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Abstract: Pig supply chains conform differently depending on country; however, the industrial
production of pig meat has led to an increasing specialization of agents taking part in the supply
chain production. Nowadays, pigs are rarely produced in one single farm, the existence of specialized
farms devoted to breeding, rearing, and fattening pigs being more common since this organization
provides sanitary advantages against disease outbreaks. Management strategies such as batch
management in sow and fattening farms add complexity to the production management. Pigs
have to be transferred from facility to facility as they are growing and sent to the abattoir as soon
as they reach commercial weight. All these stages involve either independent farmers or farmers
integrated in some pig supply chain management organization operating with production contracts
or cooperation agreements. This study presented the challenge of using a stochastic model for
planning the transportation of animals among facilities in pig supply chains over time. The model
provides an optimal schedule of transfers between farms, occupancy rate, and trucks involved. The
integrality of several variables was relaxed, and further analysis was performed in view of inspecting
the model behavior for achieving practical decision support. We demonstrated that we can achieve
good enough results in few minutes and, so, practical use is feasible.

Keywords: pig supply chain; production planning; transportation; coordination; stochastic optimization

1. Introduction

The current study focused on planning the transportation of animals among facilities
in pig supply chains (PSCs) and the positive effects data-driven management has on
sustainable PSC management. A PSC involves all the processes from production of piglets
in sow farms to the delivery of fattened pigs to the abattoir. A performant PSC delivers the
daily demanded pigs at the lowest possible cost to the abattoir on time. The structure of the
supply chain network (SCN) and the inventory management (occupancy of pig housing
facilities) play a vital role in achieving the abovementioned objective [1,2]. During past
decades, the PSC has greatly evolved in western countries and especially in Europe [3].
As a result, the profile of the typical farm is changing from a family-based, small-scale,
and independent firm to one in which larger firms are more tightly aligned along the pig
production and distribution processes and integrates their operations into a supply chain
structure. Typically, in a PSC the production process is structured through three stages or
phases encompassing different and multiple agents or farmers. This vertical integration of
production from one phase to the following one involves coordinating procurement and
production policies. However, given the number of farms involved, PSC managers have
problems in generating optimal, coordinated policies. In particular, PSC managers face the
problem of planning the transfer of animals among facilities to fulfil the abattoir’s demand.
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1.1. Background of the Problem

Inventory management is a major problem for production planning in supply chain
management according to [2], and in PSC it is tightly related to planning transfers of animals
from one phase to the next one. Briefly, the first phase in PSCs focuses on producing piglets,
the second phase focuses on rearing piglets, and the third and last phase focuses on
fattening pigs and delivering them to the abattoir (see Figure 1). Piglets stay in all of these
phases for a certain number of weeks in order to ensure the correct growth, weight, and
health and welfare conditions. The common batch management implemented in sow farms
is useful to plan farrows and weanings weekly, in view of providing a steady number of
weaned piglets over time. Weaned piglets are transferred to rearing farms for a rearing
period before being next transferred to a fattening farm. For each of these phases, a set of
specialized farms are involved and ruled by the same company or cooperative [4], favoring
collaboration between farms and with the abattoir [5]. From fattening farms, pigs are sent
to the abattoir once they reach the commercial weight.
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Figure 1. Flow of animals over PSC facilities (Farm #) showing the need for transportation
between phases.

Each facility has its own characteristics such as capacity and location. Transportation
between farms and coordination from different phases makes production planning more
complex and difficult to manage for pig supply chain managers. The usual and extended
procedures to plan transfers are long, weekly meetings at the headquarters of the PSC com-
pany. In these meetings, the PSC manager, transportation director, and those responsible
for the farms at each phase discuss the transportation plan. That is, the inventory available
at the end of each phase and susceptible to being transferred to the next phase, or to the
abattoir for fattening farms. On the other hand, there is discussion about the room that
reception farms have when operating under all-in-all-out batch management policies and
imposing batch-sizes with minimal origins. The final transportation plan is agreed upon
without paying attention to distances. Spreadsheets or inventory reports are the supporting
evidence for decisions made in such meetings.

The batch management implemented in fattening and sow farms makes it difficult to
foresee the impact on actual production planning and, at the same time, the capability to
fulfil fattening facilities with pigs of the same origin to avoid disease propagation. Given
the inventory of animals and the location of facilities available, digital support seems a
feasible and useful method for the adoption of an optimization model to solve or mitigate
these long meetings to plan and re-plan the transportation of animals among the facilities
in a PSC.

1.2. Literature Review

Literature to support the decision making on the pig sector reveals that most papers
have only considered individual farm operations and the farmers as the main decision-
makers. However, the advances in pig production in the last decades evidence the growing
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importance of PSCs being represented by a vertical, integrated company or by a cooperative
of producers as remarked in [4]. Authors in [6] stated that modern PSC management
involves the coordination of sets of farm units at different phases. Revising the literature,
Ref. [7] developed one of the first PSC models. It was a state-transition simulation model
based on a flow of animals but intended for the analysis of the spread of Salmonella along
the chain. Therefore, it was not suitable for other management purposes. Most modeling
approaches are focused on just one PSC phase. Many of them aim at optimizing sow-herd
management as pointed out in [3]. The replacement problem of sows is the most commonly
addressed problem. Several shortcomings for the practical use of the proposed models are
that they consider an infinite time horizon and the homogeneity of parameters over time,
which makes their adoption difficult when model assumptions are not satisfied. Ref. [8]
observed that all the models reported had been developed “for” rather than “with” the
decision makers. Consequently, the potential interest in the development of such models
was limited to researchers more than to practitioners. This situation represents an important
challenge for new Operational Research proposals in agriculture as suggested in [9].

Some studies concerning the production planning of other phases of pig production
such as fattening are also present in literature. For instance, the problem of delivering
fattened pigs to the abattoir has been dealt by several authors. Ref. [10] considered the
window of time for selling all the fattened pigs of one farm and different abattoirs acting
as buyers with their own prices. Ref. [11] focused on delivering pigs to the abattoir in
a two-phase model while [12] considered the effect of diet in grower–finisher pig herds.
Ref. [13] proposed the optimization of feeding regimes and the shipping of pigs to the
abattoir, adapting the model of [12] as the basis. However, none of these papers consid-
ered more than one farm or interactions between different farms. Ref. [14] considered
constraints such as the minimum number of farrows or weaning per week, aiming at the
coordination of a sow farm into a pork supply chain. Ref. [15] proposed a mixed integer
linear programming (MILP) model to optimize the entire supply chain. The model was a
production planning model based on a multiperiod MILP later extended by [16] to take
into account transportation constraints and other modeling improvements related to herd-
management policies. Ref. [6] formulated a bi-objective model for optimizing pig deliveries
to the abattoir accounting for total revenue and CO2 emissions.

Similar production planning problems appear in other livestock species with simi-
lar supply chain organizations, such as broiler production [17,18]. Ref. [17] proposed a
model for an integrated production planning model of broiler production, including the
coordination of eggs for incubation, allocation of chicken flocks to farms, and collection of
chickens for slaughtering. Ref. [18] dealt with a similar problem in identifying breeders,
hatcheries, farms, and abattoirs as the main agents in the supply chain. Ref. [19] focused
on the production planning problem of poultry farms that are represented by a two-level
supply chain with production-time-dependent products, where the farms are the suppliers
of an integrated manufacturing plant. They claimed the lack of integrated decisions in
supply chain management and argued for the benefits of an integrated production plan,
proposing MILP models complementing heuristics to solve complex problems.

Table 1 summarizes most of the references in the presented literature review, which
mainly consider the transportation problem in pig supply chains. In the table, the key
aspects included are the problem solving; the methodological approach used: bi-objective
mixed-integer programming (BOP), mixed-integer linear programming (MIP), simulation
(SIM), and two-stage stochastic programming (TSP); the source of the uncertainty; and the
gaps that motivate the present research.
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Table 1. Summary of the literature review most related to the present research.

Reference Problem Approach Uncertainty The Gap

[17] Production planning of a
broiler supply chain MIP - Does not consider

uncertainty

[12] Flow of animals in
the PSC SIM

Live weight, mortality,
loss and feed conversion

rate, Number of
shipments per batch

Does not optimize the
transportation problem.

Focused on a fattening farm

[13]
Feeding and

transportation to
the abattoir

BOP Pig growth
performance profile Focused on a fattening farm

[19] Production planning of a
broiler supply chain MIP - Does not consider

uncertainty

[11] Transportation to
the abattoir MIP - Does not consider

uncertainty

[6] Transportation to
the abattoir BOP - Does not consider

uncertainty

[16] Production planning of
a PSC MIP - Does not consider

uncertainty

[20] Production planning of
a PSC TSP Sales prices Does not propose a heuristic

for solving the TSP model

this manuscript Transportation planning
of a PSC TSP Sales prices Does propose a heuristic for

solving the TSP model

[10] Transportation to
the abattoir MIP -

Does not consider
uncertainty. Focused on a

fattening farm

[14] Flow of animals in a
sow farm TSP Litter size, mortality, and

fertility rates

Does not optimize the
transportation problem.
Focused on a sow farm

[18] Production planning of a
broiler supply chain MIP - Does not consider

uncertainty

[7] Flow of animals in
the PSC SIM Spread of a pathogen Does not optimize the

transportation problem

Thus, the aim of this work was to develop a heuristic algorithm of the two-stage
stochastic model proposed by [20] and integrate planning decisions in the PSC for practical
use by PSC managers with pork sales prices as the uncertain parameters. Given the
presence of integer variables, it is expected to encounter problems in the resolution of the
model for big instances, so computational experiments leading to a compromise between
satisfactory solutions and solving times are presented. This empirical analysis is aimed at
supporting practical short-term decisions such as the planning transportation of animals
among facilities and inventory management.

The rest of the paper is organized as follows. In Section 2, we briefly describe the
significant aspects of the stochastic model used in this paper to perform the empirical
analysis, which is presented in Section 3, while we present the parameters and derived
results in Section 4. We proceed with a discussion about the limitations of this study in
Section 5. Finally, we outline conclusions and future work in Section 6.

2. The Two-Stage Stochastic Model
2.1. The Deterministic Equivalent Model Formulation

Two-stage stochastic linear models provide a suitable framework for modeling de-
cision problems under the uncertainty arising in several applications collected by [21].
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To solve the two-stage stochastic problem numerically, it is assumed that uncertainty
represented by the random vector ξ has a finite number of possible realizations, called
scenarios (Figure 2) with respective probability. Therefore, the classical two-stage linear
stochastic programming problems can be solved through the deterministic equivalent
model formulated as follows:

min
x∈<n

g(x) = cTx + ∑
|Ω|
ω=1 pωQ(x, ξω)

subject to : Ax = b
T(ξω)x + W(ξω)y = h(ξω)

x, y ≥ 0

where x ∈ <n is the first-stage decision variable vector, y ∈ <m is the second-stage decision
variable vector, ξ is a random vector with a known probability distribution, and Q(x, ξω)
is the optimal value of the second-stage problem under scenario ω ∈ Ω, and probability
pω . The two-stage stochastic linear model considered in this study is that presented by [20]
and it is an extension of the deterministic linear model by [6]. The formulation follows
the deterministic equivalent model (DEM) as proposed in [22] and also by [23]. In our
approach, the uncertain parameters, ξ, are those related with future sale prices and fertility
of sows.
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The flexibility of these models is related to their multiperiod nature (Figure 2), i.e.,
besides the first-stage variables that represent decisions made in face of uncertainty, the
model considers second-stage decisions, i.e., recourse actions, which can be taken once
a specific realization of the random parameters is observed to react accordingly. Hence,
the decisions at the first stage (St1 in Figure 2b) are the same for all scenarios (imposed
by non-anticipativity constraints), while the remaining decision variables are dependent
on the corresponding scenario, s ε S. In our case, decision variables represent the total
weekly inventory of piglets age-ranked on all farms besides purchases of piglets in rearing
and fattening farms allowed to react depending on scenario. Decisions regarding animals
ending up a particular phase are of particular interest to determine the weekly number of
transfers (trips origin and destination) of animals (piglets, pigs, and sows) between farms
and deliveries (i.e., sales) to the abattoir. Second-stage decisions (St2 in Figure 2b) refer to
the number of pigs sent to the abattoir and the need to rent additional farms to house all
the production of sow farms plus additional purchases of piglets. Second-stage decisions
modulate the overall production flow of the system to benefit from better prices.
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In Table 2 we provide the notations used in formulating the deterministic model
corresponding to one scenario (as represented in Figure 2a). All of the decision variables
are integers (number of animals or number of trips) or binaries (renting or not a farm
and modeling all-in-all-out management in fattening farms). The basic formulation of
the two-stage stochastic optimization model is given in (1)–(10) where the index ω ∈ Ω
represents variables and scenario-dependent parameters, such as the probability of each
scenario represented by pω.

Table 2. Notation of the deterministic model per scenario.

Indexes and Sets

t ∈ T Finite time planning horizon (in weeks), t = 1, . . . , |T|

h ∈ H
Farms belonging the PSC, h = 1, . . . , |H|. H = B∪R∪F: Disjoint
partition of farms in three phases (sites), being B the set of sow

farms, R the set of rearing farms and F the set of fattening farms

e ∈ E
Growing period in weeks, e = 1, . . . , |E|, where E = EB∪ER∪EF
disjoint partition of the productive cycle, i.e., weeks spend by pigs

in different facilities.

Parameters

INhe Initial inventory of pigs of age e in the farm h ∈ H

Kh Housing capacity of facilities for h ∈ H.

LSbt Litter size at farrowing in the b ∈ B sow farm per week t ∈ T.

CPthe
Unitary production cost on farm h, per week t ∈ T and stage e ∈ E

per piglet.

CT(h,h*) Transportation cost from farm h to another farm or to the abattoir,
h* ∈ H∪{a}

CT(h,h*) Transportation cost from farm h to another farm or to the abattoir,
h* ∈ H∪{a}

KP(h,h*) Truck capacity (# of animals) transported from farm h to another
farm or to the abattoir, h* ∈ H∪{a}

Pte Expected pork value of pigs at week t and fattening week e.

R(h+) Cost of renting a farm not owned by the company

Decision Variables

Ithe∈ Z+ Inventory of piglets of age e ∈ E at week t on the farm h.

Nte(h,h*) ∈ Z+ Number of trips from farm h to another farm or to the abattoir,
h* ∈ H∪{a} of pigs at age e, week t.

Xh+ ∈ {0, 1} Binary variable for renting a farm not owned by the company

Z1th ∈ {0, 1} Binary variable for batch control. Z1th = 1 if farm h ∈ F is not
empty at week e and Z1th = 0 otherwise

Z2th ∈ {0, 1} Binary variable for batch control. Z2th = 1 if farm h ∈ F is not
empty at week e and Z2th = 0 otherwise

The objective of the model is to maximize the revenue, i.e., income minus cost (equiva-
lent to minimize cost minus income, as presented), over the planning horizon. The objective
function is divided into two parts related to the first stage (first summatory) and the second-
stage scenario-dependent decision variables (second summatory representing each scenario,
weighted by corresponding probability). The cost terms in (1) are the renting cost, the
variable production cost, and the transportation cost while the income comes from sales to
the abattoir of fattened pigs. Equation (2) fixes the capacity of facilities. Equations (3)–(5)
apply for fattening farms operating under all-in-all-out batch management, representing
all pigs housed at a time and delivered to the abattoir when reaching marketable weights.
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Once the fattening farm is empty, a new batch of pigs can be housed. Constraint (6) is the
initial inventory and constraint (7) the flow conservation of animal flow over time within a
facility (without considering loses). Constraints (8) and (9) represent the transfer of animals
from one facility to another when changing of phase or sent to the abattoir while constraint
(10) ensures that a number of piglets per sow per week are born in sow farms.

min ∑
h+

(
R(h+)Xh+ + ∑

t,e
CPth+e Ith+e

)
+ ∑

ω

pω

(
∑
t,h,e

CPω
the Iω

the + ∑
t,e

CT(h, h∗)Nω
te (h, h∗)− ∑

t,h,e
Pω

te Iω
the

)
(1)

∑
e∈E

Ithe ≤ KhXh t ∈ T, h ∈ H (2)

Ith1 ≤ Z1thKh t ∈ T, h ∈ F (3)

∑
e∈EF−{1}

Ithe ≤ Z2thKh t ∈ T, h ∈ F (4)

Z1th + Z2th ≤ 1 t ∈ T, h ∈ F (5)

I0he = INhe e ∈ E, h ∈ H (6)

Ite+1 = It−1e e ∈ E\{e B, eR, eF}, t ∈ T\{1} (7)

Ith∗e ≤ ∑
h

Nte(h, h∗) ·KP(h, h∗) t ∈ T, (h, h∗) ∈ H × H ∪ {a}, e ∈ {eB, eR, eF} (8)

Ithe = ∑
h∗

Nte(h, h∗) ·KP(h, h∗) t ∈ T, (h, h∗) ∈ H × H ∪ {a}, e ∈ {eB, eR, eF} (9)

Itb1 = KbLSbt t ∈ T, b ∈ B (10)

2.2. Assumptions of the Model

The stochastic model as it is formulated makes several assumptions. Some of them are
theoretically based and few others are operationally based in view of rendering simpler
instances to test our approach:

• The sizes of sow farms are constant and house the same number of sows, producing a
steady number of weaned piglets depending on seasonal fertility.

• The replacement rates of sows are constant, and this implies the weekly number of
sows sent to the abattoir is the same.

• The mortality of pigs is the same per phase and computed at the end of each phase.
The survival rate is 1 by default.

• The growth of animals over time is homogeneous among farms and exhibits equal
conversion rate, feed intake, and growth rate.

• Transportation cost is considered constant per km covered regardless of the speed
and load.

• The PSC includes only one abattoir where fattened pigs are delivered without
capacity constraints.

• The solution from this model is intended to be applied in a rolling horizon manner.
Thereby, only first-stage decisions for the current period are made. The model with
updated information is solved again for the next decision period and so on.

3. Empirical Analysis
3.1. Data and Scenario Generation

The data used to perform the empirical analysis correspond to a typical company in
the pork sector in Spain. In that this case, we considered 7 sow farms, 20 rearing farms, and
124 fattening farms. Pigs produced stayed 4 weeks in sow farms, 6 weeks in rearing farms,
and a maximum of 18 weeks in fattening farms to complete the process. The marketing time
window in fattening farms ranged from week 15 to 18 of the fattening period. The weekly
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cost per animals was 1.875 € for sows, 2.66 € for rearing pigs, and 4.832 € for fattening
pigs. The averaged litter size at farrowing per sow per week was considered for simplicity.
The expected number of piglets weaned was different depending on sow parity. Sows
were culled and sent to the abattoir after 9 farrowings. Unitary transportation cost was
fixed at 1 €/km over the entire production process, but farms having rearing facilities on
the same farm did not require road transportation (i.e., transportation cost equals zero in
transfers between these farms). A 52-week time horizon (one year) was considered. The
first week corresponded to the first stage, allowing the following 51 weeks for the second
stage. This partition was motivated because the operational decision regarding transfers
of animals and deliveries to the abattoir was taken week-by-week. Therefore, the second
stage represents the uncertainty of prices, availability of facilities, and number of animals
to be transported affecting first-stage decisions.

As a preliminary study, the model was formulated with 12 scenarios with different
sales prices to debug the model and assure the coherence of results by scenario. Scenario
generation was based on the weekly sales prices in Mercolleida’s auction market in Lleida
(Spain) from four years of 52 weeks taken from national statistics [24]. Figure 3 shows
the real series of weekly sales prices (weeks 1–208). Seasonality in prices was observed,
which tended to decrease at the end of each year in winter and increase at the middle of the
year in summer. Two methods deal with seasonality: Holt–Winters [25] and ARIMA [26].
Ref. [27] compared these methods, concluding ARIMA is more effective when the spo-
radic demand data series structure become more complex. As this is not our case, the
Hold–Winters method was used with the additive sub-method due to the seasonal vari-
ations being roughly constant (non-proportional) through the series. Therefore, Minitab
Software was been used to generate a forecast using the Holt–Winters method [25]. Af-
ter that, 12 scenarios were considered, increasing and decreasing the weekly base prices
generated previously by 2%, 4%, 6%, 8%, 10%, and 12% respectively. Figure 3 shows the
following two years of forecasted pork prices (weeks 209–312) and the set of scenarios
plotted together.
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3.2. Heuristic Algorithm and Computational Results

The model was implemented with the IBM ILOG OPL modeling language and solved
using CPLEX v12.8 in a Pentium 12 CPUs at 2.1 GHz and 48 Gb RAM. Microsoft Excel
was used for data storage for both the input and output parameters due to its user friend-
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liness and flexibility when managing the data and the easy linkage to CPLEX offered by
IBM ILOG.

Given the complexity of the problem, the execution of the model with all integer
variables did not find the optimum after 48 h (see Table 3). To improve the computational
performance, some changes on decision variables were analyzed. A first attempt was to
reinforce the formulation of the model by restricting the deliveries of animals between
certain farms depending on the distance, establishing a minimum batch of animals to
be transferred and by fixing known routes for several deliveries between farms. For
example, several trips between h and h* farms, i.e., Nte(h,h*), were set to zero, indicating
forbidden paths. Afterwards, some computational experiments were performed to value
the associated computational savings, such as relaxing the integral property of the decision
variables representing animals and trips (i.e., trucks). Relaxing the integrality in inventory
variables is sensible since the big numbers involve make the loss of precision insignificant.
Table 3 shows the results obtained when solving models (1)–(10), changing only the integral
character of decision variables Nte(h,h*) and Ithe. As can be observed, the amount of time
was considerably reduced when a full relaxation was considered and this instance provided
an upper bound for the two-stage stochastic optimization model as formulated in (1)–(10).

Table 3. Computational and solution results comparing decision variable relaxation.

All Decision
Variables,

Integer

Trucks as
Continuous

Nte(h,h*) ∈ R+

Animals as
Continuous

Ithe ∈ R+
All Continuous

# Integer
Variables 4,862,081 1,674,400 3,187,681 –

# Continuous
Variables – 3,187,681 1,674,400 4,862,081

Constraints 4,072,238 4,072,238 4,072,238 4,072,238
Solving time >48 h >48 h >48 h 1502 s.

Taking into consideration the resolution time and working with continuous variables,
some other experiments were carried out to simulate the model behavior depending on how
the operational decisions, first-stage decisions, would be taken. PSC’s planning decisions
are mainly related to transport and farm capacities. As mentioned, transportation planning
decisions are generally taken on a weekly basis. Therefore, having one week in the first
stage is enough to allow PSC managers to make these decisions. However, it is possible
that transportation decisions in some companies were not made on a weekly basis or may
require enlarging the temporal stability of first-stage decisions considering more weeks.
Hence, in a second computational experiment we modified the number of weeks at the first
stage of the model from one week until four weeks (1 month) but maintaining the 52 weeks
in the total time horizon. Table 4 shows the results of these experiments, allowing us to
compare different performance measures. The forecasted base price was used as a single
parameter in the first stage. Price scenarios at the second stage were generated using the
same procedure used as in the base experiment. It is remarked how the number of weeks
at the first stage provokes an increase in the solving time. This is not so surprising as a
temporary wider first stage involves more non-anticipativity constraints, rendering the
model more complex to solve. However, regarding the benefit per pig, the first week was
almost the same in all cases, with three and four weeks at the first stage and also the total
benefit per pig being greater than with the shorter first-stage period.

Finally, a last computational experiment performed considered different time horizons.
It is known that border conditions at the end of the time-horizon may affect the results
in previous periods and jeopardize results if neglected. An increment in the time horizon
increased the size of the model in terms of variables. The impact on first-stage decisions
is also of practical interest and one week at the first stage was considered in all instances.
The time horizon was ranged from 52 weeks (1 year) to 80 (more than 1.5 years) to explore
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both the impact on solving time and on performance indexes at the first stage, such as pigs
sent to the abattoir, benefit achieved per pig at the first stage, total number of pigs sent to
the abattoir during the entire time horizon, and the average benefit per pig. In Table 5 it
is shown how computational time increases as time horizon does, in agreement with our
expectations. Similarly, it happens with the total number of pigs sent to abattoir during all
the time horizons. However, the benefit per pig observed at first stage did not change from
a finite time horizon of 52 to 68. Surprisingly, this benefit improved with a longer finite
time horizon, but this increment is explained by the trend in market prices as observed in
Figure 3, with a positive trend in general. This is more clearly observed in the total benefit
per pig reported in Table 5.

Table 4. Model’s behavior depending on the number of weeks in first stage.

# Weeks in the First Stage/Second Stage
1/51 2/50 3/49 4/48

Solving time (s) 1502 2407 7.987 11,563
First Stage

(# variables) 9431 18,781 28,131 37,481

Second Stage
(# variables) 6,199,131 6,077,581 5,956,031 5,834,481

# Pigs sent 1st
week 22,840 34,829 18,232 18,232

Benefit per pig
1st week (€) 111 105.23 112.48 112.48

# Pigs sent 1st
stage 22,840 65,548 76,336 79,268

Benefit per pig
1st stage (€) 111 109.49 108.84 113.33

Total # Pigs sent 321,491 356,621 358,430 339,598
Total Benefit per

pig (€) 108.61 109.25 109,59 109,72

Table 5. The model’s behavior depending on the number of weeks in the total problem.

Time Horizon (# Weeks)
52 56 60 64 68 72 76 80

Solving time (s) 1502 2035 2641 6139 6281 6619 4982 4422
Pigs sent 1st stage (#) 22,840 22,840 22,840 22,840 22,840 18,230 18,230 18,230

Benefit per pig (€) 111.0 111.0 111.0 111.0 111.0 114.2 114.2 114.2
Total # Pigs sent (thousands) 321 345 369 391 415 448 493 519

Benefit per pig (€) 108.6 108.3 109.0 110.6 112.0 114.6 117.0 119.2

4. Discussion

The evolution of computers, besides a better attitude of the pig sector towards new
decision support systems, allows researchers to propose integrated production models
susceptible to being considered by PSC managers [4]. There has been an increasing use
of emerging technologies within PSC management, driving decision making towards
a data-driven decision system [28] while the sustainable development of PSC has been
identified as a way to improve performance [29]. These data-driven decision models can
easily alleviate problems such as planning and (re)scheduling animal transfers from farm
to farm generating economic, social, and environmental benefits. Benefits are fundamental
condition of economic development, but can also promote sustainable production [30].
Integrated planning and transportation optimization can improve economic efficiency,
reducing CO2 emission and increasing employees’ welfare by automatizing routine tasks.

Beyond modeling issues, an additional concern related to complex models for practi-
cal purpose is the computational time required to obtain a timely solution. In particular,
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computational time can be easily neglected for tactical or strategic decisions while it is
a critical aspect for operational decisions. Moreover, when for practical purposes there
is a need of exploring different alternatives and running different instances, reasonable
computational times are mandatory. This study focused on an empirical analysis of an
integrated production planning model intended for practical use in planning transporta-
tion of animals among PSC facilities. Results presented in previous section support the
hypothesis that complex optimization models can help to PSC managers when planning
transportation of animals among facilities. The different analyses performed demonstrated
that the significant improvement on the global computational performance of the model
did not strongly affect the quality of the solution, since the benefits per pig observed at first
stage did not vary very much. First-stage decision variables related to how many animals
to transfer from one facility to another or sent to the abattoir in the first week were rather
stable over experiments. Therefore, this paper should be a stimulus for pig companies or
cooperatives to adopt stochastic models for planning the transportation of animals, not
only reducing costs but also GHG emissions without affecting the production process. The
capability of facing contingencies and quick replanning is also an important quality. The
model would only require updating the changing parameters and re-running the model to
obtain an updated planning method in a rolling horizon framework (Figure 4).
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There is also flexibility when tackling other practical aspects of the PSC operation.
As mentioned, decisions are generally taken on a weekly basis and it is weekly that it is
expected the model be run after updating the parameters, mainly the inventory of animals
per facility and market prices. Therefore, having one week in the first stage is enough to
allow PSC managers to take these decisions, exhibiting a lower solving time. However, it is
possible that operational decisions in some companies are not taken on a weekly basis or
may require enlarging the stability of first stage decisions. The modification of the model
would be small and feasible.

There literature is extensive in discussing why DSS or similar decision tools and
technologies are hardly adopted in agriculture, while amazingly, the lack of information,
inadequacy of the management, and information inaccuracies are significant issues in
PSC [28]. We can argue that there is not a problem of good models, but there may be a
problem in the way they are delivered to end-users. Two decades ago, Ref. [31] already
advocated for the neat research orientation of the decision support tools proposed to
farmers. Another problem is the user interface and operability of the software developed
to host these kinds of sophisticated models. Interfaces must be intuitive and easy to use
and self-explainable [4]. No need of mathematical knowledge for using such systems
should be required. They should also include auto-checking of results to detect failures
in model assumptions or bad input parameters in view of preventing misunderstandings
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with end-users. A last problem to consider regarding the usability of such tools is the
integrability into exiting tools used by farmers or PSC managers. This integrability may
suppose a correct maintenance of the database involving an updated inventory of animals
on farm and the location of facilities, but also market prices, forecasts, and trucks at
disposal. Other papers dealing with two-stage stochastic models in other supply chains
facing similar questions [32,33].

5. Study Limitations

Several aspects must be considered as limitations of the presented study. The authors
recognize the study has some limitations that can be grouped in two aspects: assumptions
in the formulation of the stochastic model and the case study itself being limited to a real
Spanish company.

The formulation of the stochastic model relies on a number of scenarios representing
the uncertainty on prices. The scenario generation may affect the outcome of the model,
but it can give an idea of the impact on pig production over time and the corrective actions
that the model adopts to react against uncertainty in sale prices.

On the other hand, the Spanish company relates to the number of farms considered
at each phase and the initial inventory. Distances and capacities of farms would affect
the optimal result. The biggest concern would be related to the size of the problem
depending on the number of farms owned by the company. This size impacts the number of
variables and constraints; therefore, solving time could be prohibitive and force alternative
approximated methods. For instance, metaheuristics and simheuristics have been proven
to be useful in solving large optimization problems [34]. Similar problems were detected
by authors in the broiler production [17,18] and the proposed the use of heuristics to reach
satisfactory solutions near optimality.

Finally, sustainable aspects in this study are explicitly limited to the use of economic
resources and implicitly to the reduction of CO2 emissions by optimizing transportation. It
is recognized specialized farms in PSCs are more sustainable [35] and promote pig welfare.
However, at the same time there are adversarial effects as they consume more resources
and has higher nitrogen leakage. The coverage can be improved including explicitly GHG-
emission in the objective function requiring to specify the contribution to sustainability of
each PSC actor [35].

6. Conclusions

A two-stage stochastic linear model was formulated and solved, representing an
average PSC company in Spain. The biggest concern was how to achieve a reasonable
computational solving time for practical purposes due to the size of the model and the
large number of integer variables. Instances of the model intended to analyze computa-
tional performance and economic outcome for practical purposes were solved successfully.
Relaxing the integrality of most decision variables resulted in better solving times with
similar economic outputs, allowing pig managers to improve transportation planning.
Uncertainty in sales prices was used to generate different scenarios to be taken into account
by first-stage decisions. Though relaxing the number of trips is questionable, but fixing
the integer and the number of trucks at the first stage and relaxing the integrality of these
variables at the second stage seems reasonable to obtain a more accurate transportation
cost. Furthermore, the analysis of the first stage of one week is preferred over a first stage
of more weeks. More weeks at the first stage do not affect operational decisions nor do
optimal policies but negatively impact the execution time. From our results, a planning
time horizon of one year (52 weeks) produced enough good first-stage decisions that had
to be updated in a rolling time horizon week-by-week.

The explicit inclusion of additional objectives such as GHG emissions should be
considered in future research. Likely, approximate methods such as metaheuristics could
be interesting and even necessary to solve bigger instances.
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