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Abstract: Robustness is an important performance index of power system state estimation, which is
defined as the estimator’s capability to resist the interference. However, improving the robustness of
state estimation often reduces the estimation accuracy. To solve this problem, this paper proposes a
power system state estimation method for generalized M-estimation of optimized parameters based
on sampling. Compared with the traditional robust state estimator, the generalized M-estimator
based on projection statistics improves the robustness of state estimation, and the proposed optimized
parameter determination method improves the overall accuracy of state estimation by appropriately
adjusting its robustness. Considering different degrees of non-Gaussian distributed measurement
noises and bad data, the estimation accuracy the proposed method is demonstrated to be up to
23% higher than the traditional generalized M-estimator through MATLAB simulations in IEEE 14,
118 bus test systems, and Polish 2736 bus system.

Keywords: Gaussian distribution; M-estimator; power system state estimation; precision; robustness;
weighted least square method

1. Introduction

Modern power systems need to grasp the real-time operation of the power system
comprehensively and quickly. It can more accurately analyze and predict the system’s
operation trends to ensure the power system’s economy and safety. Power system state
estimation is an effective means to detect the real-time operation data of the power system
which was first proposed by the Schweppe in 1970 [1]. Abundant research has been con-
ducted on power system state estimation to optimize the real-time redundant measurement
data of the power system, to realize the real-time and reliable monitoring of the power
system, and to ensure the safe and reliable operation of the system [2–8].

The weighted least squares (WLS) method has been widely adopted since 1970, with
the advantages of good convergence performance and accurate estimation results. Its
disadvantage is that it is not sufficiently robust to measured noise that follows the Gaussian
distribution without bad data interference. In the real power network, not all measurement
noise can be represented strictly by a Gaussian distribution, and occasionally significant
errors occur due to various known telemetry noises or faults. There may also be other types
of outliers that strongly affect the estimated state but may or may not carry bad data. All of
these factors can potentially affect the estimator’s estimation accuracy. A series of studies
have been conducted to improve the robustness of state estimation, which is summarized
in Table 1:
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Table 1. Reference summary.

Authors Origin Purpose Advantages and Disadvantages

L. Mili, M. G. Cheniae, N. S.
Vichare and P. J. Rousseeuw USA To describe a fast and robust method for

identifying the leverage points [9].

The method is very fast and compatible
with real-time applications, but it does
not apply to all forms of lever points.

J. Zhao and L. Mili USA To develop a robust dynamic state
estimator of a cyber-physical system [10].

The H-infinity filter is able to handle
large system uncertainties as well as
suppress outliers, but the estimation

efficiency of this method is low.

M. B. Djukanovic, M. H.
Khammash and V. Vittal USA

To present a framework for robust stability
assessment in multimachine power

systems [11].

The proposed method significantly
reduces computational complexity and
at the same time preserves the accuracy

in predicting stability robustness.

Z. Lyu, H. Wei, X. Bai, D. Xie, L.
Zhang and P. Li CHN To propose an norm estimator [12].

The proposed estimator has high
computational efficiency

and robustness.

E. Kyriakides, S. Suryanarayanan
and G. T. Heydt USA

To demonstrate the Huber function
technique in a power engineering

application [13].

This technique reduces large residuals
but not accuracy.

M. Göl and A. Abur TR To develop a PMU placement
strategy [14].

This method can improve the stability
and accuracy of estimation.

M. Netto, J. Zhao and L. Mili USA To develop a robust extended Kalman
filter [15].

The robust extended Kalman filter
exhibits good tracking capabilities

under Gaussian process and observation
noise while suppressing observation
outliers, even in position of leverage.

However, it presents poor performance
under non-Gaussian noise.

I. Akingeneye, J. Wu and J. Yang USA
To develop PMU placement algorithms to

improve the power grid state
estimation [16].

The performance of the low complexity
algorithms approach that of the

exhaustive search algorithm, but with a
much lower complexity.

G. Wang, G. B. Giannakis and
J. Chen USA

To put forward a novel LAV estimator
leveraging recent algorithmic advances in

composite optimization [17].

The algorithm efficiently deals with the
non-convexity and non-smoothness of

LAV-based PSSE, but it relies on solving
a sequence of convex quadratic

subproblems.

M. Huang, Z. Wei, G. Sun and H.
Zang CHN To propose a hybrid SE for distribution

systems [18].

The estimator method provides more
reliable estimation results with a limited

number of SCADA measurements,
while biased estimated results can exist

if some buses are far away from the
measuring points.

C. H. Ho, H. C. Wu, S. C. Chan
and Y. Hou CHN To present a robust statistical

approach [19].

The proposed approach outperforms
conventional approaches using the

ADMM with L1 outlier detection in state
estimation accuracy and

convergence speed.

J. Zhao, M. Netto and L. Mili USA
To develops a robust iterated extended
Kalman filter based on the generalized

maximum likelihood approach [20].

GM-IEKF can achieve both robustness
and statistical efficiency, but its

vulnerability to system parameter and
topology errors.

The problem of existing robust state estimators is that robustness of the state estimator
is usually achieved at the expense of estimation accuracy. The reason is that the existing ro-
bust state estimators use fixed parameter settings, which cannot adjust the state estimator’s
robustness and estimation accuracy in different scenarios. In [21], it is indicated that the
measurement noise in PMU is likely to be non-Gaussian, which leads to the increased proba-
bility of outliers (measurements that significantly departs from their true values). Moreover,
the types, parameters, and proportions of the non-Gaussian measurement distribution are
different in different systems. Therefore, existing robust state estimators will be less robust
when bad data and outliers are more frequent and will have insufficient accuracy when
bad data and outliers are less frequent. To overcome this problem, this paper first evaluates
the impact of bad data and non-Gaussian measurement noises on existing generalized
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M-estimation parameters based on extensive Monte Carlo simulations. Finally, this paper
proposes a generalized M-estimator of optimized parameters based on sampling which
can adaptively select the appropriate parameters according to the probability distribution
of the system measurement noise, accurately identify the outliers, and significantly reduce
the effects of non-Gaussian measurement noise and bad data.

The contributions of this paper are summarized as follows:

• Demonstrate that higher robustness does not necessarily improve the estimation
accuracy of the state estimator, and the best accuracy can be achieved if the robustness
is tuned at an appropriate level;

• Propose a new robust power system state estimation method that can adaptively tune
its robustness according to different levels of non-Gaussian distributed measurement
noise and bad data.

The paper is structured as follows. Section 2 introduces the existing robust state
estimation methods. Section 3 describes the drawbacks of existing robust state estimation
methods. Section 4 presents the proposed generalized M state estimator of optimal parame-
ters based on sampling. Section 5 presents and discusses the simulation results. Finally,
Section 6 concludes this paper and identifies opportunities for future developments.

2. Existing Robust State Estimators for Power System Estimation

This section presents two widely used robust state estimators for power system state
estimation, M-estimator (including Huber estimator and LAV estimator) and generalized
M-estimator, which is improved based on the M-estimator.

2.1. M-Estimation of the Static State Estimation Method

The concept of M-estimation was first used by Huber for robust estimation of distribu-
tion centers and subsequently generalized to regression [22]. In general, an M-estimator
is a maximum-likelihood estimator. It minimizes an objective function that is expressed
as a function ρ(r) for measuring the residue, according to the constraints given by the
measurement equation:

Objective function:
m

∑
i=1

ρ(ri) (1)

Constraint condition:
z = h(x)+r (2)

where ρ(ri) is a selected function that can measure the residual ri, z is the measurement
vector, x is a state vector and, h(x) is a measurement function.

The Huber estimator objective function is expressed as:

J(x) =
m

∑
i=1

ω2
i ρ(ri) (3)

where the Huber function, ρ(ri), can be defined as:

ρ(ri) =

{
ri

2/2 for |ri| ≤ β
β|ri| − β2/2 for |ri| > β

. (4)

The first partial derivative ψ(ri) of ri is expressed as:

ψ(ri) =

{
ri, |ri| < β

β ∗ sign(ri), else
. (5)

The least absolute value (LAV) function can be defined as:

ρ(ri) = |ri| (6)
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where ri is the normalized residual, the parameter β is a fixed value, generally set to 1.5. In
fact, if β is set to infinite, the Huber estimator is equal to WLS estimator parameters, which
has the highest accuracy. If β is set to 0, the Huber estimator turns into a LAV estimator,
which has the highest robustness. Therefore, the Huber estimator can be regarded as an
estimator which strikes a balance between the advantages of the WLS estimator and the
LAV estimator.

The loss functions of the Huber and the LAV estimator are shown in Figure 1:
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Figure 1. Loss functions of the Huber and LAV estimators.

2.2. Generalized M-Estimator

The external interference of the system causes outliers. There are multiple types of
external interference. For example, there can be errors in sampling, such as recorded bias,
calculation errors, etc. It can also be caused by various accidental and abnormal factors. The
presence of outliers affects the accuracy of state estimation. Although the Huber estimator
and the LAV estimator have better robustness compared to the WLS estimator, it is still
obviously affected by outliers. Therefore, early robust estimators suppress the effect of
outliers by reducing their weights according to their normalized residuals.

The normalized residual is based on Mahalanobis distance, which is the weighted
average distance between each point. The disadvantage is that the average point is signifi-
cantly affected by outliers, leading to an inaccurate judgment of outliers. In contrast, the
median is hardly affected by the outliers. However, the variance of each point to the median
cannot be directly defined. It is more reasonable to use the projection statistics method.
The idea of the projection statistics method is to study those coming from the coordinated
median M, and through each data point direction v. Formally, we have v = li −M, where:

M =

[
median

j
lj1, · · · , median

j
lm

]T
(7)

where j is obtained from 1 to m. The resulting distance calculated with (7) will be referred to
as the projection statistics, or the PSi for short. Then, the i-th calculated projection statistic,
PSi, is compared to a given threshold. The labeled outliers are then degraded using the
following weight function: v2

i = min
(
1, d2/PS2

i
)
, where d = 1.5 is set to produce good

statistical efficiency.
The generalized M-estimator combines outlier detection and the Huber loss function,

whose objective function is expressed as:

J(x) =
m

∑
i=1

v2
i ρ(rs). (8)

To solve the objective function, we calculated the first derivative about x:

∂J(x)
∂x

=
m

∑
i=1
−viai

s
ψ(rsi) = 0 (9)
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where s = 1.4826 mediani |ri|.
It is clear that this is a set of equations which can be solved by iterated re-weighted

least square (IRLS) algorithm [23].

3. Disadvantages of Existing Robust State Estimators for Power System
State Estimation

Existing robust estimators mainly consider the suppression performance on bad data,
while the assessment of their outlier suppression performance caused by non-Gaussian
measurement noise is insufficient. This might result in a decreased estimation accuracy
of the state estimator in the presence of non-Gaussian measurement noise. The two most
common types of non-Gaussian measurement noise are bimodal Gaussian distribution and
Laplace distribution, which are introduced in detail in Section 3.1. Section 3.2 discusses
the impact of non-Gaussian measurement noise on the performance of existing robust
estimators. Section 3.3 presents the purpose of this study.

3.1. Non-Gaussian Distributed Measurement Noises
3.1.1. Bimodal Gaussian Distribution

In practice, the errors of voltage and current measurements might follow bimodal
Gaussian mixture (BGM) distribution [24]. The probability density function can be obtained
by the superposition of two Gaussian probability density functions:

PDFBGM =
2

∏
i=1

ωi fN(µ̂i,σ̂
2
i )
(y) (10)

where fN(y) represents the Gaussian probability density function, N(µ,σ2) represents the
normal distribution, and ω represents the weights corresponding to the combination of
Gaussian components. The symbol “ˆ” represents the estimated quantity, and the subscript
i represents the i-th Gaussian component combination. The weight of each Gaussian
component combination is the product of all the Gaussian component weights involved in
that combination, satisfying:

ω1 + ω2 = 1. (11)

For the bimodal mixed Gaussian distribution in the method, the mean and variance
are as follows:

µ12 = ω1µ1 + ω2µ2 (12)

σ2
12 = ω1σ2

1 + ω2σ2
2 + ω1ω2(µ1 − µ2)

2 (13)

where ω represents the weight, µ represents the mean value, σ represents the variance,
subscripts 1 and 2 indicate the components 1 and 2 of the BGM, respectively, and subscript
12 indicates the resulting BGM distribution. In the proposed method, µ12 is set to 0, which
results in

µ1

µ2
= −ω2

ω1
= k. (14)

Combine (12) and assume σ1 = σ2 = σ, we have,

µ1 = −kω2σ (15)

µ2 = kω1σ. (16)

Therefore, the distribution of the BGM measurement noise can be changed by adjusting
the parameter, k.
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3.1.2. Laplace Distribution

The Laplace distribution is also called bi-exponential distribution because it can be seen
as the combination of two exponential distributions at different positions. The probability
density function of the Laplace distribution is:

f (x|µ, b) =
1
2b

exp(−|x− µ|
b

) =
1
2b

{
exp(− x−µ

b ), i f x ≥ µ

exp(− µ−x
b ), i f x < µ

(17)

where µ is the position parameter, b > 0 is the scaling parameter. If µ = 0, then the positive
half happens to be an exponential distribution of scale 1/2. The difference between Laplace
distribution and Gaussian distribution is that the Gaussian distribution represents the
square of the difference relative to the mean, while the Laplace distribution is represented
by the absolute value relative to the difference [25]. Thus, the tail Laplace distribution is
much flatter than that of the Gaussian distribution.

3.2. Effect of Non-Gaussian Measurement Noises on the Performance of Existing Robust
State Estimators

State estimation aims to determine the most likely states in the system based on
the measurements. One way to achieve this is through maximum likelihood estimation
(MLE). Assuming that all measurement noises have known probability distributions, all
measurements’ joint probability density function can be written with these unknown
parameters, called the likelihood function, which will peak when the unknown parameter
is chosen closest to its actual value. When the measurement noise follows the Gaussian
distribution, the deduced optimal solution method is the WLS [26].

As shown in Figure 2, WLS is no longer the optimal solution when the measurement
noise does not follow the Gaussian distribution. This is because, compared to the Gaussian
distribution, the tail convergence rate of the bimodal Gaussian distribution and the Laplace
distribution are faster than that of the Gaussian distribution tail convergence rate (so
they are also known as a heavy tail distributions). Therefore, they have higher outlier
probability than the Gaussian distribution, i.e., their absolute value in the white part is
greater than that of the Gaussian distribution. If WLS is still used in the existence of
non-Gaussian distributed noises, outliers will be assigned with large weights, resulting in
reduced estimation accuracy.
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In discussing the effect of non-Gaussian measurement noise on the performance of
existing robust state estimators, this subsection only discusses M-estimators since the
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generalized M-estimator is still developed based on the M-estimators. As shown in (5), the
value of the target function of LAV is proportional to the absolute value of the deviation
value, so when the deviation value is large when the outlier appears, the weight is much less
than the WLS, so it has high robustness for the outliers. Although there may be significant
proportion of non-Gaussian measurement noises, the Gaussian measurement noise still
constitutes the main part for real systems. Therefore, the LAV estimator might not achieve
the highest estimation accuracy.

The Huber estimator combines the advantages of both WLS and LAV according to
(4). The size of the parameter β determines Huber’s emphasis on WLS and LAV: when
β→∞, Huber estimator is equivalent to WLS; when β = 0, it is equal to LAV. The parameter
β is generally set to be the fixed value of 1.5. Therefore, the existing Huber estimators
and generalized M-estimators based on fixed β values may have insufficient robustness or
accuracy in the existence of the non-Gaussian distribution measurement noise with different
proportions and parameters. Therefore, it is urgent to propose a generalized M-estimator (or
Huber estimator) that optimizes the value according to the measurement noises.

3.3. Research Purpose of Generalized M State Estimation of Optimization Parameters Proposed

As shown in the above sub-sections, non-Gaussian distributed measurement noises are
more likely to cause outliers than the Gaussian distributed measurement noises. Therefore,
different levels of robustness of the estimator are required to ensure the best estimation
accuracy under different types and proportions of non-Gaussian distributed measurement
noises. Traditional generalized M-estimation based on Huber estimation with fixed param-
eter β can ensure high robustness against bad data and high estimation accuracy under
Gaussian distributed noise. Its estimation accuracy is decreased if the measurement noises
are non-Gaussian distributed. So, the purpose of this study is to propose a method that
can adaptively change the value of β so that the generalized M-estimator can have high
estimation accuracy under different non-Gaussian distributed measurement noises while
ensuring good robustness against bad data.

4. Generalized M State Estimator of Optimized Parameters Based on Sampling

To overcome the drawback of the traditional generalized M-estimator, a novel gener-
alized M state estimator of optimized parameters based on sampling is proposed in this
section, where the random sampling method is described in Section 4.1, and the algorithm
process of sampling-based optimization parameter is introduced in Section 4.2.

4.1. Optimized Parameter Selection Method Based on the Random Sampling Method

In Section 3.2, it is explained that non-Gaussian noise has a higher outlier probability
than Gaussian noise. Hence, the value of β needs to be reduced to increase the estimator’s
robustness. Because the optimal value is affected by many uncertain factors, such as the
configuration of measurement noise, the probability distribution of measurement noise, and
the probability of bad data occurrence, it is almost impossible to obtain the exact optimal
value of β. Therefore, this paper proposes the sagging optimization selection method to
find a value of β close to its optimal value according to the probability ratio of the outliers:

β = 1.5− a

N
∑

i=1
PTruthi(x ≥ 1.5)

N
∑

i=1
PGaussi(x ≥ 1.5)

. (18)

Define n1 =
N
∑

i=1
PTruthi(x ≥ 1.5), which is the number of times when the actual

standardization error ((measurement value-mean)/standard deviation) of all the mea-
surements in the system is greater than 1.5, is the quantity to be determined. Define
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n2 =
N
∑

i=1
PGaussi(x ≥ 1.5), which is the number of times when all the measurements obey

the Gaussian distribution, is the known quantity. The variable a is the droop coefficient and
the quantity to be determined. This paper takes the following steps to determine n1 and a:

Step 1: for a system with m measurements, randomly select N measurements;
Step 2: For the N measurements, record L groups of data from their corresponding

devices (L is large enough), and record the number of normalized errors greater than 1.5, n1.
Step 3: Calculate the droop coefficient a by (19):

a = (1.5− βmin)
n2

n1,max
(19)

where βmin is the set minimum value. In order to ensure the convergence ability of the
estimator, this paper takes βmin = 0.1, which is a conservative value. n1,max is the number
of all measurements whose normalized errors are greater than 1.5 that are calculated from
the probability density function at the highest non-Gaussian degree.

If most of the non-Gaussian distribution measurements in the system obey a bimodal
Gaussian distribution, then the formula for the optimization values can be approximately
reduced to:

β = 1.5− Akh (20)

where A is the droop coefficient to be sought, and k is the average bimodal Gaussian error
coefficient, which is defined in Equation (14), as the non-Gaussian measurement ratio. This
paper takes the following methods to determine A, k, and h, as shown in Figure 3.
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4.2. The Proposed Generalized M State Estimation Algorithm of Optimized Parameters Based
on Sampling

Based on the optimization parameter selection method proposed in the previous
section, this paper proposes an improved generalized M state estimation algorithm. The
steps are shown in Figure 4.
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5. Simulated Examples

To verify the effectiveness of the proposed method, the IEEE 14 and 118 bus test
systems are selected to simulate the performance generalized M-estimator with differ-
ent parameters. All simulations were conducted in MATLAB, using an Intel Core i7-
9750CPU (@2.6 Hz) 16 GB memory computer. Section 5.1 describes the impact of bad data
and non-Gaussian measurement noise on generalized M-estimators with different values
of β by conducting exhausted Monte Carlo simulations in the IEEE 14 bus test system.
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Section 5.2 demonstrates the effectiveness of the proposed generalized M-state estimator of
the optimized parameter in a large system, the IEEE 118 bus test system.

5.1. Effect of Bad Data and Measurement Noise on the Performance of the Generalized M-Estimator

To ensure the generality of the results, all of the results shown in this section are
obtained by averaging the results over the 500 Monte Carlo simulations. To ensure the
validity of the generalized M-state estimation method, a set of redundant conventional
measurements and PMU measurements were selected in IEEE 14 bus test system as shown
in Figure 5.
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For Gaussian errors, the standard deviation is set to a percentage of the measurement
according to the type of measurement as follows:

SCADA: P, Q measured value (0.02), voltage (0.002)
PMU: Voltage amplitude (0.002), Voltage phase angle (0.01)
The performance of the generalized M-estimator can be adjusted by varying values

of β. In this simulation test, the least value of β is 10−2. With this configuration, the
generalized M-estimator can be considered to be an LAV estimator. The largest value of β
is set to be 104. The corresponding estimator can be considered to be a WLS estimator. In
the range of 10−2 to 104, β increases at the fixed ratio of 101/30, all estimators with different
values of β are tested in the IEEE 14 bus test system. The root mean square error (RMSE) is
used as the performance index of the estimators.

Case 1: Existence of bad data with fixed percentage errors. We compared the robust-
ness of the state estimators by introducing fixed percentage errors to the voltage magnitude
measurement at bus 1 and obtaining the RMSE of the estimators when the noise probabil-
ity density function follows the standard Gaussian distribution. The voltage magnitude
measurement at bus 1 is changed to 0, 0.2, 0.4, 0.6, 0.8 of its true value (100%, 80%, 60%,
40%, 20% errors, respectively), and tested separately. The simulation results are shown in
Figure 6.
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Figure 6. The trend of RMSE of each estimator with different β values at fixed error parameter
percentages from 0.2 to 1. The red dot is the nadir.

The following conclusions can be obtained:
(1) After introducing fixed errors of different magnitudes, the trend of RMSE of each

curve is roughly the same: the general trend is that RMSE increases as a larger β is selected.
It will not change after a certain value;

(2) There is an optimal value of β for each fixed percentage error, and the value
decreases with the percentage of the error parameter, as summarized in Table 2.

Table 2. Optimal β values of each estimator with different fixed error parameters.

Percentage of Fixed-Error Parameters 100% 80% 60% 40% 20%

The Optimal β Value 0.3415 0.5412 0.6813 0.8577 2.3263

Case 2: Existence of bad data with random percentage of errors. The robustness of
generalized M state estimators with different values of β is compared by five individual
simulations with three random bad data points in the measurements and observing their
performances. The test results are shown in Figure 7.
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The following conclusions can be obtained:
(1) When there are no bad data in the measurements, the trend of RMSE with the

change of β is decreasing in general; the value of β which achieves the lowest RMSE is 1.5,
which is the exact value of β for normal generalized M-estimator;

(2) After the introduction of three random errors, the trend of the RMSE of each
simulation with the change of β is roughly the same: The general trend is increasing. It will
not change after a certain value;

(3) There is an optimal β whose corresponding estimator achieves the lowest RMSE
for each simulation, which varies between 10−1 and 101 with different bad data.
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Case 3: Existence of measurements with bimodal Gaussian distribution noise. When
the bimodal interval size k (as introduced in Section 3.1) is between 0~5, the trend of the
RMSE with estimators with different values of β is shown in Figure 8.
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The following conclusions can be obtained:
(1) When k ≤ 1, RMSE decreases with the increase of β, and when k > 1, RMSE

decreases with the increase of β;
(2) The optimal β whose corresponding estimator achieves the lowest RMSE decreases

with the increase of k;
(3) In the presence of non-Gaussian measurement noise, the value range of the optimal

β is between 10−1 and 101, which can roughly cover the value range of the optimal β in the
presence of bad data;

(4) Since the occurrence of bad data is low and the value range of the optimal β in
the bad data case can be roughly covered by that in the non-Gaussian measurement noise
case, the optimal β can be determined by only considering the influence of non-Gaussian
measurement noise.

The optimal βs obtained by simulation in the presence of measurement noises in
bimodal Gaussian distribution with different values of k are summarized in Table 3 and
plotted in Figure 9. The optimized βs calculated according to the proposed optimized
parameter selection method (20) are also plotted in Figure 9. It can be seen that with the
increase of k, the calculated optimized β decreases, and are equal to the optimal β at k = 0
and k≈ 5. Although the optimized β is larger than the optimal β for 0 < k < 5, the decreasing
trend guarantees significantly better estimation accuracy compared to the estimator with a
fixed c value while k increases.

Table 3. Optimal β values in the presence of different bi-modal Gaussian distributed measurement noises.

The Bimodal Interval Size (k) 0 1 2 3 4 5

The Optimal β 1.5000 0.4642 0.2712 0.1849 0.1324 0.1000
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5.2. Simulation Examples of the IEEE118 Bus Test System

To verify the proposed generalized M-estimation method of optimized parameters
based on sampling, simulations are conducted in the IEEE 118 bus test system with the
network diagram and measurement configuration shown in Figure 10.
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Figure 10. Diagram for IEEE 118 test system.

Among the total 186 measurements in the system, 28 of them have bimodal Gaussian
distributed noises with the bimodal interval size (k) randomly set between 0~5. Accord-
ing to the proposed optimized parameter selection method, the optimized β, β opd, is
determined as follows:

Step 1: Randomly select 80 measurements;
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Step 2: For each measurement selected, test the measurement noises and record 10,000
groups of data; 12 non-Gaussian measurement noises are counted according to the statistics,
and the proportion of non-Gaussian measurement, h, is 15%;

Step 3: Calculate the sagging coefficient A:

A =
1.5− βmin

kmaxhmax
=

1.5− 0.1
5× 0.5

= 0.56

where kmax is the maximum bimodal Gaussian error coefficient possible, and hmax is the
maximum proportion of the bimodal Gaussian distribution measurement noise possible.

Step 4: Find the average k according to the statistic bar chart of all bimodal Gaussian
distributed measurements noises. To test the proposed method in different scenarios,
5 different simulations with average k ≈ 1, 2, 3, 4, 5 are conducted with the statistical bar
charts shown in Figure 11.
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To verify the effectiveness of the proposed generalized M-estimator of optimized
parameters, the RMSEs of the estimators obtained from Monte Carlo simulations for
different ks and against β are shown in Figure 12. The optimized β, βopd, can be calculated
according to (20) with the obtained A and h. The optimal β, βopl, and the RMSEs at βopl,
βopd, β = 1.5 for different ks can be obtained from Figure 12. The results are summarized in
Table 4.

Table 4. Average standard residuals of different estimators in IEEE118 systems at different non-
Gaussian noise ratios.

k 5 4 3 2 1

βopd 0.1005 0.3804 0.6603 0.9402 1.2201

βopl 0.1001 0.1467 0.2326 0.3687 0.9261

RMSE at βopd 1.55 × 10−3 1.49 × 10−3 1.45 × 10−3 1.17 × 10−3 1.15 × 10−3

RMSE at βopl 1.52 × 10−3 1.43 × 10−3 1.26 × 10−3 1.06 × 10−3 1.11 × 10−3

RMSE at β = 1.5 1.82 × 10−3 1.73 × 10−3 1.63 × 10−3 1.32 × 10−3 1.18 × 10−3

((RMSE at β = 1.5) − (RMSE at
βopd))/RMSE at β = 1.5 × 100% 14.84% 13.87% 11.04% 11.36% 2.54%
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The analysis performed in Figure 12 and Table 4 leads to the following conclusions:
(1) βopd is larger than βopl, but the RMSE is not much different from the actual RMSE;
(2) The RMSE at βopd is significantly lower than the RMSE at β = 1.5.
The conclusions above demonstrate the effectiveness of the proposed method. The

underlying reason for these results is that the proposed method reduces the value of β to
increase the estimator’s robustness when the level of non-Gaussian measurement noise
increases. The linear drooping characteristic of β gives the proposed estimator signifi-
cantly better estimator accuracy than the traditional generalized M-estimator, but slightly
lower estimator accuracy than the estimator with βopl, which is acceptable considering the
difficulty to obtain βopl.

5.3. Simulation Examples of the Polish 2736 Bus System

To verify that which is proposed, simulations are conducted in the Polish 2736 bus test
system [27].

Among the total 3269 measurements in the system, 280 of them have bimodal Gaussian
distributed noises with the bimodal interval size (k) randomly set between 0~5. Accord-
ing to the proposed optimized parameter selection method, the optimized β, β opd, is
determined as follows:

Step 1: Randomly select 800 measurements;
Step 2: For each measurement selected, test the measurement noises and record

10,000 groups of data; 120 non-Gaussian measurement noises are counted according to the
statistics, and the proportion of non-Gaussian measurement, h is 15%;

Step 3: Calculate the sagging coefficient A;
Step 4: Find the average k according to the statistic bar chart of all bimodal Gaussian

distributed measurements noises. To verify the effectiveness of the proposed generalized
M-estimator of optimized parameters, the RMSEs of the estimators obtained from Monte
Carlo simulations for different ks and against β are shown in Table 5.

Table 5. Average standard residuals of different estimators in Polish 2736 systems at different
non-Gaussian noise ratios.

k 5 4 3 2 1

βopd 0.6751 0.8330 0.9876 1.167 1.340

βopl 0.1079 0.1467 0.2326 0.3687 0.9261

RMSE at βopd 1.69 × 10−3 1.54 × 10−3 1.39 × 10−3 1.22 × 10−3 1.10 × 10−3

RMSE at βopl 1.61 × 10−3 1.48 × 10−3 1.34 × 10−3 1.16 × 10−3 1.05 × 10−3

RMSE at β = 1.5 2.03 × 10−3 1.96 × 10−3 1.78 × 10−3 1.57 × 10−3 1.43 × 10−3

((RMSE at β = 1.5) − (RMSE at
βopd))/RMSE at β = 1.5 × 100% 16.74% 21.43% 21.91% 22.29% 23.08%
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Analysis performed in Table 5 leads to the following conclusions:
(1) The β value calculated by sagging coefficient is slightly different from the actual β

value, but its RMSE is not much different from the actual RMSE;
(2) The RMSE corresponding to the calculated β value is significantly higher than that

when β = 1.5, and the RMSE is significantly higher when the k value is larger.
These conclusions are almost the same with those in Section 5.2, demonstrating the

adaptability of the proposed even in very large networks.

6. Conclusions and Future Works

This paper presents a generalized M-estimation method for power system state esti-
mation with sampling-based optimization parameters. The sampling statistics method can
set the parameter according to the different non-Gaussian measurement noise parameters
and the proportion to adjust its robustness, which increases its overall estimation accuracy.
The generalized M-estimation defines standardized residuals based on the median, thus
being more robust than ordinary M-estimation methods. Exhaustive simulation results in
the IEEE14 bus test system demonstrate the impacts of non-Gaussian measurement noise
and bad data on estimation accuracy, which are summarized as follows:

(1) Small β can increase the robustness of the estimator but decrease the estimation
accuracy in the normal operation case where no bad data occur, and vice versa. There is an
optimal β that can achieve the highest overall estimation accuracy;

(2) The optimal β decreases with the increase of the magnitude of bad data and the
non-Gaussian degree of measurement noise;

(3) The selection of the optimal β value mainly depends on the non-Gaussian degree
and proportion of the measured noise.

Simulations in the IEEE 118 bus test system and Polish 2736 bus system verify that
the proposed method can improve the estimation accuracy by up to 23% compared to
the traditional generalized M state estimator in the presence of different degrees of non-
Gaussian measurement noise.

Although this paper has reached the expected goal, further research can be carried out
by considering more newly developed estimators, adopting more complex grid models,
and considering more complex situations.
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Nomenclature

WLS Weighted least squares
LAV Least absolute value
PMU Phasor measurement unit
IRLS Iterated re-weighted least square
BGM Bimodal Gaussian mixture
MLE Maximum likelihood estimation
SCADA Supervisory control and data acquisition
RMSE Root mean square error
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