water at large scale and under different
operational conditions.

Keywords: adsorption optimization; aluminum-based nanoparticles; Cu(II); linear regression; neural
network; support vector regression

1. Introduction

Most heavy metals contribute to atmospheric and environmental pollution, and their
toxicity can be fatal to humans and various living organisms [1,2]. The ions of these metals
are bio-accumulative, and extremely persistent in nature, and thus they pose threats to
biological bodies living in aquatic environments [3,4]. There is a growing demand for
potable water with low levels of toxicants, which necessitates removing metal ions from
contaminated water bodies [5]. Copper (Cu) is one of the environmental pollutants deemed
most dangerous to health, since it is not only non-biodegradable but also mutagenic,
notorious, and carcinogenic [6,7]. The Cu(II) ion levels in aquatic environments should be
below 2.0 mg/L to avoid human health issues, such as reduced lung function, renal and
liver failures, chronic bronchitis, cancer, and gastrointestinal distress [4]. The main sources
of Cu(II) ion pollution are paper and pulp industries, metallurgical mining, petroleum
refining, and steelworks [8]. Evaporation, adsorption, precipitation, membrane separation,
electrocoagulation, and ion exchange are the common methods employed to eliminate
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heavy metals, including Cu ions, from industrial wastewater sources [9,10]. The adsorption-
based wastewater treatment method has encouraged researchers’ motivation because of
its simplicity of implementation and design, easy recovery of heavy metals, relatively
low operation cost, and the feasibility of reusing the spent sorbent [11–13]. Adsorption
is also characterized by ease of operation, and generation of low amounts of residue
(e.g., sludge) [13,14]. The efficiency of heavy metal (e.g., Cu2+) removal from contaminated
water using the adsorption method is highly reliant on the characteristics of the adsorbent
material [15–17]. These characteristics include fast and adequate adsorption ability, cost-
effectiveness, and regeneration/recyclability/reusability [2].

From accessible sorbent materials, nano zero-valent aluminum (nZVAl) has great
potential for use in the treatment of contaminated water due to its high reactivity and
strong reductive capacity [18,19]. The nZVAl material has been evidenced to be effective in
removing non-biodegradable pollutants by generating hydroxyl radicals and sulfate in the
aqueous medium [20]. Many researchers have reported that nZVAl was effective in remov-
ing phenol, nitrobenzene, perchlorate, chromium(VI), chloride, nitrate, dye compounds,
bisphenol A, and hexabromocyclododecane from contaminated water [20–22]. Nanoscale
ZVAl is an active and stable metal with a large surface area, having a wide range of versa-
tility and flexibility for in-situ applications. In addition to advanced oxidation processes
(AOPs), nZVAl can be used in single or bimetallic systems. For example, nZVAl-based
technologies could quickly remove complex organic pollutants that are hardly biodegrad-
able. nZVAl is also considered a potent reducing agent and could be used as a catalyst in
wastewater treatment by oxidation processes. Different pollutants can be eliminated from
the aqueous medium using nZVAl in Fe/Al, Pd/Al, and Cu/Al bimetallic systems [20].
The performance of nZVAl in minimizing pollution of the aquatic environments should be
adequately predicted to ensure proper wastewater treatment under various operational
conditions. These operating conditions are controlled by several factors, e.g., nZVAl dosage,
treatment period, and solution pH. The values of these factors should also be optimized to
maximize the nZVAl treatment patterns within a shorter time and economically feasible
costs [21]. The proposed modeling techniques should be flexible and simple to predict the
nZVAl treatment performance toward various and broad ranges of heavy metals when
receiving non-linear input attributes [22]. It is an essential step to find the appropriate mod-
eling technique that could mitigate the limitations of some adsorption-related operational
conditions, such as nanoparticle aggregation, inadequate colloidal stability, and complexity
in solid separation from the final supernatants [19].

Prediction of nZVAl performance for heavy metal removal, with high accuracy and
efficiency, is an essential task in wastewater treatment. Machine learning is considered
a common technique used for predicting Cu(II) removal from aqueous solutions [23,24].
Many researchers have proposed different techniques for water engineering problems,
using support vector regression (SVR), linear regression (LR), and artificial neural network
(ANN) [25–28]. As such, SVR is a supervised learning algorithm used for prediction pur-
poses based on a two-layer structure. The first and second layers represent a nonlinear
kernel weighting on the input attribute series and a weighted sum of the kernel outputs,
respectively [25,29]. The LR methods are appropriately employed to predict the concentra-
tions of multiple water quality parameters, either single output or multiple outputs [30,31].
The artificial neural network (ANN) is a promising mathematical model alternative that has
been recently applied to capture the nonlinear correlations in the environmental engineer-
ing sector [32–35]. For instance, Fan et al. [36] used ANN for forecasting copper elimination
from aqueous media using reduced graphene oxide-supported nanoscale zero-valent iron
(nZVI/rGO) magnetic nanocomposites. Granata et al. [37] emphasized that machine learn-
ing algorithms could be effectively used in predicting the water quality status of urban
wastewater effluents, which would be further considered for sizing and scaling up the
treatment facility. In addition, several optimization techniques were established to improve
the performance and sustainability of the wastewater treatment processes [38,39].
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In this research, nZVAl was tested for the first time to eliminate Cu(II) ions from aque-
ous media under various experimental conditions (water pH, initial Cu2+ concentration
(Co), adsorption period, nZVAl dosage, stirring rate, and temperature). The prepared
nZVAl materials were characterized regarding surface morphology and elemental compo-
sition to evaluate the Cu(II) uptake pathways. Different isotherm and kinetic adsorption
models were used to describe the experimental data. This research also compared between
machine learning techniques and artificial intelligence (SVR, LR, and ANN) for estimating
Cu(II) removal from water by nZVAl. Because performing experiments for several trials is
laborious, difficult, and costly, this modeling protocol would enable future researchers to
carry out wastewater-associated experiments in a sustainable manner.

2. Materials and Methods
2.1. Preparation of Cu(II) Solution

For batch experiments, 3.928 g of copper sulfate pentahydrate (CuSO4·5H2O; Loba
Chemie, India) was dissolved in 1 L of deionized water to provide a copper stock solu-
tion (1000 mg/L). This standard solution was gradually diluted with calculated volumes
of deionized water to get the required Co range (10–50 mg/L). Solutions of 0.1 M HCl and
0.1 M NaOH were applied to adapt the water pH between 1.0 and 7.0. The required reagents
were purchased from Honeywell Company, Germany, and Sd Fine Chemicals Ltd., India.

2.2. Synthesis of Adsorbent

Nano-scale zero-valent aluminum (nZVAl) particles were synthesized via the sodium
borohydride reduction method (NaBH4, Winlab Co., UK) [21,40]. Briefly, aluminum sulfate
(Al2(SO4)3·18H2O, Loba Chemie, India) was dissolved in distilled water and the mixture
was aggressively agitated at 500 rpm by a magnetic bar. The borohydride solution (25 mL)
was added drop by drop to an aqueous medium (25 mL) containing aluminum ions (Al3+)
by a burette fixed on the stand. This step was employed to reduce the aluminum ions to
zero-valent aluminum nanoparticles. Hydrogen gas was evolved following Equation (1),
and the solution pH elevated from 2 to 5 at the reaction’s completion. Besides, the reaction
temperature rose from 20 ◦C to 32 ◦C while the reducing agent was being added to the
aluminum ion solution. The synthesis reaction could be described as follows:

2Al3+ + 6BH−4 + 18H2O→ 2Al0 + 6H2BO−3 + 24H+ + 12H2 (1)

After reaction completion, the mixture was agitated for an additional 20 min to ensure
that the reducing agent and the dissolved aluminum ions were completely reacted, forming
the precipitated nZVAl. Following that, vacuum filtration was used to remove the produced
nZVAl from the reaction medium. Afterward, the nanoparticles were thoroughly rinsed
with distilled water, and then three times with ethyl alcohol, followed by drying the nZVAl
in an oven at 110 ◦C for 6 to 8 h. The synthesized nZVAl surface was covered by a small
amount of ethyl alcohol for storage, protecting the nanoparticles from further oxidation.
The aforementioned steps are summarized in this flow chart (Figure 1).
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Figure 1. Schematic flow chart representing a synthesis of nZVAl.

2.3. Instrumentation

The particle size and crystal information of nZVAl were examined using X-ray powder
diffraction (XRD, Panalytical X’Pert Pro Multipurpose Diffractometer, Netherlands). The
equipment was supplied by CuKα radiation with a wavelength of 1.54 Å. The Scherrer
equation (Equation (2)) was used to calculate the nZVAl crystallite size [41].

D =
Kλ

β cos θ
(2)

where D and K represent crystallite size and shape factor, respectively, λ is the X-ray
wavelength, β signifies the full width at half-maximum, and θ is the diffraction angle.

A high-resolution transmission electron microscope (HR-TEM, JEM-2100, Japan), op-
erated at 25 kX and 200 kV, was used to explore the nZVAl morphology. A field-emission
scanning electron microscope (FE-SEM, Philips, Quanta FEG 250, USA) outfitted with an
energy dispersive spectrometer (EDS) was employed at 20 kV to investigate the nZVAl
surface structure and elemental composition. The changes in the chemical composition
of nZVAl particles, as well as their mineral content and surface atomic distributions, due
to adsorption were examined using an X-ray fluorescence (XRF) analyzer (Oxford Instru-
ments, X-MET 7000 series, USA). The supernatant samples, after batch experimentation,
were passed through Whatman membrane filters (0.2 µm pore size) and the Cu(II) ion
concentrations were measured using a flame atomic absorption spectrophotometer (AAS,
Thermo Scientific, ICE 3000 Series AA Spectrometer, USA) at λ = 324.8 nm.

2.4. Experimental Setup

Batch experiments were carried out in 250 mL Erlenmeyer flasks to estimate the
effectiveness of nZVAl in removing Cu(II). A one-factor-at-a-time approach was followed
to investigate the influences of various experimental factors on Cu(II) removal efficiency
(R%), viz., solution pH (1–7), Co (10–50 mg/L), nZVAl dosage (0.25–1.0 g/L), temperature
(30–60 ◦C), adsorption time (10–60 min), and stirring rate (50–200 rpm). The studied
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experimental factors and associated range were assigned based on literature [2,42,43]. All
experiments were performed in triplicate.

Equation (3) was employed to compute R(%), whereas Equation (4) was employed to
derive the Cu(II) adsorption capacity onto nZVAl.

R(%) =
Co − C f

Co
× 100 (3)

q =

(
Co − C f

)
×V

M
(4)

where R(%) is the Cu(II) removal efficiency (%), q is the amount of Cu(II) adsorbed onto
nZVAl (mg/g), Co and Cf are the initial and final Cu(II) levels in the solutions (mg/L),
respectively, M is the nZVAl mass (g), and V is the water volume (L)

2.5. Modelling Techniques

A comparative study between different machine learning techniques and artificial
intelligence for estimating R(%) from aqueous media has been carried out. Different
regression algorithms, such as SVR, RT, and ANN, have been applied:

2.5.1. Support Vector Regression (SVR)

Support vector regression (SVR) was developed based on the structural risk minimiza-
tion concept, giving practical applications of statistical learning theory and outstanding
generalization performance [44]. SVR aims at finding the hypothesis function, f(x), that
separates two different classes in terms of margin maximization. SVR is characterized by
its ability to tackle non-linearity relationships and work with non-linear datasets. It uses a
linear model to implement non-linear class boundaries through the non-linear mapping of
input vectors into a high-dimensional feature space. To tackle this problem, SVR’s kernel
function and hyperparameters are initially defined. A suitable setting of these parameters
will influence the generalization performance of the prediction model. Given an input
training dataset, (X, Y) = (x1, y1), (x2, y2), · · · , (xN , yN), the predicted output response
(ŷ) of f (x) can be expressed by Equation (5) [25,44]:

ŷ = 〈ω, φ(x)〉+ b =
N

∑
i=1

(αik(xi, x)) + b (5)

where 〈ω, φ(x)〉 denotes the dot product of the weight vector (w) and feature vector with
a non-linear transformation function φ(x), αi coefficients represent the support vectors,
k(xi,x) is a proper kernel function for non-linear feature mapping, and b is a constant term

A polynomial kernel function is used to learn non-linear feature parameters. It com-
pares two column vectors under the objective function framework using a degree-d poly-
nomial formula (Equation (6)) [25]:

K
(
x, x′

)
=

(
γxTx′ + c

)d
(6)

where x and x′ are two-column vectors representing the feature vectors, γ is a scalar
parameter, c is a constant, and d represents the kernel degree. Combining both Equations
(5) and (6) to yield ŷ, as Equation (7):

ŷ = 〈ω, φ(x)〉+ b =
N

∑
i=1

(
αi

(
γxTx′ + c

)d
)
+ b (7)
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2.5.2. Linear Regression

Linear regression is a common technique employed to predict an output variable
in complicated regression problems [31]. For instance, it could model the relationship
between multiple variables to predict the effluent parameters in wastewater treatment
processes [31,45,46]. It considers linear predictor functions whose values are derived from
the data in the model. The predictor output is commonly a single (dependent) variable.
The simple linear regression model is expressed by Equation (8) [30]:

Y = β0 + β1X + ε (8)

where Y and X denote the dependent and independent variables, respectively, and β0 and
β1 are the constant and linear coefficients, respectively, and the symbol ε represents the
error term.

The model (Equation (9)) for multiple linear regression is:

Y = β0 + β1X1 + β2X2 + · · ·+ βmXm + ε (9)

where m denotes the number of regressors.

2.5.3. Artificial Neural Network (ANN)

Artificial intelligence-based techniques are employed for learning, modeling, and predict-
ing a system’s performance. The artificial neural network (ANN) is one of these techniques,
consisting of input, hidden, and output layers (Figure 2). The neurons in these layers describe
the correlation between the input variables and the network’s layers [36,47]. Backpropaga-
tion is an iterative optimization process, where the loss function and evaluation metric are
minimized by adapting the weight and bias between neurons. Mean squared error (MSE)
(Equation (10)) was used as a loss metric for evaluating the backpropagation accuracy [28]:

MSE =
1
N

N

∑
i=1

(ŷ− yi)
2 (10)
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Activation functions were employed to generate a non-linear output from the weighted
sum of the ANN’s inputs. The input layer was connected to the hidden one using the
rectified linear unit (ReLU) activation function, while the linear transfer function was
allocated between the hidden and output layer. The number of neurons in the input and
hidden layers was chosen to be 6 and 16, respectively, for the best performance of the
model. The input data of the ANN model was normalized between −1 and 1 to prevent
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numerical overflows because of large or small values of the weights. The normalized
equation (Equation (11)) can be defined as follows [36]:

yi = 2
x− xmin

xmax − xmin
− 1 (11)

where yi gives the normalized value of x, and xmin and xmax stand for the minimum and
maximum values of x, respectively.

The weight of a neuron in a certain hidden layer is computed by Equation (12) [36]:

Wb =
k

∑
a=1

wabxa (12)

where k represents the neurons’ number in the input layer, wab is the connection weight
between neuron “a” in the input layer and neuron “b” in the hidden layer, and xa is the
neuron “a” value in the input layer.

Similarly, for the output layer, the weight of a neuron in the output layer can be
calculated by Equation (13), as follows [36]:

Wc =
z

∑
b=1

wbcxb (13)

where z is the number of neurons in the hidden layer, wbc represents the connection weight
between neuron “b” in the hidden layer and neuron “c” in the output layer, and xb signifies
the neuron “b” value in the hidden layer.

The weight of neurons in either the hidden layer or output layer was used in the
activation function to produce the predicted output (Equation (14)):

y = f (W + B) (14)

where y, f, W, and B are the output, activation function, weight, and bias, respectively.
Although the neurons’ number in the hidden layer is directly proportional to the

simulation performance of the ANN model, the excessive number of neurons could result
in over-fitting. The over-fitting issue tends to lessen the robustness and generalization of
the proposed model.

3. Results and Discussion
3.1. Results of the Experimental Characterization

The XRD profile of the nZVAl particles showed different peak intensities (Figure 3a).
The three most intense peaks were denoted at 38.4◦, 44.6◦, 64.9◦, and 78.1◦ for (111), (200),
(220), and (311) planes of aluminum, respectively. These peaks could describe the Al0

face-centered cubic structure of nZVAl. As such, the synthesized aluminum nanoparti-
cles existed in their zero-valent form (Al0), with a crystalline size of about 34 nm. The
minor peaks for 2θ between 20◦ and 35◦ could be ascribed to the detection of some trace
elements/deposits, such as sodium sulfate (Na2SO4), formed during the nanoparticles’
preparation. These byproducts could not be completely removed from nZVAl during the
washing process. In addition, there is an opportunity that a minor portion of the Al metal
was incompletely oxidized throughout the whole synthesis procedure. It is anticipated that
the produced nZVAl particles primarily had an amorphous Al2O3 outer oxide shell, acting
as an inert film to shield Al from unexpected oxidation.

The TEM image of synthesized nZVAl is shown in Figure 3b. The image depicted
that the nZVAl particles had rough surfaces, semi-spherical shapes, and diameters ranging
from 10 to 100 nm. The individual nanoparticle was approximately 34 nm in diameter, and
the majority (almost 80%) of the particles were smaller than 100 nm. In addition, the Al0

acted as the core of nanoparticles, while the aluminum oxide represented their thin exterior
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layer (a shell) [48]. Moreover, some nanoparticles of various sizes and shapes that were
haphazardly clustered together developed larger nanoclusters. As such, the greater surface
area of the discrete particles may be responsible for these aggregates.
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Figure 3c displays the SEM image of the unloaded nZVAl nanoparticles. The nanopar-
ticles displayed an irregular surface feature with numerous unequal and noncircular pores.
Additionally, certain nanoparticles adhered together (agglomerated), forming chain-like
nanoclusters with diameters smaller than 100 nm. Such aggregates have also been noticed
for nZVAl preparation [49]. However, this morphological feature was changed when water
laden with Cu(II) contacted the nZVAl surface (Figure 3d). For instance, many pores disap-
peared and the empty zones were filled by Cu(II) ions. This change in surface morphology,
with different sizes and shapes of aggregates, could reflect the high adsorption affinity of
nZVAl toward Cu(II). In particular, some Cu(II) ions created an attached adsorbate film on
the nZVAl outer surface, whereas others migrated through the nanoparticles’ interior voids.

EDS spectra were employed to analyze the chemical composition of nZVAl before
and after Cu(II) uptake (Figure 4a,b). The use of ethanol (C2H6O) during the washing
step and/or the nZVAl incomplete oxidation because of material carrying, cleaning, and
handling could be responsible for the existence of C and O components. The nZVAl sample
consisted of 25.17% aluminum by weight. The presence of a prominent peak at 1.5 keV was
mainly attributed to elemental Al, showing that the aluminum element represented the
majority of the obtained sample’s composition. The formation of peaks for Na, S, Cl, and
Cu in the EDS elemental pattern of the loaded adsorbent demonstrated that Cu(II) ions
were adsorbed properly onto the nZVAl surface. Additionally, it is possible to recognize
that the weight percentage of Al reduced from 25.17% to 18.32% (before and after Cu(II)
adsorption). On the contrary, the weight percentage of O increased from 55.99% to 64.16%,
respectively. As such, the nZVAl particles were further oxidized and a thicker shell of
Al2O3 layers was formed.
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Table 1 lists the XRF examination results of the mineral oxides forming the nZVAl
sample. The sample consisted primarily of the element aluminum, with a percentage
of 77.07%, in the form of Al2O3, and traces of metal oxides (impurities) that could be
disregarded. Additionally, these results supported the prior characterization findings of
XRD and EDS analyses and verified that the produced nanoparticles were largely composed
of aluminum. Following Cu(II) ion adsorption, the aluminum oxide proportion shifted
slightly from 77.07% to 70.12%. However, the nZVAl particles maintained their chemical
composition remarkably. This variation in Al content could be ascribed to (i) formation of
aluminum oxides during experimental operation that accumulated on the nZVAl surface,
and/or (ii) oxidation of the thin layer that immediately surrounded the nZVAl particles’
surface followed by subsequent oxidation of the deeper layers. Additionally, the sample
comprised copper oxides in the form of tenorite (CuO) at a percentage of 2.94%. These
findings confirm the effectiveness of the nZVAl particles to uptake Cu(II).

Table 1. XRF analysis of nZVAl particles before/after Cu(II) adsorption.

Al2O3 SiO2 P2O5 SO3 Cl K2O CaO Cr2O3 ZnO FeO or
Fe2O3

CuO Loss of
Ignition

Before Cu(II) ion
adsorption

77.07
± 3.36

2.46
± 0.17

0.69
± 0.03

11.16
± 0.58

2.89
± 0.14

0.22
± 0.01

0.31
± 0.01

0.04
± 0.02

0.037
± 0.002 0 0 5.12

± 0.27

After
Cu(II) ion

adsorption

70.12
± 3.80

2.42
± 0.15

0.55
± 0.02

5.07
± 0.25

4.55
± 0.17 0 0.28

± 0.01 0 0.012
± 0.002

0.06 ±
0.008

or
0.07 ±
0.009

2.94
± 0.12

14 ± 0.723
or

13.98 ±
0.724

3.2. Effects of Operating Parameters on Cu(II) Removal

The R(%) using nZVAl changed significantly with regard to the variation in the
adsorption factors (Figure 5). For example, the R(%) increased from 18.0 ± 0.9% to
40.0 ± 2.5% as pH rose from 1 to 7, respectively (Figure 5a). In an acidic medium with low
pH, there is great competition between hydrogen ions (H+) and Cu2+ for adsorption, limit-
ing the adsorbate ions’ transfer to the adsorbent binding locations [2,50,51]. An increase in
solution pH is normally followed by the dominance of the negatively charged OH– on the
nZVAl surface, facilitating the uptake of Cu(II) ions from the solution [2].
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Figure 5. Influences of operational factors on the Cu(II) removal efficiency by nZVAl (a) solution
pH, (b) nZVAl dosage, (c) contact time, (d) stirring rate, (e) adsorption temperature, (f) initial
Cu(II) concentration.

The R(%) improved from 27.9 ± 1.3% to 53.2 ± 2.4% when the nano-adsorbent dosage
increased from 0.25 to 1.0 g/L, respectively (Figure 5b). Elevating the nZVAl dosage
created abundant vacant sites that captured larger Cu(II) amounts. A comparable behavior
was noticed for Cu(II) ions removal using petroleum coke-derived microporous carbon
(adsorbent), depicting an elevation of Cu(II) ions removal from 20 ± 1.1% to 50 ± 2.7%
with increasing the dosage from 0.2 to 1.0 g/L, respectively [2].

Contact time is another important factor to be investigated for successfully modeling
the adsorption process. The R(%) increased from 27.9 ± 1.3% to 34.7 ± 1.7% when the
adsorption time was prolonged from 10 to 60 min, respectively (Figure 5c). The rapid
increase in Cu(II) removal during the first 10 min (the initial stage) could be mainly ascribed
to the accessibility of more free active sites on the nZVAl surface. The adsorption stage began
to reach the equilibrium condition after about 50 min, probably because of nZVAl saturation.
Similar behavior was observed for Cu(II) ions removal using chitosan (adsorbent), where
the equilibrium state was attained after 50 min of the adsorption period [43].

The R(%) was also improved at faster stirring rates (Figure 5d). A significant im-
provement in Cu(II) removal from 21.9 ± 1.7% to 27.9 ± 1.8% was observed when the
agitation speed was raised from 100 to 150 rpm, respectively. Increasing the stirring rate
over 150 rpm also provided a suitable condition for enhancing the diffusion of Cu(II) ions
through the nZVAl pores. Similarly, 200 rpm was the optimum stirring speed to improve
the solid-liquid phase mass transfer during Cu(II) adsorption onto chitosan [43].

The R(%) also varied according to the shift in the adsorption temperature (Figure 5e).
For example, the R(%) was enhanced from 27.9 ± 1.3% to 30.4 ± 1.8% when the adsorp-
tion temperature lifted from 30 ◦C to 60 ◦C, respectively. This increase in the adsorp-
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tion rate could be assigned to the reduction in the activation energy barrier at higher
temperatures [52]. Other reasons for the R(%) increase at higher temperatures include
(i) development of additional adsorption sites and (ii) increasing the intraparticle diffusion
rate of Cu(II) into the adsorbent [51].

The results in Figure 5f showed that the R(%) dropped from 45.9± 2.1% to 26.1± 1.6%
when Co increased from 10 to 40 mg/L, respectively. At low Co, the majority of vacant sites
are available to capture Cu(II) ions. These findings agree with previous research performing
adsorption experimentation by ash to capture Cu(II) from aqueous solutions [53]. Another
reason for the R(%) reduction at higher Co could be the blockage of the available active
sites, as well as the increased competition among Cu(II).

3.3. Cu(II) Removal by Various Adsorbents Mentioned in Previous Studies

Table 2 represents a comprehensive comparison between the application of nZVAl and
other adsorbents mentioned in the literature for Cu(II) removal from wastewater. At the
same experimental conditions, nZVAl exhibited a higher R(%) than groundnut seed cake
powder (GNCSP), sesame seed cake powder (SSCP), and coconut cake powder (CCP) [54].
The study [54] focused on preparing biosorbent materials with low costs, which should
be further modified to increase their Cu(II) uptake capacities. Most synthetic sorbents
exhibited higher R(%) than the natural-based material. Moreover, some adsorbents, such as
magnetite nano-adsorbent [55] and TiO2 nanosorbents [56], exhibited a higher R(%) than
nZVAl, even with lower adsorbent dosages. Almost complete Cu(II) removal was observed
using nano-TiO2 sorbent, which could be ascribed to its dual adsorption and photocatalytic
activities [56]. The magnetite/carbon nanocomposites exhibited a higher R(%) than nZVAl,
but used a higher dosage (0.5 g/L) and longer contact time (240 min) [57]. This variation in
R(%) among different adsorbents could be ascribed to the different experimental conditions
(e.g., pH, Co, and adsorbent dosage) and material preparation.

Table 2. Removal efficiencies of Cu(II) using various adsorbent materials reported in the literature.

Adsorbent Adsorbent
Dosage (g/L) pH Co

(mg/L)
Time
(min)

Temp.
(◦C)

Stirring Rate
(rpm)

Removal
Efficiency (%) Reference

nZVAl 0.25 5 10 10 30 150 45.9 This
study

Groundnut seed
cake powder

(GNCSP)
0.25 5 10 30 40 N/A 43 [54]

Sesame seed cake
powder (SSCP) 0.25 5 10 30 40 N/A 40 [54]

Coconut cake
powder (CCP) 0.25 5 10 30 40 N/A 41 [54]

Magnetite
Nano-Adsorbent
from Mill Scale

Waste

0.05 5.4 10 30 25 N/A 49 [55]

Titanium oxide
(TiO2) nanosorbents 0.05 6 10 120 25 1000 98 [56]

Bottom ash of
expired drugs

incineration (BAEDI)
1.0 5 50 15 25 N/A 22 [53]

Magnetite/carbon
nanocomposites 0.5 6 10 240 25 N/A 68 [57]

3.4. Cu(II) Removal Mechanism by nZVAl

Generally, Al-water reactions have an induction time, resulting from the hydra-
tion of the passive oxide coating on the Al surface. The oxyhydroxide or hydroxide
(i.e., H2O molecules) phases would interact with Al and produce H2. Consequently, H2
gas bubbles are generated at the interface between the passive oxide film and inner Al
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(Equations (15) and (16)). As the interface reaction proceeds (i.e., the hydration front con-
tacts the surface of the inner Al), the gas pressure in the H2 bubbles becomes greater than
the critical pressure that the dense passive oxide layer can endure. Thus, the H2 bubbles will
collapse to facilitate the transfer of outside water into the Al core [48]. In this scenario, the
Al core and Cu(II) ions interact to generate the Cu(II) precipitates (Equations (17) and (18)).
H2 molecules simultaneously depart from the solution and Al surface, creating a macro-
scopic H2 gas pressure inside the system. Following the rupture of the passive oxide
film, several reactions responsible for Cu(II) reduction possibly happened in light of the
aforementioned investigations:

Al + 2H2O→ AlOOH ↓ +3
2

H2 ↑ (15)

Al + 3H2O→ Al(OH)3 ↓ +
3
2

H2 ↑ (16)

Al + Cu2+ + 6H2O→ Al(OH)3 ↓ +Cu(OH)2 ↓ +HO− (17)

Al0 + Cu2+ → Cu ↓ +Al3+ (18)

Figure 6 provides a schematic illustration of Cu(II) elimination by nZVAl. It’s sug-
gested that Cu(II) removal could follow two different pathways (1) Cu(II) conversion into
Cu(II) hydroxides and Cu0 precipitates, (2) Cu(II) adsorption on the surfaces of thin Al2O3
layer or the AlOOH and Al(OH)3 produced by the Al-water reaction. Both the Cu(II) re-
moval and the Al-water reaction compete for the electrons liberated from the metal Al core.
According to the current findings, there could be enough electrons from nZVAl available
for the elimination of Cu(II).
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3.5. Isotherm and Kinetic Investigations

Two isotherm models were applied to demonstrate the adsorption equilibrium be-
tween Cu(II) and nZVAl (Figure 7). These models are Langmuir (Equation (19)), and
Freundlich (Equation (20)), as previously reported [58]:

Ce

qe
=

(
1

Qm

)
Ce +

1
KL . Qm

(19)

log(qe) =

(
1
n

)
log(Ce) + log(KF) (20)
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where Ce is the Cu(II) concentration in the aqueous solution at equilibrium (mg/L), Qm
is the maximum adsorption capacity, qe is the amount of Cu(II) adsorbed per gram of
nZVAl at equilibrium (mg/g), KL is the Langmuir constant (L/mg), KF is the Freundlich
constant (mg/g)·(L/mg)1/n, and 1/n is the Freundlich constant describing the adsorption
intensity/strength.
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Figure 7. Fitting of adsorption data to (a) isotherm Langmuir model, (b) isotherm Freundlich model,
(c) PFO kinetic model, and (d) PSO kinetic model.

The Langmuir model attained an adequate fitting accuracy (R2 = 0.925; Figure 7a)
to represent the adsorption isotherm. This fitting suggested that the sorbent surface
was homogeneous and Cu(II) uptake by nZVAl could comply with the hypothesis of
monolayer adsorption [58,59]. In this context, the model constants (qm = 5.892 mg/g and
KL = 0.921 L/mg) were suitable to represent the homogeneous adsorption process (Table 3).
These constants also indicated that the adsorption of Cu(II) onto nZVAl was preferable
under the designed experimental conditions. A low R2 value for the Freundlich model fit
(Figure 7b) suggested that the multilayer adsorption hypothesis could not properly describe
Cu(II) removal by nZVAl. The Langmuir model also depicted a better fit to the adsorption
results than the Freundlich model for Cu(II) removal using green and red clays [59].

Table 3. Results of isotherm and kinetic studies for Cu(II) removal by nZVAl adsorbent.

Model Parameter Fitting Accuracy (R2)

Langmuir isotherm qm = 5.892 mg/g
KL = 0.921 L/mg 0.9248

Freundlich isotherm 1/n = 0.2282
KF = 3.178 (mg/g)·(L/mg)1/n 0.8952

Pseudo-first-order qe = 5.2 mg/g
k1 = 0.0826/min 0.7895

Pseudo-second-order qe = 7.4 mg/g
k2 = 0.00477 g/mg/min 0.9957

The pseudo-first-order (PFO) (Equation (21)) and pseudo-second-order (PSO)
(Equation (22)) kinetic models [60] were applied to quantitatively demonstrate the kinetic
adsorption of Cu(II) ions onto nZVAl:

log(qe − qt) = log(qe)−
k1

2.303
t (21)
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t
qt

=
1

k2 × q2
e
+

1
qe

t (22)

where qt and qe are the amounts of adsorbed Cu(II) at operation time= t and equilibrium,
respectively (mg/g), and k1 (mg/g/min) and (g/mg/min) are rate constants of PFO and
PSO, respectively.

The low R2 value of 0.7895 (Figure 7c) was observed by fitting the experimental data
to the PFO kinetic equation, inferring that adsorption didn’t occur through diffusion at the
solid/liquid interface [61]. The PSO kinetic model achieved a sufficient fitting accuracy
(R2 = 0.9957; see Figure 7d), suggesting that some chemical bonds existed between Cu(II)
and the nZVAl’s active sites. The derived parameters were k2 = 0.0283 g/mg/min and
qe,calc. = 7.4 mg/g (Table 3). The adsorption of Cu(II) onto magnetite/carbon nanocomposites
also followed the PSO kinetic method, with k2 of 0.00477 g/mg/min and qe of 9.61 mg/g [57].

3.6. Thermodynamic Study

To determine the thermodynamic properties of Cu(II) adsorption onto nZVAl at
various temperatures, Van’t Hoff and Gibbs-Helmholtz models were employed at different
temperatures of 303, 323, and 333 K. Gibbs free energy (∆G◦), enthalpy (∆H◦), and entropy
change in adsorption (∆S◦) are presented by the following Equations (23)–(26) [62]:

∆G
◦
= ∆H

◦ − T∆S
◦

(23)

∆G
◦
= −RTln(Ko) (24)

lnK
◦
=
−∆H

◦

RT
+

∆S
◦

R
(25)

K
◦
=

qe

Ce
(26)

where K◦ gives the equilibrium constant (mL/g), T represents the absolute temperature
(K), and R is the universal gas constant (8.314 J/mol/K). The constants ∆H◦ (J/mol) and
∆S◦ (J/mol/K) were determined from a ln(K◦) vs. 1/T plot.

Both Figure 8a and Table 4 provide the ∆H◦ and ∆S◦ values computed from the slopes
and intercepts of ln(K◦) against 1/T plot. The K◦ values changed from 316.32 to 256.70 mL/g
when the temperature rose from 303 to 333 K, respectively. Apparently, higher operating
temperatures encouraged the interactions between the nZVAl nanoparticles and Cu(II). The
Cu(II) removal process was supposed to be endothermic, as depicted by the positive value
of ∆H◦ (+5.77 kJ/mol). In particular, the adsorption process consumes energy because the
molecules are diffused rapidly through the solution at relatively higher temperatures. This
pattern facilitated the Cu(II) adsorption rate, simultaneously decreasing the adsorption-
desorption rate. Additionally, the positive values of ∆S◦ indicated a propagation in de-
grees of freedom and randomness on the solid/liquid interface during Cu(II) adsorption
onto the nZVAl surface. The value of ∆G◦ for Cu(II) adsorption onto nZVAl nanoparti-
cles at each temperature is presented in Figure 8b. The negative ∆G◦ values (−14.50 to
−15.35 kJ/mol) indicated that Cu(II) ions removal by nZVAl was feasible and the associated
adsorption process could be spontaneous. This change in ∆G◦ also implied that, within
the experimental range, Cu(II) adsorption was thermodynamically preferred at higher
temperatures, where the movement of ions absorbed on nZVAl was not restricted.

Table 4. Thermodynamic parameters for Cu(II) adsorption onto nZVAl.

T (K) K◦ (mL/g) ln(K◦) ∆G◦ (kJ/mol) ∆H◦ (kJ/mol) ∆S◦ (J/mol/K) R2

303 316.32 5.76 −14.50 5.77 66.92 0.997
323 276.72 5.62 −15.10 46.75
333 256.70 5.55 −15.36 46.13
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3.7. Modelling Evaluation Techniques

The data used to build the prediction model for Cu(II) adsorption onto nZVAl consisted
of six input factors (pH, time, Co, nZVAl dose, stirring rate, and temp) and one output
parameter, namely R(%). The histogram of the given input and output variables (dataset)
is shown in Figure 9. Because the units and ranges of the parameters were different, the
dataset was normalized between −1 and 1 using the standard normalization function (see
Equation (11)). This step is essential to prevent numerical overflows that might occur from
very large or very small weights. The dataset was split into 80% and 20% for the training
and testing purposes, respectively.
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Initially, the models learn how to predict Cu(II) removal from the training dataset.
Then, testing is performed to check the model’s performance using new inputs previously
unseen during the training process. The ReLU activation function was employed in the
hidden layer to provide a non-linear output to the weighted sum of the input-to-hidden
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layer. In the final layer, the feature parameters are linearly transferred to the output. The
models’ hyperparameters are shown in Table 5.

Table 5. Hyperparameters used to predict Cu(II) removal efficiency using six inputs, namely pH,
time, Co, nZVAl dose, stirring rate, and temperature.

ANN Model Parameters

Hidden layers 3
Activation function rectified linear unit (ReLU)

Optimizer Stochastic gradient descent (SGD)
Loss function Mean Squared Error (MSE)
No. iterations 250

Batch size 32
Weight initializer Uniform initialization

SVR model parameters

Kernel type polynomial (Poly)
Kernel degree 3

γ ‘scale’
ε 0.1

The MSE was propagated back from the last to the input layer for correcting the values
of weights and biases until attaining the maximum number of iterations. The training
procedure of the proposed machine learning models was stopped after 2.5 s and tested
for their prediction performance with the experimental results. The training trials of the
ANN model were equivalent to 250 epochs, yielding the minimum MSE. Table 6 depicts the
relationship between the experimental Cu(II) removal efficiencies and the corresponding
values derived from the ANN, LR, and SVR models. Table 6 also shows that ANN yielded
the best performance with an average MSE error below 10−5, as compared with other
models LR (10−3), and SVR (0.01). The ANN model predictions matched the experimental
data adequately, whereas other models’ predictions didn’t maintain similar performance.
However, all the proposed models depicted that the highest Cu(II) removal efficiency could
be obtained at pH = 5, nZVAl dose of 1.0 g/L, mixing speed = 150 rpm, and 30 ◦C within
10 min when Co was 50 mg/L. This highest removal performance complied with the data
obtained experimentally, giving R(%) of 53.2%. ANN also succeeded in predicting Cu(II)
removal from aqueous media by nanoscale zero-valent iron nanocomposites, offering
an adequate accuracy better than the RSM model [36]. The consistency between the
ANN predictions and the experimentally measured results may raise the reliability of the
proposed ANN model for simulating new input-output correlations.

Table 6. Verification of quadratic regression and ANN models for predicting Cu(II) removal using
additional experimental runs.

pH Time
Initial

Concentration
(mg/L)

nZVAl
Dose
(g/L)

Stirring
Rate

(rpm)

Temp
(◦C)

Removal
Efficiency

(%)

ANN
R%

LR
R%

SVR
R%

1 10 50 0.25 150 30 18.1 18.0691 17.6548 18.0466

3 10 50 0.25 150 30 18.8 18.7668 18.3520 18.7438

5 10 50 0.25 150 30 27.9 27.9118 27.4970 27.8888

7 10 50 0.25 150 30 40.0 39.9914 39.5766 39.9684

5 10 50 0.25 150 30 27.9 27.9118 27.4970 27.8888

5 20 50 0.25 150 30 29.7 29.6872 29.2724 29.6642

5 30 50 0.25 150 30 30.9 30.8730 30.4582 30.8500
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Table 6. Cont.

pH Time
Initial

Concentration
(mg/L)

nZVAl
Dose
(g/L)

Stirring
Rate

(rpm)

Temp
(◦C)

Removal
Efficiency

(%)

ANN
R%

LR
R%

SVR
R%

5 40 50 0.25 150 30 32.2 32.2402 31.8254 32.2172

5 50 50 0.25 150 30 34.7 34.6550 34.2402 34.6320

5 60 50 0.25 150 30 34.8 34.7724 34.3576 34.7494

5 10 10 0.25 150 30 45.9 45.9084 45.4936 45.8854

5 10 20 0.25 150 30 32.6 32.5549 32.1401 32.5319

5 10 30 0.25 150 30 29.9 29.8781 29.4633 29.8550

5 10 40 0.25 150 30 26.1 26.1029 25.6881 26.0799

5 10 50 0.5 150 30 39.3 39.3284 38.9136 39.3054

5 10 50 0.75 150 30 47.7 47.6452 47.2304 47.6222

5 10 50 1.0 150 30 53.2 53.1846 52.7698 53.1616

5 10 50 0.25 50 30 21.8 21.7426 21.3278 21.7196

5 10 50 0.25 100 30 21.9 21.9176 21.5028 21.8946

5 10 50 0.25 200 30 30.0 29.9914 29.5766 29.9684

5 10 50 0.25 150 50 29.6 29.5456 29.1308 29.5226

5 10 50 0.25 150 60 30.5 30.4466 30.0318 30.4236

MSE <10−5 0.01 10−3

3.8. Future nZVAl-Based Potential Research Perspectives

Traditionally, aluminum-related reagents have often been used as coagulants in the
field of water and wastewater treatment. Alum, a salt of aluminum, is a well-known
and frequently used coagulant, particularly involved in water purification. Alum is a
common coagulant because of its optimum performance at neutral pH and the lack of
color-forming complex. However, due to the high reactivity of nZVAl, its use in water
and wastewater treatment has recently attracted research attention. Three categories
of nZVAl applications can be distinguished in water and wastewater treatment: single
system, bimetallic system, and advanced oxidation processes (AOPs). Hence, future
studies are required to investigate the scalability of nZVAl to treat industrial effluents,
e.g., electroplating wastewater, contaminated with high levels of heavy metals (Figure 10).
The presumed full-scale system would comprise four stages: (1) The first stage involves
treating real wastewater containing high levels of heavy metals using nZVAl (mixing
stage). (2) In the second stage, the treated water is aerated in the presence of H2O2, helping
in the production of hydroxyl radicals (aeration stage). (3) The third stage consists of a
sedimentation tank. (4) The remaining impurities in the clarifier effluent would be removed
by sand filters in the last stage. This full-scale system should be investigated to treat
large quantities of wastewater with different heavy metal ions and various concentrations.
The proposed models in the current study would assist in predicting the performance
of the nZVAl scalability dealing with larger quantities of heavy metals-contaminated
industrial wastewater.
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4. Conclusions

This work focused on using different machine learning techniques and artificial in-
telligence to predict Cu(II) removal in an adsorption process using nZVAl. The prepared
nZVAl was characterized by XRD, TEM, SEM, EDS, and XRF, showing a successful prepa-
ration of Al nanomaterials in the zero-valent state. The highest Cu(II) removal efficiency
(53.2± 2.4%) was observed at pH = 5, nZVAl dosage = 1.0 g/L, temperature = 30 ◦C, mixing
rate = 150 rpm, and Co = 50 mg/L within 10 min. The adsorption data were well described
by the Langmuir isotherm model (R2: 0.925, qm = 5.892 mg/g, and KL = 0.921 L/mg) and
PSO kinetic model (R2: 0.9957, k2 = 0.0283 g/mg/min, and qe. = 7.4 mg/g). The three
proposed models (ANN, LR, and SVR) were able to accurately predict the Cu(II) removal ef-
ficiencies using the same number of input/output variables. However, the ANN technique
showed the best prediction performance with MSE < 10−5. These models could be used
as a guideline for the industrial sector and stakeholders to overcome the complex issues
related to the adsorption process. Although the designed treatment technique proved to
be effective in removing Cu(II) from aqueous solutions using nZVAl, two main challenges
should be addressed in future research: (i) The efficiency of nZVAl should be evaluated
for Cu(II) removal from real wastewater containing other types of contaminants. (ii) The
possibility of using nZVAl for consecutive cycles of treatment should be considered.
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