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Abstract: Smart cities require the development of information and communication technology to
become a reality (ICT). A “smart city” is built on top of a “smart grid”. The implementation of
numerous smart systems that are advantageous to the environment and improve the quality of life for
the residents is one of the main goals of the new smart cities. In order to improve the reliability and
sustainability of the transportation system, changes are being made to the way electric vehicles (EVs)
are used. As EV use has increased, several problems have arisen, including the requirement to build
a charging infrastructure, and forecast peak loads. Management must consider how challenging
the situation is. There have been many original solutions to these problems. These heavily rely on
automata models, machine learning, and the Internet of Things. Over time, there have been more EV
drivers. Electric vehicle charging at a large scale negatively impacts the power grid. Transformers
may face additional voltage fluctuations, power loss, and heat if already operating at full capacity.
Without EV management, these challenges cannot be solved. A machine-learning (ML)-based charge
management system considers conventional charging, rapid charging, and vehicle-to-grid (V2G)
technologies while guiding electric cars (EVs) to charging stations. This operation reduces the
expenses associated with charging, high voltages, load fluctuation, and power loss. The effectiveness
of various machine learning (ML) approaches is evaluated and compared. These techniques include
Deep Neural Networks (DNN), K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM),
Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT) (DNN). According to
the results, LSTM might be used to give EV control in certain circumstances. The LSTM model’s peak
voltage, power losses, and voltage stability may all be improved by compressing the load curve. In
addition, we keep our billing costs to a minimum, as well.

Keywords: electric vehicles; smart grid; load forecasting; signal processing; machine learning

1. Introduction

Electric vehicles (EVs) have grown in importance as the auto industry has developed.
EV sales will reach 2.1 million in 2019, a 40% annual growth rate [1]. Electric vehicle (EV)
chargers are now an essential part of the world’s infrastructure, with 7.3 million chargers
installed globally in 2019 and a 60% increase in the number of public charging stations
installed in 2019 compared to [1]. Additionally, 43 million electric vehicles are expected
to have been sold globally by 2030, accounting for 30% of all vehicles [2]. Fast-changing
technologies, like DC-DC converters with improved performance, have greatly contributed
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to this [3]. EVs must be managed properly as soon as possible. Due to the high amount
of energy required to charge these vehicles, the high number of EVs on the road places
significant stress on the distribution grid. As new driving techniques are developed to
help drivers lower their operating costs, demand for these vehicles is also anticipated to
rise. More electricity is needed to power their charging stations as more electric vehicles
are on the road. When more EVs are on the road, the load curve rises, which increases
the stress on the transformer and the rest of the distribution grid. A strong and reliable
management system is necessary for the distribution grid to run efficiently and dependably.
For electric vehicles, Apple Inc. has developed a method that only considers the amount
of battery charge needed to locate the closest charging station [4]. However, neither the
demands on the distribution grid nor the drawbacks of charging the EV are considered.
The development of ICT greatly helps the achievement of smart cities. A framework made
up of ICT is referred to as a “smart city.” It is used to promote and develop sustainable
practices to handle the many problems that urban environments present. A smart city
is made up of an intelligent network of machines and objects that are linked together
using cloud and wireless technology. The Internet of Things manages and analyzes the
data they receive in real time to assist citizens, towns, and businesses in making the best
decisions to improve living standards [5]. Integrating devices and data with a city’s physical
infrastructure can lower living expenses and promote sustainability. Electric vehicle (EV)
charging stations and parking meters can easily be reached by connected cars. A smart
city combines the physical infrastructure with ICT to provide benefits such as improved
mobility, convenience, air and water quality, and energy conservation. Sensors, motors,
centralized units, networks, interfaces, and intelligent metering infrastructure will all be
used in smart buildings in a smart city [6]. Governmental organizations are attempting
to utilize cellular and Low Power Wide Area technologies linked to the infrastructure to
increase visitor and resident convenience and efficiency. To minimize energy consumption,
smart cities must implement a smart grid concept into their energy infrastructure. An
intelligent metering infrastructure creates two-way communication in all grid nodes [7].
Customers can take active or passive actions to increase the grid’s reliability and energy
efficiency. The smart grid can also lessen environmental pollution by facilitating the efficient
integration of EVs and renewable energy sources into the grid. Government agencies could
interact with the public, create infrastructure, and track operations and development thanks
to smart city technologies. IoT devices are used in smart cities to enhance operations, service
delivery, and citizen involvement. According to recent research, smart cities are the best
solution to population pressure in developing and developed nations. Congestion, housing,
pollution, administration, availability of power, etc. ICT is utilized to boost productivity,
interact with municipal or urban services, and enhance the products and services provided
by city authorities. Better citizen-government relationships save expenses and resource use.
They are intended to respond to issues in a realistic, proactive manner [8]. This literature
review aims to inform policymakers and smart city planners about how to take the needs
and well-being of the community into account when making plans or decisions. The need
for eco-friendly vehicle technologies is explained by the decline in global CO2 emissions
and the rising price of carbon fuels. In contrast to conventional vehicles, modern electrical
vehicles (EVs) will improve air quality by reducing carbon emissions. The main issues
brought on by using traditional vehicles will be solved if electric vehicles are successfully
integrated. At this time, the penetration of electric vehicles has not shown a significant
effect on the grid’s demand for electricity. Electric vehicles will eventually become more
widely used and more affordable. As a result, they will have a big impact on how the
smart grid operates and how much energy is needed. To lower the failures related to power
allocation and electricity flow across the smart grid, intelligent management systems are
required. The performance and dependability of various ML techniques were compared to
optimize the distribution grid and reduce charging costs.

Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), Deep Neural Networks (DNN), and Long Short-Term Memory are the
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machine learning (ML) techniques used in this paper (LSTM). An ML-based solution for
managing and routing an EV fleet is also provided in this paper. The following are the
paper’s main contributions:

We offer a management system for managing electric vehicle (EV) charging adaptable
to the load data uncertainty that can arise with the ML system’s input data. This is carried
out to ensure the dependability and functionality of the system. This system combines V2G
technology with both standard and rapid charging.

The subject of our second analysis is the effectiveness of various machine learning
(ML) techniques in managing the charging and reconfiguring of an electric vehicle fleet.
Then, to reduce load changes, power losses, voltage fluctuations, and charging costs, we
optimize using the best machine learning algorithm.

1.1. Intelligent Information Management in Smart Cities Promotes Energy and
Governance Sustainability

City and urban planners and the government should think carefully about how to
produce, acquire, and sustainably use the power before making any major decisions.
Robotic computing and artificial agencies are two new technologies for solving these
problems [9]. Cities and urban areas consume significantly more energy than rural areas.
As a result, it will be very challenging to stop environmental pollution and global warming.
The most efficient way to reduce pollution is to generate and manage urban electricity using
circuit technology. Engineers can better understand human behavior, energy consumption,
machine learning, and the Internet of Things. The need for standardized data on smart
energy, the integration of energy across smart grids, and behavioral analytics are just a
few risks.

The power efficiency art grid will be maximized by smart metering. This is especially
important given the complicated sustainability issues that cities and urban areas are cur-
rently dealing with. It seems that using smart technology ideas and knowledge may be a
good idea based on the findings of this analysis. They facilitate carrier machine multiple
kernel learning in NILM energy breakdown using SVMs and a genetic algorithm [5]. The
urban use of digital technology has helped the developing world’s growing population
and lack of services. Due to the expense of ensuring that infrastructure will last for a
long time, a sizable informal economy, and numerous social and political pressures in the
modern world, the idea of smart citieshas not taken off quickly. They are considering that
smart cities are political for many developing countries to support social and economic
development.

In the early 1800s, the idea of “smart growth”, which emphasizes infrastructure like
public transportation and well-planned cities, first appeared. Emerging economies can
have technologically advanced smart cities if economic, human resource, policy-making,
and legal reforms are fully integrated into development plans [10]. Asserts that for this
to happen, government priorities and spending priorities must also change, in addition
to the general public becoming aware of and understanding technological advancements.
This area of study has become more well-known recently as people have realized how
closely related economic and political issues are to the idea of a smart city. In developing
nations around the world, building smart cities is challenging due to education and literacy
issues. People in cities must learn how to use new technologies to avoid being left out of
society because they cannot use information. IT experts and information managers must
consider how the data they collect will be used. Smart services, like smart cards, necessitate
people to learn, understand, and view things from various angles. These problems will
be resolved, and smart cities will become sustainable [5]. The challenges presented by the
growth of smart cities and the movement of people from rural to urban areas are strongly
intertwined with the well-being of the respective populations. Safety, open government,
high-quality education, and creative problem-solving are all crucial [5]. These elements
will determine whether smart cities are successful or unsuccessful, as well as the direction
of research in all areas, ultimately resulting in comprehensive solutions for the issues that
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plague these urban areas. To understand user groups and preferences, you must examine
data from all academic disciplines. The happiness and well-being of the inhabitants may
at first seem simple and unimportant, but it is crucial to consider these when designing
smart cities, smart services, and smart technology [11]. Figure 1 shows the Type of Electric
Vehicles and their power source.
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An electric vehicle’s battery can account for 25 to 50% of the overall cost. According to
predictions, batteries for electric vehicles are expected to cost about 225 Euros per kilowatt-
hour by 2025. The cost of manufacturing Li-Ion batteries for electric vehicles decreased
by about 50% between 2007 and 2014. These significant price drops mean that buying an
EV will soon be comparable to purchasing a gas-powered car. Currently, three types of
electric vehicles are available: battery, plug-in, and hybrid (HEVs). The launch system
of the vehicle determines these classifications. The energy needed for power production
is stored and released by batteries in BEVs. Plug-in hybrids (PHEVs) have an internal
combustion unit that can run on gasoline and other fuels and a battery pack that powers
the electric motor (ICE). The battery pack in an HEV can be charged without electricity.
The batteries are continuously charged due largely to the internal combustion engine and
brake system. BEVs do not emit greenhouse gases, so they help to keep the air clean. The
electric motor works with the gasoline engine in PHEVs and HEVs to minimize size and
emissions. The electric battery, the power source for the different EVs shown in Figure 1, is
denoted by the letter EB.

1.2. The Vehicle to Grid (V2G) Network Is a Crucial Development for the Smart Grid

Enhancing the smart grid network’s capacity to balance power supply and demand
and enabling mobile batteries to store energy reduces the negative impacts of using non-
renewable energy sources [13]. EVs are harder to integrate without an EDMS to control
energy consumption. EDMS is looking for user feedback to make charging electric vehicles
as quick and easy as possible. By taking into account a range of technical and financial vari-
ables, such as the location and charging status of electric vehicles (EVs), user preferences,
predicted energy demand, and the state of the distribution network at the time, the Energy
Distribution Management System (EDMS) will choose the best answer to this question.
Predicting EV demand and impact is one of EDMS’s strongest features. Achieve the highest
Quality of Service (quality of service) levels possible; this is crucial [14]. The EVs Intelligent
Charging (EVIC) specification includes the EDMS concept, as shown in Figure 2.
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For the electric vehicle management system (EDMS) to operate as designed, each
electric automobile of the future will need to be equipped with an EB that is synchronized
with a data-gathering device. The onboard computer will be provided with a GNSS receiver,
an inertial measurement unit (IMU), and a Wi-Fi wireless LAN interface. All three of these
components have the potential to be used in the process of determining the location of the
vehicle [16]. The EV’s Onboard Unit has a localization unit that can constantly accurately
identify its exact location. A built-in phone modem that can send data to the internet is
present in the vehicle. The smart city’s communications network will be grounded. Wi-Fi
roadside units that can be installed anywhere in the city and are compatible with electric
vehicle charging stations will make up this infrastructure. The EDMS will process the
location and charging method of electric vehicles.

1.3. Integration of EVs in Smart Grids

Because electric cars utilize power in so many ways, systems that rely on them are
prone to problems. After it has been determined that the electrical grid has been built
appropriately to minimize larger penetration strains, the load profile for electric vehicles
may be forecast. The amount of energy that can be used to power the load on an elec-
tric vehicle depends on the battery’s capacity. The Nissan Leaf’s built-in battery has a
30-kilowatt-hour energy storage capacity. These batteries can hold four full days’ worth of
lights for the average house. Several approaches may be used to create accurate estimations
regarding EV load profiles. To make more precise estimates of the load needs for EVs,
probabilistic models for plug-in electric cars make use of the fact that the charging of
batteries does not follow a linear pattern. The object principle is the cornerstone of the
Markov chain approach, often known as a Markov or hybrid grey model, which forecasts
EV demand. This strategy considers both predicted deviations and recurring trends. Artifi-
cial neural networks, support vector machines, and decision trees, among other machine
learning techniques, may be used to estimate the number of EVs presently in use on the
roadways at any time [17]. The initial dataset is split during the data configuration stage
into training and test datasets. One uses a training dataset to train the model and find
“hidden” correlations and patterns between the target values and attribute values. The
effectiveness of the data mining strategy is assessed using the test dataset. Information
from the training dataset is used during the testing and grading phases. The training
and evaluation process is repeated about 20 times to find the ideal set of parameters. A
model’s performance can be assessed using r-correlation, root-mean-squared error (RMSE),
and root-mean-square absolute error (MAPE). Time and training metrics were used to
evaluate the performance. According to the study, SVM offers the most accurate forecasts
(r = 98.09). SVM training takes longer than other training approaches. In such a short
period, ANN achieved amazing results. The MAPE criterion was the most effective method
for evaluating the precision of load forecasts. Values are most effective when they are less
than 5%. Applying the RMSE index severely wants to punish large absolute errors. It
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is possible to develop a model of the requirements and routines of EV drivers using the
Markov model. The existing prediction charging model was initially designed to support a
single EV, but it has since been changed to support charging multiple EVs simultaneously.
Studies on origin-destination (OD) and traffic have also made it possible to predict the load
profile for electric vehicles. Integration models for Electric Vehicles (EVs) into the smart
grid, both centralized and decentralized is presented in Figure 3.
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The cheap automated decision making is crucial for saving money on maintenance
and energy. Authors in [19] were able to increase discharge rates and lower charging costs
by utilizing cyber insurance. The short-term price, coverage, and insurance options can be
determined by combining the proposed cost function with a Cartesian product. When an
elevation is viewed as an idealized cost function with parameters, a learning algorithm can
decide the best course of action. The authors in [20] looked at how to forecast the load on
the distribution grid from electric vehicles in the upcoming years using an enhanced grey
theory prediction model. An intelligent, machine learning-based technique for charging
electric automobiles is presented by [21]. In the presence of renewable energy sources, [22]
looked at how charging electric vehicles changed the demand profile of the smart grid. They
came up with solutions to the problems. According to [23], using artificial intelligence and
smart grids have been used to operate electric cars (EVs). The prediction method of [24] was
used to project the demand for electric vehicles shortly (2012). To forecast the variable need
for charging electric vehicles and the overall number of vehicles on the road [22] created
a cellular agent automaton. The use of machine learning in this approach was crucial.
Smart city development can reduce population pressures, but overall population growth
is predictable, especially in developing countries. Because it would lead to new political,
economic, and social problems, including technological exclusion and discrimination, it is
not possible. It involves extensive research and consideration from all parties involved, and
the best chance of success comes from a plan that looks at the situation from a variety of
angles [25]. Research on smart cities suggests incorporating attempts to reduce computer
processes into the provision of social services, with an emphasis on boosting end-user
comprehension. Infrastructure like the Global Positioning System (GPS), Galileo, and
the European Geostationary Navigation Overlay Service is necessary for electric vehicle
compatibility with the smart grid (EGNOS). Instead of satellites, Wi-Fi will be used to
identify our location [26]. The various ways that EVs can be integrated into smart grids
and smart cities are shown in Figure 4. Electric vehicles are introduced in a smart city using
Wi-Fi and GPS positioning systems.
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Various elements, such as energy storage technologies, electric cars, and renewable
energy sources, were considered while studying the ideal energy management framework.
To estimate the activity for the next day that would result in the lowest overall cost for
the energy that was bought, the authors solved a linear programming problem. Using
a case study encompassing three separate buildings, it was shown that the suggested
method reduced energy costs while simultaneously boosting grid dependability. They
developed a domestic energy consumption management system that [28] identified the
ideal procedure for scheduling various loads and supplies across different price levels
using a multi-objective optimization problem. Results showed that the system could
decrease transformer losses for the utility provider while still meeting customer demand.
Various techniques have been used to study optimization, like dynamic and quadratic
programming. Sequential and probabilistic reasoning techniques for lowering distribution
system losses were studied by [29]. Based on the outcomes, the developed method showed
that minimizing load variation is more advantageous than minimizing losses because
it produces the same overall result in a shorter time. In addition, it works with any
configuration of the distribution grid, regardless of type. [29] investigated how improving
the voltage profile of a real-time coordination system could be achieved by lowering the
total cost of energy production and power losses. Assuming that EVs are randomly plugged
in, the algorithm uses the maximum sensitivities selection optimization method. With the
help of a real-time system, the distribution grid can be more effective, and its load can
be decreased [30] investigated load variance optimization for a single-home micro grid.
Quadratic programming is used in a micro grid that serves a single house to minimize load
variation. The system lowers the variance in individual loads, which reduces the conflict in
loads on the distribution grid. This shows that the system benefits the entire grid, according
to the data. However, because some parameters, like the load curve, were taken as givens,
the system is not as effective as it could be. In the real world, this might not be accurate.
A coordinated charging method for EVs based on power factor correction was developed
by [31] to decrease power losses and enhance the voltage profile. Users’ favorite charging
methods were considered using a priority selection algorithm. The system reduced peak
demand and improved the performance of the electrical grid. Researchers in [32] proposed
charging many electric vehicles simultaneously using a decentralized topology system. The
suggested approach employs collectively pointless games. The system decreases the peak-
to-valley gap by filling the valley of the load curve—costs for producing power decrease
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as a result. Less two-way communication is needed between command centers and EVs.
Regardless of power loss or voltage variations, the optimization challenge ensures that EVs
can be completely charged using the least amount of energy. The approach assumes that all
loads, not just those from EVs, are predictable.

In the design of power architectures, energy storage methods, micro-grid control
systems, and energy management optimization, key problems and limitations are covered
in the article. A summary of current research on EV charging stations is also provided. An
added benefit is that the infrastructure was built to support various degrees of micro grids
for charging electric automobiles. In order to make EV charging stations as efficient as
possible, a lot of research is done on the coordinated control systems, energy management
plans, and machine learning methods utilized by these stations. To analyze and compare
the system’s performance, many machine learning techniques were used. In the end, this
approach is extensively used, and it found how to add and remove constraints and obstacles
in the most reliable way possible

2. Literature Review
2.1. Managed Charging of Electric Vehicle

Unplanned EV charging harms the distribution grid, as shown by several studies. Re-
searchers [33,34] examined how electric vehicles are charged. Without proper coordination,
it has been seen that charging EVs causes significant voltage disturbances and energy loss.

One of the most popular methods of frequency control frequency droop control is
currently being successfully applied to electric cars. The major technique for controlling
the frequency now is to regulate the output of generators connected to the main power
grid. As conventional power plants are phased out, electric vehicles are a great alternative
since their batteries may be charged or discharged in response to frequency deviation
alarms. As a result, we investigate frequency regulation in a power grid model with loads,
traditional producers, and a sizable amount of EVs. By providing grid-related services,
these last devices, in particular the FDC, autonomously optimize the grid. Two new control
algorithms that may be used to manage electric car batteries in the best possible way during
frequency regulation service. The control processes, on the one hand, make sure that
the power balance and frequency management of the main grid are stable. On the other
hand, these approaches can meet a range of EV charging needs. The available methods
are designed to reduce the failure rates of battery-powered devices. This contrasts with
the EV literature, which frequently concentrates on determining the ideal charge level.
The performance of the solutions is then contrasted with that of other state-of-the-art
V2G control systems. The results of numerical experiments carried out using an accurate
representation of the power grid show that the suggested methods perform well in actual
operational circumstances. According to [33], these detrimental effects might become more
noticeable as more EVs are on the road. Renewable energy may be able to solve these
problems, but [34] analysis shows that power quality regulation is still a problem. Authors
in [35] investigated the dangers of using the distribution grid to charge EVs. It follows that
V2G technologies can enhance the grid’s functionality. V2G technologies, according to [36],
have many benefits, such as power regulation, load balancing, and current harmonics
filtering. V2G technologies, however, might lead to EVs discharging deeply. In order
to charge an electric vehicle fleet as efficiently as possible while the total capacity of the
power grid is constrained, a new distributed control technique is proposed in this study.
The most economical way to charge for a profile of total energy use can be found by
solving a scheduling problem. As a result, the optimization issue that arises is a quadratic
programming issue with choice variables linked to both the objective function and the
constraint. In our model, people only interact with their immediate neighbors and reach
out to higher-ups when making decisions. The answer was discovered using a distributed
iterative approach that takes into account duality, proximity, and consensus theory. An
illustration case study shows how the tactic can result in the best solution for everyone [37].
This work proposes a new distributed control technique for optimally charging an electric
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vehicle (EV) fleet when the overall capacity of the power grid is constrained. By resolving a
scheduling issue, the most cost-effective method of charging for a profile of total energy
use can be determined. Consequently, the resulting optimization problem is expressed
as a quadratic programming problem with choice variables that are connected to both
the objective function and the constraint. In our concept, individuals just communicate
with their close neighbors and make decisions without contacting anyone above them. A
distributed iterative method that considers duality, proximity, and consensus theory was
utilized to obtain the solution. An example case study demonstrates that the strategy can
lead to the optimal answer for everyone.

The batteries in electric vehicles (EVs) degrade over time, shortening their life cycle
and lowering customer satisfaction, so this comes at a cost. Because it only considers the
power grid’s needs and ignores those of the end users, it is not thought to be the best option.
The impact of various charging techniques on the price of charging and the rate of battery
decrease was also studied by [38]; the effectiveness of non-coordinated, one-way, and two-
way charging was examined. Battery life can be significantly increased at a lower cost when
intelligent charging techniques and time-of-use electricity prices are combined. Most of the
research on coordinated charging of electric vehicles conducted by [39] was user-focused.
Within the limitations of the power grid, an optimization model that reduces costs has been
created. The benefits of the system become clearer as the number of EVs rises. The system
can cut costs by up to 50% compared to uncoordinated billing. The system requires smart
meters to gather real-time data on how electric vehicles are being charged and does not
consider fast charging. It can be challenging to charge electric vehicles (EVs) because they
consume a lot of energy, and renewable energy generation is not always reliable, according
to [39], who also looked into this issue. Significant cost savings of up to 8% were found
when comparing the results of the charging scheme to those of uncoordinated charging.
Recharging an electric vehicle reduces the amount of carbon dioxide released into the
atmosphere and is better for the environment. In agreement with [39], smart charging
infrastructure is crucial for deploying EVs. Inductive and conductive charging is used for
electric and plug-in hybrid vehicles. Conducted charging systems demand a power station
that is physically connected to an electric vehicle compared to inductive charging systems.
A scheme for electrical conversion may also include a high-to-low-frequency converter
and power factor correction (PFC). Either an internal or external charging system can be
used to charge the device. The battery and inverter current regulators and their power
supplies are built to house inside the vehicle in onboard chargers. Off-board chargers are
located outside the car. Conductive chargers need not be able to transfer power in order to
be considered such. We might also add more standards. The AC level 1 charger is one of
many different charger types. Figure 5 shows the Static WCS for EVs.

Power grids are experiencing a loss of transmission and a decrease in their ability to
perform main frequency control as traditional generators are being phased out in favor of
renewable energy sources. The issue is made significantly more challenging by the steadily
increasing number of electric vehicles (EVs), which necessitates the creation of trying to cut
methods for the management of grid operations. Rather than being an issue, the growth of
electric vehicles could end up being a solution to a number of issues that have arisen with
the electricity grid. In this context, the so-called vehicle-to-grid (V2G) mode of operation
is crucial and is one of the main operating modes for electric vehicles. This mode can
offer auxiliary services to the power grid such peak clipping, load shifting, and frequency
management. To be more precise, frequency droop management, one of the more traditional
techniques for frequency regulation, has just lately begun to be successfully applied to
electric vehicles. This is the primary frequency regulation, which is done by controlling
the current active power of the largest grid generators. Due to the decommissioning
of conventional power plants, electric vehicles are viewed as particularly advantageous
alternatives. This is because electric vehicles (EVs) have the ability to respond to alarms
about frequency deviations by either charging or discharging their batteries.
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This study focuses on modifying individual loads to conform to system constraints.
This research was conducted because it is challenging to charge a significant number of
electric vehicles with our current infrastructure. Since distributed methods may extend
and communicate more efficiently than earlier approaches, they are being evaluated as
a potential solution. We show that distributed linear optimization and communication
networks can be used to ensure relative average fairness while maximizing utilization.
Here, we outline these techniques. The outcomes of our research and simulation are
presented to show how highly useful these techniques are. When used in test scenarios,
the algorithm often performs within 5% of the ideal centralized configuration. Scaling up,
however, is easier and requires less communication than in the perfect situation. The end
user, in this case, the owner of the vehicle, is the one who is looking at battery charging
in this article. We describe a number of distributed algorithms to accomplish specific
policy goals due to the fact that vehicle owners’ priorities can change over time. Our
main focus is on the many types of distributed charges. Dispersed systems stand out
in terms of recharging electric vehicles for a number of reasons. First, when individual
components fail, decentralized algorithms are often more stable. Second, it is anticipated
that in charging conditions, the number of electric vehicles competing for the same amount
of energy will vary quickly, indicating a random quality. It would be nice to have self-
managing distributed optimization approaches in this kind of circumstance. In conclusion,
a distributed approach makes it possible to implement a set of rules with little risk of data
loss [41].

As a result, we investigate frequency regulation in a power grid model that includes
loads, traditional generators, and lots of EVs. By offering auxiliary services to the grid,
the latter, most notably the FDC, can take an independent part in the process of grid
optimization. For the purpose of optimizing the control of electric vehicle batteries while the
service is being provided to regulate frequency, we provide two unique control algorithms.
On the one hand, the control strategies make sure that the main grid’s power balance
and frequency stability are upheld. On the other hand, the techniques are adaptable
enough to meet a variety of electric vehicle charging requirements (EVs). The suggested
approaches’ main goal is to prevent battery device degradation, which is in contrast to
the pertinent literature’s frequent discussion of obtaining the ideal charge level in relation
to electric vehicles. The proposed solutions are last evaluated in comparison to various
cutting V2G control systems and their outcomes are contrasted. The solutions proposed are
successful when used in real operational settings, as shown by the outcomes of numerical
tests performed using a realistic model of a power grid.
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Because batteries lose power while linked to the grid, it is difficult to determine the
cost of an Energy Storage System for frequency management. As a result, researchers are
looking at how real-world conditions affect Li-ion batteries’ capacity to store energy. Both a
control method for Li-ion ESS that helps with frequency management and a cost accounting
model for frequency regulation that takes the impact of shorter battery life into account
are created. We estimate the expected lifetime and the average annual cost of the Li-ion
ESS for different dead bands and SOC set-points. Case studies show that the Li-ion ESS’s
estimated operating life under standard and full discharge settings is much shorter than
the manufacturer’s reported nominal life. In this paper, a precise method for calculating
the cost of ESS that take part in grid frequency regulation is presented. This is carried out
to aid ESS’s growth in the auxiliary services sector [42].

Because batteries degrade while the system is linked to the grid, it is challenging to
estimate the cost of an Energy Storage System (ESS) for frequency regulation. Researchers
are examining how the stresses of practical use affect the Li-ion cells in the battery energy
storage system to find a solution to this issue. We construct a control method for Li-ion ESS
that can take part in grid frequency management, and we develop a cost accounting model
for frequency regulation that takes the effect of battery life loss into account. We determine
the anticipated working life and annual average cost of the Li-ion ESS for various dead
bands and SOC thresholds. Case studies demonstrate that the nominal lifetime specified by
the manufacturer for standard and full discharge settings for the Li-ion ESS is significantly
shorter than the predicted lifetime under practical working conditions. This study offers an
accurate costing method for ESS participating in grid frequency regulation, which will aid
in the expansion of ESS participation in the market for peripheral services.

The controller’s charging cost can be reduced numerically and repeatedly due to the
model’s efficiency and simplicity. The developed EV charge features indicate a balance
between the following four trends: (1) charging during times of low electricity prices;
(2) charging slowly; (3) charging near the end of the authorized charge period; and
(4) preventing vehicles from sending power back to the grid. The result shows that batteries
charged using optimized methods exceed those charged using standard methods by a
significant margin, using data from real hybrid electric vehicles. This suggests that smaller
batteries could be used to satisfy the needs of vehicle life. It has been shown that identical
patterns hold true for batteries of different sizes, allowing them to be used in both plug-in
hybrids and pure electric vehicles [43].

Next, we go over a distributed water filling technique that can be applied to networked
control systems where nodes communicate data with distant nodes. Water filling is a well-
known method of communication system optimization. It has assisted in solving real-world
control engineering and decision-making problems. In a system with multiple control
points, the decentralized approach of filling water tanks is described in this study. To do
this, we take into account the water levels of a number of users who only interact with their
immediate neighbors and decide as a group. We create two versions of a new distributed
algorithm that combines consensus, proximity, and fixed-point mapping theory (exact and
approximation), and we show that both converge. A charging station for a fleet of electric
vehicles is used as an example to show how it works.

This study shows how to charge a car’s battery in the most economical way possible,
taking into consideration the cost of power and the predicted cost as the battery ages. It
does this by using a simplified lithium-ion battery lifetime model. The fundamental battery
life model shown below takes temperature, battery charge level, and daily power loss
into account. This model’s correctness was demonstrated by comparing it to a precise
model developed at the National Renewable Energy Laboratory. Comparing this model to
experimental results proved its validity. The charger controller can use iterative numerical
charge cost minimization because the basic model runs quickly. Electric car charging
profiles strike a compromise between four trends: quick charging, charging at the end
of the permitted charge period, charging at low-cost intervals, and prohibiting vehicles
from sending electricity back to the grid. Simulations using data from actual Prius plug-in
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hybrid EV show that fully charged batteries may be used for a lot longer than batteries that
have only been partially charged. This suggests that the requisite vehicle lifespan could be
met with smaller batteries. These patterns have been shown to hold true across a range of
battery sizes. They therefore apply to both plug-in hybrid and pure electric vehicles.

2.2. Types of Contactless EVS

Magnetic coupling coefficients measure the effectiveness of the connection between
the secondary and primary coils. Coupling coefficients with high values are necessary to
move a lot of power. The static wireless fast charger, which uses more than 20 kW of power,
is standardized. The OLEV and DWC initiatives’ main goals were to make the technology
more efficient and commercially viable. The OLEV project raised the air gap to 20 cm and
retained an efficiency of 83% while achieving the needed high frequency of 20 kHz for
60 kW.

Additionally, the horizontal sensitivity was around 24 cm. The fifth-generation diesel
water heater (DWC) OLEV got its fuel supply from an S-type power station rail. Despite
only having a 20 cm air gap tolerance and a side-to-side deviation tolerance of 30 cm, it
was nevertheless able to transmit 22 kW of electricity.

A dynamic WPT can move the 820 kW MPT for the high-speed train being built in
Korea through the 5 cm air gap, with an efficiency of 83%. The roughly 16-km-long Bus
Route 16 in Malaga, Spain has been overseen by a WPT since December 2014.

One of the most popular methods of frequency control frequency droop control is
currently being successfully applied to electric cars. The major technique for controlling
the frequency now is to regulate the output of generators connected to the main power
grid. As conventional power plants are phased out, electric vehicles are a great alternative
since their batteries may be charged or discharged in response to frequency deviation
alarms. As a result, we investigate frequency regulation in a power grid model with loads,
traditional producers, and a sizable amount of EVs. By providing grid-related services,
these last devices, in particular the FDC, autonomously optimize the grid. Two new control
algorithms that may be used to manage electric car batteries in the best possible way during
frequency regulation service. The control processes, on the one hand, make sure that
the power balance and frequency management of the main grid are stable. On the other
hand, these approaches can meet a range of EV charging needs. The available methods
are designed to reduce the failure rates of battery-powered devices. This contrasts with
the EV literature, which frequently concentrates on determining the ideal charge level.
The performance of the solutions is then contrasted with that of other state-of-the-art
V2G control systems. The results of numerical experiments carried out using an accurate
representation of the power grid show that the suggested methods perform well in actual
operational circumstances [44].

Researchers are working to create integrated infrastructure solutions that calculate the
amount of power transmitted through the system using a U-shaped power station rail and
a frequency of 35 kHz. The near field, where there is no radiation, and the far field, where
there is radiation, are two separate areas in the electromagnetic fields created by the antenna
of a moving electric charge. The area surrounding the transmitter (T x) where the energy
level is constant is referred to as the “close field.” If there is no receiver to receive the energy,
T x cannot transmit it. The size and shape of the transmitter and receiver have an impact
on the near-field ranges. Magnetic and electric fields exist separately in non-radiating areas.
Electrodes and coils can transmit power through electric and magnetic fields. The force
decreases at a rate of 1/r3 as the distance r between the transmitter and receiver grows,
but the energy does not change. The rapid power loss rate results in the WPT electric
field’s shorter range. The WPT magnetic field can transmit power over greater distances
than alternative methods because magnetic fields can easily pass through solid objects like
furniture, people, and walls. An electric vehicle’s air gap and efficiency must be increased
to improve WCS. The system’s size and surface area can be reduced by altering its operating
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frequency. The WPT’s efficiency at a specific power level rises as its frequency does as well.
Businesses, academic institutions, and research institutions come in a wide variety.

We now have some responses after looking into wireless charging. In reality, the WPT
system rises by about 1 MHz before reaching a high frequency. One option is a system that
runs between 100 and 200 kHz. The final expression is T0 = M/R0. The mutual inductance
(M) between the receiver and transmitter (T-to-T) and equivalent resistance make up T0
(R-to-zero). To get the mouse a high TQ. The ideal conditions for maximizing TQ are high
driving frequency, high mutual inductance, and low equivalent resistance. The inductance
L and capacitance C are needed to determine the resonant frequency, which equals 1/LC.
The resonant frequency will drop if L or C is increased. When the frequency is raised to such
a high level, the conversion encounters the switching problem. The WPT system is limited
in its ability to operate at high frequencies by a low coupling coefficient. Because it is more
practical, the frequency is fixed. When frequency standardization is used, the frequencies
are chosen to ensure that the system performs at its best. To promote wireless electric
car charging systems, additional study is required on efficiency requirements, operation
frequency, power level, electromagnetic interference (EMI), safety, and testing technology
(WEVCSs).

A novel distributed control approach to charge a fleet of electric vehicles (EVs) as
effectively as feasible when the overall capacity of the power grid is limited. By resolving a
scheduling issue, the ideal charging can be discovered. Obtaining a cost-effective profile of
the entire quantity of energy utilized is the objective. In the resulting optimization problem,
the decision variables are connected to both the objective function and the constraint
variables. In our approach, people just communicate with their near neighbors and take
decisions without seeking advice from those in positions of authority. To find a solution, a
distributed iterative algorithm founded on the ideas of duality, closeness, and consensus is
employed. The global optimum can be reached using this strategy, as demonstrated by a
simulated case study.

The water filling technique can be used in networked control systems with node-
to-node communication that is independent. Water filling is a well-known method of
communication system optimization. It has assisted in solving real-world control engi-
neering and decision-making problems. In a system with multiple control points, the
decentralized approach of filling water tanks may be used. A study of interconnected water
levels among users who do not involve a central authority structure and simply use them
to communicate with their immediate neighbors was conducted. In this study, we develop
a unique distributed algorithm that combines fixed point mapping theory, proximity theory,
and consensus theory. The algorithms’ exact and approximation implementations provide
the same outcome. The charging of a fleet of electric vehicles is used to illustrate how the
system functions [45].

The difficulty of charging a large number of electric vehicles with infrastructure that
has a limited capacity led to the need for this study, which examines the issue of individual
load adjustment under overall capacity limits. Distributed solutions to this challenge are
being looked into for scalability and communication ease. We discuss a number of dis-
tributed algorithms for maximizing utilization and relative average fairness using concepts
from communication networks (AIMD algorithms) and distributed convex optimization.
We give analytical and simulation findings to demonstrate the effectiveness of these algo-
rithms. The algorithm’s performance in the analyzed circumstances is often within 5% of
the ideal centralized case’s performance, but with substantially better scalability and fewer
communication requirements.

2.3. Machine Learning Techniques

The many uses of ML algorithms have been widely covered in writing. The authors
in [4] investigated how SVM could be used to solve problems with more than two classes.
The algorithm was developed so that it could be used to solve problems involving multiple
categories by using various normalization techniques. The algorithm passed thorough
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testing and discovered that it was effective with a wide range of normalization techniques.
Its multiclass classification accuracy was also quite impressive.

DNN was also examined by [46] for classifying multi-type images. As a result, the
proposed algorithm has a wide range of applications, even for famously challenging
to-label classes that are frequently misclassified by other ML techniques using a DNN-
improved class identification. The capacity of the algorithm to forecast travel times was
also investigated by [47]. Its regressive predictions were the most accurate and reliable of
all the tested algorithms. One of the best regression algorithms, especially for time series,
is LSTM. Additionally, LSTM helps classify issues because it can be used to create classes
based on number intervals. Authors in [48] looked into using radio waves to estimate the
required energy and power (RF). RF was easy to use and produced accurate results. The
energy consumption model had a mean absolute percentage error of only 16%, making it
more accurate than the autoregressive model. Creating a multiclass classification problem
was necessary for managing EV fleets. As a result, many ML techniques previously shown
to be the most successful for classification problems were used. We assessed each model’s
accuracy before contrasting and comparing its performance to see if there were any viable
options for increasing the effectiveness of the distribution network. The ML algorithm
summary is presented in Table 1.

Table 1. ML algorithm summary.

Algorithm Advantages Disadvantages

Decision Tree (DT)

Data does not need to be sized or
normalized. Regression and classification
analyses benefit from it—highly accurate
predictions and understanding.

Training takes a while since even little
changes to the dataset could greatly impact
the final structure.

Random Forest (RF)

Capable of processing large datasets with
various factors and handling uncertainty
while putting out the mean or mode of
several decision trees.

The problem is made harder by how many
trees are created. Training typically
requires a sizable amount of time.

Support Vector Machine (SVM)
Classification and regression are possible
uses; the classifier’s performance
is minimized.

The training procedure takes longer with
large datasets—poor performance when
there are more features than
training samples.

K-Nearest Neighbors (KNN)
Both classification and regression analysis
can benefit from its use. Shorter training
sessions. Clear use of ideas.

We are having poor performance when
dealing with huge datasets. Poor
performance when dealing with a large
number of inputs. Poor performance when
dealing with datasets that are not balanced

Deep Neural Network (DNN) A model that may be utilized for various
tasks, like classification and regression.

Need enormous data sets very prone to
over fitting. The ideal width and depth
cannot be determined using a
general principle.

Long Short-Term Memory (LSTM)
Time series detection, accurate forecasting
and adaptability to various applications
(classification and regression).

There is no established methodology for
determining the optimum breadth and
depth. There is no theory for selecting
optimal hyper parameters.

3. Methodology
3.1. Machine Learning

Machine learning studies focus on building automatons that can learn new skills
through observation and exposure to new data. This area of research aims to create al-
gorithms that allow machines to remember and operate independently without human
intervention. Data is provided to a generic algorithm in machine learning, which builds
its logic based on the data rather than being preprogrammed. Supervised learning, unsu-
pervised learning, and reinforcement learning are a few machine learning techniques [49]
Computers are used to make predictions in computational statistics. It is closely related
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to machine learning and frequently crosses over with it. Mathematical optimization is
known to study how to make optimization processes, theories, and applications better.
Mathematical optimization is related to machine learning, as well. Unsupervised learning,
also known as exploratory data analysis, is frequently highlighted when combining ma-
chine learning and data mining [50]. Unsupervised machine learning is a powerful tool for
understanding the typical behavior of many organisms and observing constant movement
from these patterns. Predictive analytics, or machine learning, is a method for developing
complicated algorithms and models that can be used to forecast outcomes based on data
analysis. Even then, AI falls far short of machine learning’s capabilities. When artificial
intelligence (AI) was first developed, some scientists programmed computers to learn from
their mistakes. They looked for a solution using symbolic techniques like neural networks.
But as rational and knowledge-based approaches gain more attention, there is a clear dis-
tinction between AI and machine learning. Data collection and presentation in probability
systems had theoretical and practical problems. Statistics lost their value after 1980 when
cyber systems had already exceeded artificial intelligence. However, the statistical focus of
other research was seen outside of AI in pattern recognition and information retrieval. In
contrast, work on knowledge-based learning continued inside AI and resulted in inductive
logic programming. Academics in AI and CS started to ignore neural network research
simultaneously. Under the umbrella of “connectionism”, researchers outside AI/CS, like
Hopfield [51], made comparable attempts. They had great success with backpropagation,
which they used in the middle of the 1980s [52]. Data mining and machine learning are
very similar and use many methods. Machine learning entails making predictions based
on previously discovered properties from training data. On the other hand, data mining
entails identifying novel properties (the step of analyzing knowledge extraction in the
database). Machine learning frequently uses data mining techniques for “unsupervised
learning” or as a step before learning to increase accuracy. Except for the ECML PKDD,
most of the distinctions between the two fields, which frequently have separate conferences
and journals, are founded on those assumptions. Discovering new information is typically
how knowledge extraction and data mining (KDD) is judged effective. The effectiveness
of machine learning is generally assessed by how well it can replicate existing data. Due
to a lack of training data, supervised methods cannot be used in a typical KDD task. Still,
an unsupervised manner, also known as an “uninformed method”, can relatively easily
outperform other monitored methods. Machine learning techniques that divide data into
training and test sets, such as the holdout method, enable extremely precise estimation
of classification models (usually two-thirds of the data in the training set and one-third).
It also assesses how successfully the model was trained using real test data. The N-fold
cross-validation method, in contrast, randomly selects k subsets from the data, of which
k1 is used to train the model, and k1 is used to assess the model’s predictive capabil-
ity. The bootstrap technique, which uses a copy-and-paste method to choose n random
samples from the data set, can be used in addition to the holdout and cross-validation
techniques [52] to evaluate the model accurately

3.2. Learning Algorithms

The Q-learning algorithm was used by [53] in 2012 to improve the power management
system of electric and hybrid bicycles. In terms of power management, these researchers
aimed to increase rider comfort and safety and utilize battery power more effectively. Sim-
ulated results from this study showed that the proposed power management system could
increase riding comfort by 24% and energy efficiency by 50%. Since then, reinforcement
learning algorithms have been used in several studies to replace control optimization theory
for HESS energy management. To find the best way to maintain an HEV’s battery at the
ideal charge level. The author in [53] used the Q-learning algorithm. By combining this
strategy with a long-term plan, you can strike a balance between maximum effectiveness
and the capacity to act now. Atheros in [54] employs “reverse reinforcement learning” to
develop a probabilistic driving path prediction system that determines the ideal engine-to-
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battery power ratio based on the expected behavior of the driver. Several papers on the
application of reinforcement learning to control the power flow in hybrid transmission
systems have recently been published [54]. First, the adjustment, effectiveness, and learning
capacity of a Q-learning-based energy management strategy for a hybrid tracked vehicle
was assessed [55]. The researchers then developed online Q-learning-based recursive al-
gorithms to allow real-time updates to control methods for hybrid transmission systems.
When the driver’s actions, location, and conditions on the road all vary, these algorithms’
effectiveness may likely decline.

3.3. Proposed Methods

Driving cycle data could be used to find flexible energy management strategies using
advanced reinforcement learning. A comparison of rule-based energy management strate-
gies and those learned through DRL and online learning was done. The examples show
both transactional and ad hoc neural networks. Machine learning can be used to overcome
this issue in five different ways. A block diagram of an electric vehicle’s static wireless
charging system is shown in Figure 6. The receiver coil and transmitter coil are placed on
top of one another to show how well the EVs work. Over time, using this approach will
lessen pollution and conserve our finite supply of conventional energy. Figure 7 shows
proposed methodology.
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4. Data Acquisition

We discovered a dataset about charging electric vehicles after searching for it on
Kaggle. Details include the overall cost of the energy utilized, the date, and the length of
each session. In this dataset, 3395 EV charging sessions are covered in great. A workplace
charging initiative involved 85 distinct EV drivers who used 105 station sessions spread
over 25 different sites. There are 24 resources and 3395 specifics on the car. The effectiveness
of various machine learning techniques is assessed and contrasted. The techniques used
include deep neural networks, k-nearest neighbors, long short-term memory, random forest,
support vector machines, and decision trees. All machine learning methods were compared
using the same dataset to see which produced the most accurate results. According to the
results, it seemed that LSTM could help with EV control in some circumstances. The peak
voltage, power losses, and voltage stability of the LSTM model can all be improved by
flattening the load curve. We can lower our billing costs by predicting incoming data. The
proposed Smart Grid Electric Vehicle Charging and Hybrid Energy Storage Management
System’s dataset is described in Table 2.

A decision was made regarding how much data should be shared between Train and
Test (80–20%) for each neural network after considering the findings for DNN, KNN, SVM,
RF, DT and LSTM. Tests and simulations are performed using Mat lab 2021a. It has an
8.00 GB RAM, a hard drive, and an 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz
high-performance PC CPU.
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Table 2. Summary of data set (Electric Vehicle Charging Dataset Kaggle).

1. Session ID 13. station Id

2. KWH Total 14. location Id

3. Dollars 15. manager Vehicle

4. Created 16. facility Type

5. Ended 17. Mon

6. Start Time 18. tues

7. End Time 19. wed

8. Charge Time Hrs 20. Thurs

9. Week Day 21. Fri

10. Platform 22. sat

11. Distance 23. sun

12. User ID 24. reported zip

5. Results
5.1. Machine Learning Models:
5.1.1. Charging Station Classification Results

According to the charging station classification, the network has twelve different types
of charging stations. Table 3 shows how well other models direct EVs to the most effective
charging locations, maximizing the effectiveness of the distribution network and lowering
the cost of charging.

Table 3. Accuracies of ML classifier for charging station classification.

Machine Learning Model Accuracy

Decision Tree 93%
Random Forest 94%

SVM 29%
KNN 41%
DNN 77%
LSTM 94%

SVM and KNN cannot be used for EV routing, as shown in Table 3 by their incredibly
low precision. The most accurate models, with a 94% accuracy rate, are RF and LSTM.
The 93% precision of DT is identical to that of RF and LSTM. DNN has a remarkable 77%
accuracy rate. Expanding the datasets and changing the hyper parameters, such as the
number of layers and nodes in each layer, can improve the system’s performance. These
results explain that RF and LSTM perform better at multiclass classification problems than
algorithms like SVM and KNN.

Figure 8 shows the accuracies of ML classifier for charging station classification.

5.1.2. Classification Based on Charging

Three categories of charging speeds have been created to reflect the range of uses for
charging stations (fast charging, conventional charging, and V2G). How well ML models
could see the ideal charging rate is shown in Table 4.
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Table 4. Accuracies of ML classifier for charging speed classification.

Machine Learning Model Accuracy

Decision Tree 83%
Random Forest 89%
SVM 56%
KNN 83%
DNN 84%
LSTM 93%

Table 4 demonstrates that only SVM has a low level of precision. DT, KNN, and
DNN have accuracy rates of about 83%, 83%, and 84%, respectively. The most accurate
results are produced by RF and LSTM models. LSTM is 4% more precise in determining
the ideal charging rates than RF. The best ML model for classifying charging stations and
vehicle speeds is LSTM. Because it addresses both classification issues, it is the best strategy
for managing an EV fleet. Its ability to recognize temporal patterns in data about power
consumption is one of the reasons it is so accurate.

Figure 9 shows the accuracies of ML classifier for charging speed classification.
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5.2. The Impact of Uncertain Load Data on the EV Management System

The load data is augmented with various concentrations of Gaussian white noise
(GWN) to simulate the data’s unpredictability and add different degrees of uncertainty. We
evaluate previously successful ML methods to see how well they can handle new types
of luck. Thus, the impact of tension on the system is researched, especially how it affects
power losses and load curves.

Variation in Load Data and Its Impact on Machine Learning Accuracy

The results of including uncertainty to the load data used to group charging stations
are shown in Table 5. By contrasting precision before and after adding delay, we can
identify the change in precision. When there is uncertainty, DT’s accuracy drops to 77%.
Although still not as good as DT’s, RF’s accuracy drops to 86%. The best model, LSTM,
remained accurate 95% of the time and was unaffected by uncertainty.

Table 5. Classification accuracy of a machine learning classifier using a 10% global weighted network
for Electric Vehicles charging stations.

Machine Learning Model Accuracy Accuracy Change

DT 76% −17%
RF 85% −9%

LSTM 94% 0

The impact of adding uncertainty to load data on the effectiveness of the machine
learning algorithms used to categorize charging speeds is shown in Table 3. In RF and
DNN, accuracy has fallen by 1% and 2%, respectively. The accuracy of DT, KNN, and LSTM
remained unchanged when GWN was added. The outcomes show that LSTM is adaptable
even in the presence of GWN in the load data and performs excellently both before and
after the introduction of uncertainty. Machine Learning Classification of Pricing Structures:
Accuracy of Prediction: 10% Standardization of Weights around the World is presented in
Table 6.

Table 6. Machine learning classification of pricing structures: Accuracy of prediction: 10% standard-
ization of weights around the world.

Machine Learning Model Accuracy Accuracy Change

DT 83% 0%
RF 88% −1%

KNN 84% 0
DNN 82% −2%
LSTM 93% 0%

ML implementation Results for EV-HESMS is presented in Table 6. In the proposed
EV-HESMS model, 80% for training and 20% data for testing taken to find the Gradient
Loss, Action Error and MSE.

Table 7 shows how the EV-HESMS Model behaves in terms of gradient Loss, MSE,
training, and testing. Efficiency by itself is insufficient. The system’s loss and error for each
machine learning technique using Gradient loss and Event error must also be determined.
The dataset and the capabilities of the system can be considered to a great extent as the
gradient loss, action error, and MSE are taken into account. Additionally, LSTM is already
thought to be more effective than other methods. In reality, LSTM also considerably reduces
errors in this situation.
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Table 7. ML implementation Results for Proposed EV-HESMS Model.

Methods Train (80%) Test (20%) Gradient Loss Action Error MSE

1. Random Forest 2716 679 0.366 0.304 0.342
2. SVM 2716 679 0.359 0.449 0.303
3. KNN 2716 679 0.426 0.402 0.333
4. DNN 2716 679 0.390 0.329 0.475
5. LSTM 2716 679 0.386 0.310 0.258

5.3. Mathematically Model to Different Calculated Parameters:

Controlling parameters can be changed in real-time in a system with real-time con-
trol [34]. The method’s practicality was shown by simulated experiments on a hardware
operating system based on rechargeable batteries and super capacitors. bmin is added to the
estimate to get the minimum battery load (w). The following defines the cost function: The
edge is deleted as unneeded if the sum of the values bmin(v) = bmin(w) + cost(e) is more than M.

C+
e (bw) =

{
Cos(e)bw ≤ M− Cost(e)

∞Otherwise
(1)

If the original edge, e = (v, m), has negative costs, we subtract the value of the price
from bmin (w). We obtain bmin(v). The cost function is given by:

C−e (bw) =

{
−bwbw < −Cost(e)

Cost(e)Otherwise
(2)

MAPE =

√
∑N

i=1
(|xi−yi|)1

xi
N

× 100% (3)

RMSE =

√√√√√√ N

∑
i=1

(xi− yi)2

N
(4)

r = ∑N
i=1(Xi− X′)(Yi−Y′)1√

∑N
i=1(Xi− X′)1

√
∑N

i=1(Yi−Y′)2
(5)

Numerous solutions must be developed to deal with problems like excesses and
overload when electric vehicles are connected to a smart grid. This does not happen until
the most economical energy has been acquired. Using the defined criteria, electric vehicles
can compete for reduced electricity rates in a given area. They are using price signals to
discourage the charging of vehicles in crowded places and make money through electric
car sharing. EV software uses a variety of machine-learning techniques. Some of the most
popular methods for analyzing data and identifying its relevance include decision trees,
ANNs, SVMs, GRNNs, and k-nearest neighbors (KNN). Usually, MAPE, r, and RMSE
are used to evaluate a forecast’s degree of accuracy. R is a common abbreviation for the
correlation coefficient. Measures of how far off an estimate is from reality include the
root-mean-square error and mean absolute percentage error (MAPE). You can find the
tools RMSE, r, and MAPE in EQU. In the first case, the true value is represented by Xi,
while YI represents the close approximation. There are intriguing differences between the
means of the true value vector’s X and the projected value vector’s Y. The letter N stands
for the whole cast set of values. Figure 10 show the classification accuracy of a machine
learning classifier.



Sustainability 2023, 15, 2603 22 of 26

Sustainability 2023, 15, x FOR PEER REVIEW 23 of 27 
 

can compete for reduced electricity rates in a given area. They are using price signals to 
discourage the charging of vehicles in crowded places and make money through electric 
car sharing. EV software uses a variety of machine-learning techniques. Some of the most 
popular methods for analyzing data and identifying its relevance include decision trees, 
ANNs, SVMs, GRNNs, and k-nearest neighbors (KNN). Usually, MAPE, r, and RMSE are 
used to evaluate a forecast’s degree of accuracy. R is a common abbreviation for the cor-
relation coefficient. Measures of how far off an estimate is from reality include the root-
mean-square error and mean absolute percentage error (MAPE). You can find the tools 
RMSE, r, and MAPE in EQU. In the first case, the true value is represented by Xi, while YI 
represents the close approximation. There are intriguing differences between the means 
of the true value vector’s X and the projected value vector’s Y. The letter N stands for the 
whole cast set of values. Figure 10 show the classification accuracy of a machine learning 
classifier.  

 
Figure 10. Classification accuracy of a machine learning classifier. 

Figure 11 shows the accuracy of prediction: 10% standardization of weights around 
the world. 

 
Figure 11. Accuracy of prediction: 10% standardization of weights around the world. 

Figure 10. Classification accuracy of a machine learning classifier.

Figure 11 shows the accuracy of prediction: 10% standardization of weights around
the world.

Sustainability 2023, 15, x FOR PEER REVIEW 23 of 27 
 

can compete for reduced electricity rates in a given area. They are using price signals to 
discourage the charging of vehicles in crowded places and make money through electric 
car sharing. EV software uses a variety of machine-learning techniques. Some of the most 
popular methods for analyzing data and identifying its relevance include decision trees, 
ANNs, SVMs, GRNNs, and k-nearest neighbors (KNN). Usually, MAPE, r, and RMSE are 
used to evaluate a forecast’s degree of accuracy. R is a common abbreviation for the cor-
relation coefficient. Measures of how far off an estimate is from reality include the root-
mean-square error and mean absolute percentage error (MAPE). You can find the tools 
RMSE, r, and MAPE in EQU. In the first case, the true value is represented by Xi, while YI 
represents the close approximation. There are intriguing differences between the means 
of the true value vector’s X and the projected value vector’s Y. The letter N stands for the 
whole cast set of values. Figure 10 show the classification accuracy of a machine learning 
classifier.  

 
Figure 10. Classification accuracy of a machine learning classifier. 

Figure 11 shows the accuracy of prediction: 10% standardization of weights around 
the world. 

 
Figure 11. Accuracy of prediction: 10% standardization of weights around the world. Figure 11. Accuracy of prediction: 10% standardization of weights around the world.

Figure 12 shows the ML implementation results for proposed EV-HESMS model.

5.4. Limitations of the Proposed System

(1) More advanced deep learning, reinforcement learning, and federated learning tech-
niques can be used to centralize this system, enabling more effective vehicle utilization
regulation. Obviously, if there are more providers vying for fewer stations, the prob-
lem will improve.

(2) The dataset should contain more parameters. Electric vehicle (EV) sales have been
increasing, and this trend is likely to continue as prices fall and ranges increase.
Currently, the percentage of electric cars (EVs) in use is quite modest. Any company
that has a parking lot for clients or staff will be impacted by this. Therefore, it is
crucial for businesses to consider how their energy policy will change as a result of
planned changes to EVs and EV charging. Particularly for businesses, having multiple
chargers or fast-charging equipment on hand is essential.
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(3) As automakers work to reduce the amount of time needed to charge an EV so that
the “refueling” process is more equivalent to that of a normal vehicle, chargers need
more power.
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6. Conclusions

Information and communication technology development is crucial to the worldwide
spread of smart cities (ICT). Every developing city needs a smart grid. Government and
corporate organizations are promoting using electric vehicles (EVs) to reduce greenhouse
gas emissions and combat climate change. Electric automobiles have sparked several
previously unforeseen problems due to their greater presence in contemporary, sophisti-
cated power networks. Two significant issues are implementing cost-saving technology for
controlling energy supply and demand and creating more efficient techniques for invoicing
clients. This issue has received various possible solutions that have been put forward. This
entails a thorough investigation of charging procedures, industry standards, and different
data-driven models and machine-learning techniques to facilitate the seamless integration
of electric vehicles into the smart grid. We examine the most recent developments in
smart grid-based energy management services and applications and the growing appeal of
electric vehicles. This indicates that individuals with a say in infrastructure development
must consider the health of communities, public safety, access to electricity and information,
the provision of services, and other issues [11]. This kind of smart city and technology
development will be effective when all stakeholders and important factors are considered.
Hurdles and opportunities have emerged as technology have advanced toward long-term
solutions. We talk about conductive and inductive charging for electric cars. The most
important studies that have been done on electric vehicles, connector hybrid electric vehicle
types, charging rates, and battery capacity, and these topics are reviewed. This paper
analyzes current advancements in fixed and portable wireless charging technology. Al-
though there are international standards for wirelessly charging electric vehicles, different
wireless charging systems employ a range of frequencies. The efficacy of contemporary
machine learning algorithms and robotic models is being assessed to integrate the smart
grid. We examine the techniques presently used to calculate the driving range, charging
time, and traffic impact of electric vehicles. It is necessary to study the effects of the public
infrastructure’s energy efficiency, robustness, and dependability on the economy, society,
and environment to make widespread usage of electric vehicles feasible. Discussions and
analyses will focus on wireless power transmission systems in the future. These systems,
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which include those that carry energy inside cars and those that do so between autos and
the grid, will be of great importance. Research on mobile energy storage and delivery
infrastructures based on electric vehicles may help us better understand how to incorporate
renewable energy sources into distributed micro grids.
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