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Abstract: The daylighting systems via polymethylmethacrylate (PMMA) plastic optical fibers have
obvious cost advantages and have been widely studied. However, there is light leakage when PMMA
optical fibers transmit concentrated sunlight, resulting in a transmission efficiency lower than the
theoretical value. This research aims to quantitatively study the light leakage effect of PMMA optical
fibers. Concentrated sunlight was used as the sunlight source instead of a monochromatic laser. An
adjustable diaphragm was used to adjust the angle of the incident light, and the infrared filter and
heat-absorbing glass were used to solve the overheating problem of PMMA fibers. The results show
that when the incident angle is greater than 13◦, the relative transmission efficiency of the fibers drops
rapidly, which means that the light leakage deteriorates. The data also show that the angle of the
output beam of PMMA optical fibers is ±30◦, which is independent of the angle of the incident beam.
Based on this conclusion, a PMMA optical fiber daylighting system with an incident angle of 13◦ was
developed, which has higher transmission efficiency than previously developed systems. This study
indicates that the angle effect of light leakage should be considered in the design of a plastic optical
fiber daylighting system.

Keywords: light leakage; daylighting system; plastic optical fibers; light distribution

1. Introduction

As a ubiquitous renewable energy source, solar energy is very popular in the field of
low-carbon buildings. Lighting is an important part of building energy consumption [1,2].
For commercial buildings, lighting electricity consumption accounts for around 20–30%
of the total building energy consumption [3,4]. Bringing daylight into the room can
reduce electric lighting by 50–80% [5]. At the same time, because the output spectrum of
daylighting systems is similar to the natural spectrum [6], daylighting can improve human
visual comfort, allow people to relax, provide positive psychological suggestions, and even
cure diseases [7,8]. Using as much natural light as possible in buildings is an efficient and
easy low-carbon option [9–11].

The optical fiber daylighting system transmits outdoor sunlight into the interior for
lighting [12,13]. It uses a sun tracking and a focusing technique [14]. Fiber daylighting
systems can concentrate sunlight to a high level and then transmit it through flexible optical
fibers into the interior for lighting, allowing for natural light within buildings [15]. This
technology breaks through the limitations of the building structure and can transmit flexi-
bly [16]. It delivers natural light remotely to shaded rooms, basements, etc. [17]. It can also
be used for decorative lighting at the bottom of swimming pools, museums, ammunition
depots, and other special places where fire and electricity are strictly prevented [18]. Due
to these advantages, fiber optic daylighting systems have received significant attention in
recent years [19].

In general, a fiber daylighting system consists of three parts: a sun tracking system, a
focusing system, and optical fibers [20]. The focusing system focuses the sunlight onto the
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end face of the fiber [21,22], usually choosing parabolic mirrors [23] or lenses [24]. Silica
fibers and polymethylmethacrylate (PMMA) plastic fibers are both used to transmit focused
sunlight. The high cost of using silica fibers as a transmission medium makes it difficult to
scale up [25]. The diameter of the focused spot generated by the lens is generally 0.5–2 mm.
Transmission of this size of the flux requires a beam composed of hundreds of silica fibers
with a diameter of 100 um, and the cost is difficult to reduce [26]. However, PMMA plastic
fibers perfectly avoid this cost bottleneck [27]. The typical diameter of PMMA plastic fiber
is 0.5–3 mm, and the acceptance angle can reach 30◦, which can be perfectly coupled with
the concentrating flux of the lens [28]. In the meantime, the cost of plastic optical fiber
is only one-thousandth of that of the quartz fiber bundle with the same diameter [29].
Due to the high transmittance and low cost, plastic optical fibers show high potential in
daylighting systems [30]. Ullah and Shin [31] combined plastic fibers with silica fibers for
daylighting in multi-story buildings. Lv et al. [32] developed a highly flexible system via
optical fibers. A new fluctuation control method in an optical fiber daylighting system was
studied by Barbón et al. [33]. Song et al. [34] designed a plastic fiber daylighting system
with large Fresnel lenses. Laila et al. [35] designed a parabolic solar daylighting system
based on fiber optic wires. Savović et al. [36,37] investigated the performance properties of
POFs employed as a part of a traffic light system and the temperature dependence of mode
coupling in low-NA POFs.

Han et al. [38] found that the intensity distribution of the output illuminance in PMMA
optical fiber daylighting systems is significantly inhomogeneous. There is a nonlinear
relationship between the transmittance of optical fiber and the incident angle. When the
incident angle exceeds 15◦, the transmittance of the optical fiber decreases rapidly [39].
This is due to numerous causes of loss, the most significant of which is light leakage [40].
The interface between the cladding and the fiber core is slightly damaged, which destroys
the total internal reflection condition and causes light leakage. Mildner and Chen [41] used
a model with a constant absorption loss for each reflection at the core-cladding interface
to study the light leakage. It was only applied in special situations with narrow-spectrum
and low numerical aperture fibers. Liang [42] and Nakamura [43] demonstrated that this
model could not be applied to fibers with wide-spectrum and high numerical aperture.
Dugas et al. [44] suggested that light leakage is due to the large amount of reflection
of incident light at the core–cladding interface. Feuermann [45] analyzed the angle of
the incident, the optical properties of the core and cladding, and the fiber length on
light leakage.

Clarifying the details of light leakage will help in the design of optical fiber daylighting
systems. There are very few studies on the relationship between the transmittance and the
angle of incident of large-diameter plastic optical fibers. Particularly in terms of experiments
involving full-visible-spectrum-concentrated flux, quantitative research reports on the light
leakage of optical fibers are very rare.

The purpose of this paper is to accurately measure the relationship between the relative
transmittance of PMMA optical fibers and the incident angle in the visible-light band under
the condition of natural light. This paper studies the light intensity distribution of the
optical fiber output light cone at different incident angles, and draws the light distribution
curve. The goal of this paper is to obtain a quantitative understanding of light leakage and
to provide guidance for the optimization of PMMA optical fiber daylighting systems.

2. System Configuration

The evaluation of the optical fiber daylighting system for transmitting focused natural
light is a complex task [46]. The optical fibers used in daylighting systems are utilized in
a very different way than in communication systems. The former transmits a light cone
covering the 400–700 nm band, while the latter transmits a single wavelength and parallel
incidence laser light. Due to the serious angle effect of light leakage, the transmission
efficiency analysis in optical fiber daylighting systems should not only consider the attenu-
ation caused by the optical fiber length, but also pay attention to the light leakage effect. In
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fiber optic communication systems, light travels along the fiber axis, and there is almost
no light leakage, so its transmission attenuation is mainly considered by the fiber length.
The nominal attenuation rate of plastic optical fibers is generally 180~200 dB/km, which is
only applicable to a monochromatic light incident in parallel. In optical fiber daylighting
systems, the attenuation rate of the plastic fibers is greater than this nominal value.

2.1. Platform

This experiment was performed on a two-axis turntable, as shown in Figure 1. An
adjustable diaphragm, an infrared filter and heat-absorbing glass, and a Plano convex lens
are fixed to the top of the turntable. By manually adjusting the azimuth and altitude angles,
the turntable faces the sun, and the sunlight is focused on the entrance of the optical fiber.
Table 1 shows the parameters of the experimental device.
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(c) Picture of the two-axis turntable.

Table 1. Parameters of the experimental device.

Parameters Units Value

Lens aperture mm 52
Focal length mm 60

Optical fiber length m 5, 10, 20
Range of the aperture of the diaphragm mm 3–52

Critical angle of the fiber degree 30
Core - PMMA

Cladding - Fluorinated polymer
Dichroic filter - Infrared interference filter

Type of absorbing glass - GRB3
Glass thickness mm 2
Lens material - Glass

Model of the spectrometer - SPIC-300

The optical fiber is fixed on the chuck, as shown in Figure 2. By manually adjusting the
knob, the optical fiber can be finely adjusted in three directions of X, Y, and Z. The precision
of adjustment is 0.01 mm. The spot diameter is about 1 mm, so fine adjustment is necessary.
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2.2. Plastic Optical Fibers

PMMA plastic optical fibers have the advantages of low price and good transparency.
PMMA plastic optical fibers are made up of cores and claddings [47]. The fiber core has a
greater refractive index than the cladding. Ideally, in the fiber core, incident light with an
angle less than the critical angle can be transmitted as a total reflection [48]. The attenuation
of optical fibers is only determined by the intrinsic absorption of the fiber core. In other
words, ideally, incident light that satisfies the total reflection condition can be transmitted
remotely. However, due to minor breakage at the core–cladding interface, light leakage
occurs, resulting in lower optical transmission efficiency than the theoretical value. In
particular, the larger the incident angle, the more serious the light leakage. Figure 3 shows
the light path of the total reflection and light leakage within the fiber.
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In the fiber, when light is totally reflected, the maximum incident angle is called the
critical angle, θmax. The critical angle is related to the numerical aperture (NA) [49]. NA is
a critical parameter for describing the angular range of light received by the fiber [50]. The
larger the value, the more light is collected. The relationship between the critical angle and
the NA of the fiber is as follows [51]:

θmax = arcsin(NA) = arcsin(
√

n12 + n22) (1)

where θmax is the critical angle of the fiber, NA is the numerical aperture of the fiber, n1 is
the refractive index of the fiber core, and n2 is the refractive index of the cladding. In this
paper, θmax is 30◦, and NA is 0.5, according to Equation (1).

2.3. Light Path Adjustment

Figure 4 shows that a bracket was printed for the installation of the diaphragm, the IR
filter, the heat-absorbing glass, and the lens using 3D printing technology. Figure 5 shows
the transmission of the concentrated sunlight. Such a light path structure not only realizes
the continuous variation of different incident angles, but also effectively filters out infrared
rays and prevents the PMMA optical fiber from being overheated and burnt so that the
experiment can be carried out in a safe environment.

To achieve the quantitative measurement of light leakage, the optical fiber daylighting
system needs to be equipped with an adjustable diaphragm. The available aperture of the
diaphragm is 3–52 mm. Figure 6a,b show the variation of incident light as the diaphragm
is changed from minimum to maximum. This study used a plano-convex lens to focus
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sunlight. The focal length of the plano-convex lens is 60 mm. The relationship between the
focal length and the incident angle is described as follows:

θ = arctan(D/2 f ) (2)

where θ is the incident angle, f is the focal length, and D is the diaphragm effective diameter.
From Equation (2), the variation of the incident angle ranges from 1.4◦ to 23.4◦.
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2.4. Filters

PMMA optical fibers are not resistant to high temperatures. Usually, PMMA optical
fibers allow a working temperature within 70 ◦C [52]. In the infrared band, PMMA fibers
have a high absorption capacity [53]. The absorbed infrared (IR) light is converted into
thermal energy, resulting in an increase in the temperature of the fibers. In the optical
fiber daylighting system, sunlight is highly concentrated [54]. If not filtered, the PMMA
optical fibers will overheat and melt, or even burn, due to the intense absorption of the
infrared waves. Thus, in order to prevent the fiber from being burnt, this study uses a
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hybrid filtering measure. First, this study used an IR interference filter. As shown in
Figure 7a, IR interference filters can filter out 700–1200 nm infrared light while retaining
400–700 nm visible light. However, it cannot filter out infrared light exceeding 1200 nm, so
further measures are required. In this study, heat-absorbing glass was used to filter infrared
light at 1200–2500 nm. The heat-absorbing glass has a good filtering effect on infrared
light at 1200–2500 nm, as shown in Figure 7b. The combination of an infrared filter and
heat-absorbing glass affords a high transmission of visible light (400–700 nm) and filters
out infrared light at 700–2500 nm, as shown in Figure 7c.
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The experiment was carried out under the conditions of direct irradiation of 859 ± 9 W/m2

and an ambient temperature of 29 ◦C. During the experiment, an infrared thermal imaging
camera was used to observe the entrance of the PMMA fiber. During the whole experiment,
the maximum recorded temperature of the optical fiber was 55.4 ◦C, as shown in Figure 8.
This shows that the filtering measure of the IR filter and the heat-absorbing glass can ensure
the PMMA fiber works safely.
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3. Experiments and Analysis
3.1. Experiments

The purpose of this study is to measure the dependence of the incident angle on
relative transmittance. In order to facilitate a comparison, the study adopts normalization
processing. In the experiment, PMMA optical fibers with different lengths are analyzed,
namely 5 m, 10 m, and 20 m. The transmittance of fibers of 5 m, 10 m, and 20 m with the
incident angle of 0 degrees is taken as the reference value. In the experiment, an integral
sphere was adopted to measure the actual output luminous flux of PMMA. The data were
normalized to obtain the relationship between the relative transmittance and the incident
angle of the PMMA fibers.

From Figure 9, under ideal conditions, there is no light leakage. The ideal condition
means that, without considering the small defects at the core–cladding interface, only the
attenuation of the core is considered. Under the premise of satisfying total reflection, the
theoretical transmission efficiency of the PMMA fibers only decreases slightly with the
increase in the incident angle. However, the experiments show that the actual transmission
efficiency does not match the prediction. Regardless of the length, when the incident angle
is less than 13◦, the relative transmission efficiency of the PMMA fibers is acceptable (greater
than 50%). When the incident angle is greater than 13◦, the relative transmission efficiency
of the fiber drops rapidly. It can be predicted that when the incident angle reaches the
critical angle of the PMMA fibers, the relative transmission efficiency will be close to zero.
If a lens with an incident angle of 30 degrees is used to match the total reflection critical
angle of the PMMA optical fiber, a large amount of light leakage will occur in the optical
fiber photoconductive system. Therefore, if the global transmission efficiency of optical
fiber daylighting systems is calculated by the nominal attenuation rate, an unacceptable
deviation will occur.
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optical fibers.

Here, there is speculation that the light leakage is mainly due to the presence of small
defects at the interface between the cladding and the fiber core, which destroys the total
reflection conditions. Light leakage occurs when light encounters small defects. Light with
an incident angle of 0 is transmitted parallel to the fiber axis, will not be reflected at the
interface between the cladding and the fiber core, and will not be affected by interface
defects, i.e., there is no light leakage. When the incident light is not parallel to the fiber
axis, the light is reflected at the interface between the core and the cladding. When affected
by interface defects, light leakage occurs with each reflection. Obviously, the larger the
incident angle, the more light is reflected in the fiber and the more serious the light leakage.
Due to the presence of light leakage, the reference value of the critical angle of the optical
fiber in fiber optic daylighting systems is greatly weakened.
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3.2. Spectrum

The pursuit of natural daylighting requires the high-fidelity transmission of visible
light. In previous research, our team used liquid water to perform cooling and filtering [17].
The water cooling is not feasible in winter, so in this study, an air-cooling approach combin-
ing an infrared filter and heat-absorbing glass was developed. The spectrum of daylight
covers a wide range, from 300 nm to 2500 nm, as shown in Figure 10a. The IR interference
filter adopted is high transparency within 300–700 nm, shown in Figure 10b. From the
figure, it is clear that the infrared interference filter can filter out the light of 700–1200 nm,
and it does not work for spectrum larger than 1200 nm. In order to prevent the PMMA
fiber from absorbing this part of the infrared light and causing the temperature to rise,
this research also used the heat-absorbing glass to further filter the natural light. From
Figure 10c, the heat-absorbing glass has a good absorption effect for infrared light greater
than 1200 nm. Therefore, the study used a combination of an IR filter and heat-absorbing
glass, which not only allows the visible light to be highly transmitted, but also filters the
infrared light of 700–2500 nm, and its spectrum is shown in Figure 10d.
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spectrum (AM1.5). (b) Output spectrum with an infrared filter. (c) Spectrum with heat-absorbing
glass. (d) Sunlight spectrum filtered by IR filter and heat-absorbing glass.

In this study, a radiation spectrometer was used to measure the spectrum at the
entrance of the PMMA optical fiber (Figure 11b). From this figure, in the visible light
band of 400–780 nm, the output spectrum of the PMMA fiber is closer to that of natural
light (Figure 11a). Therefore, although the daylighting system via PMMA fibers changes
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the spectrum slightly, the quality of illumination is not decreased and can be used as an
alternative to artificial lighting [55].
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3.3. Light Distribution

Quantitative measurements of the spatial distribution and luminous intensity of the
light at the output of the PMMA fibers will facilitate the design of fiber optic daylighting
systems [56]. In this study, a series of tests was carried out on a 20 m long fiber to study
the optical properties of the light at the entrance of the fiber, which provided important
reference information for the optimal allocation of daylighting systems.

Figures 12 and 13 show the 3D and 2D distributions of the light intensity in the area
illuminated by the PMMA fiber, respectively. From the figure, the light intensity shows a
symmetrical distribution with an intense center and darker edges. Figure 14 shows the
relationship between the distribution and the angle of the illuminated work plane for
different incident angles. This curve is the Candela light distribution curve [57]. Figure 14
shows that, under different incident angles, the angle of the output beam is less than ±30◦,
which is equal to the critical angle of the PMMA fiber. This indicates that there is not
only light leakage in the PMMA fibers, but also a change in the direction of light. Mode
coupling occurs when different modes of light within a fiber interact and exchange energy,
leading to changes in the direction of light propagation [58–60]. The reason for this change
of light direction can be qualitatively analyzed from a physical point of view. There are
two possible reasons for the change in light direction. One is that the defect at the interface
between the fiber core and the cladding causes the direction of the reflected light to change,
resulting in a change in the forward angle of the light. Another reason is the Rayleigh
scattering effect produced by the polymer material molecules of the PMMA fiber. The
Rayleigh effect scatters the forward light, which expands the angular range of the outgoing
light at the fiber end.
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3.4. Analysis

The relation curve between light leakage and incident angle given in this study has
certain guiding significance for the optical path optimization of optical fiber daylighting
systems. That is, the incident angle of the condenser should not exceed 13 degrees. If
the incident angle of the condenser is larger than this value, although the focused energy
flux density is improved, the strong light leakage will lead to a decrease in the global
transmission efficiency, which may not be worth the gain.

When light is transmitted in PMMA fibers, the absorption of the core causes light
attenuation, while small defects at the core–cladding interface cause light leakage. In
addition, PMMA material molecules produce Rayleigh scattering of light, causing light
to scatter in all directions, resulting in light leakage. Figure 15 describes the attenuation
process involved in light leakage in PMMA optical fibers. When the incident angle is
greater than 25 degrees, the transmission efficiency is almost zero compared to that of
zero-degree incident light. That is to say, although the critical angle of PMMA fiber with
NA = 0.5 is 30 degrees, it is difficult to transmit daylight once the incident angle exceeds
25 degrees. Therefore, it is suggested that the incident angle effect of the actual transmission
efficiency should be fully considered when selecting the angle of the lens cone in the design
of the daylighting system using plastic optic fibers.

Sustainability 2023, 15, x FOR PEER REVIEW 11 of 15 
 

 

Figure 14. Light distribution curve of a 20 m long PMMA fiber at different incidence angles. 

3.4. Analysis 

The relation curve between light leakage and incident angle given in this study has 

certain guiding significance for the optical path optimization of optical fiber daylighting 

systems. That is, the incident angle of the condenser should not exceed 13 degrees. If the 

incident angle of the condenser is larger than this value, although the focused energy flux 

density is improved, the strong light leakage will lead to a decrease in the global trans-

mission efficiency, which may not be worth the gain. 

When light is transmitted in PMMA fibers, the absorption of the core causes light 

attenuation, while small defects at the core–cladding interface cause light leakage. In ad-

dition, PMMA material molecules produce Rayleigh scattering of light, causing light to 

scatter in all directions, resulting in light leakage. Figure 15 describes the attenuation pro-

cess involved in light leakage in PMMA optical fibers. When the incident angle is greater 

than 25 degrees, the transmission efficiency is almost zero compared to that of zero-degree 

incident light. That is to say, although the critical angle of PMMA fiber with NA = 0.5 is 

30 degrees, it is difficult to transmit daylight once the incident angle exceeds 25 degrees. 

Therefore, it is suggested that the incident angle effect of the actual transmission efficiency 

should be fully considered when selecting the angle of the lens cone in the design of the 

daylighting system using plastic optic fibers. 

 

Figure 15. Light leakage processes in PMMA optical fibers. 

Inspired by the experimental results, this study developed a PMMA fiber optic day-

lighting system with an incident angle of 13°, as shown in Figure 16. Table 2a shows a 

fiber daylighting system based on the parallel mechanism [61], with an incident angle of 

24° and a global transmission efficiency of 13% (20 m). Table 2b shows a daylighting sys-

tem using large Fresnel lens [62], with an incident angle of 18°and a global transmission 

efficiency of 15% (20 m). In Table 2c, the global transmission efficiency of the system is 

18% (20 m), which is an improvement in efficiency compared with the previously devel-

oped systems by our team. By comparison, it can be obtained that the daylighting system 

has the highest efficiency when the incident angle is 13°, which is consistent with the ex-

perimental results in this paper. 

Figure 15. Light leakage processes in PMMA optical fibers.



Sustainability 2023, 15, 3155 11 of 14

Inspired by the experimental results, this study developed a PMMA fiber optic day-
lighting system with an incident angle of 13◦, as shown in Figure 16. Table 2a shows a fiber
daylighting system based on the parallel mechanism [61], with an incident angle of 24◦ and
a global transmission efficiency of 13% (20 m). Table 2b shows a daylighting system using
large Fresnel lens [62], with an incident angle of 18◦and a global transmission efficiency
of 15% (20 m). In Table 2c, the global transmission efficiency of the system is 18% (20 m),
which is an improvement in efficiency compared with the previously developed systems
by our team. By comparison, it can be obtained that the daylighting system has the highest
efficiency when the incident angle is 13◦, which is consistent with the experimental results
in this paper.
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Lens aperture 100 mm 240 mm 70 mm
Focal length 110 mm 360 mm 150 mm

Incident angle 24◦ 18◦ 13◦

Global efficiency 13% (20 m) 15% (20 m) 18% (20 m)
Input power 490 W/m2 921 W/m2 50 W/m2

Output power 63 W/m2 138 W/m2 9 W/m2

4. Conclusions

In this study, the light leakage phenomenon in PMMA fiber optic daylighting systems
was quantitatively measured and analyzed. In the developed experimental platform, ad-
justable diaphragms were used to adjust the focusing beam angle. The relative transmission
efficiency of 5 m, 10 m, and 20 m PMMA fibers for different incident lights was measured.
The results show that the incident angle of light is negatively correlated with the relative
transmission efficiency of PMMA optical fibers. When the incident angle is greater than
13◦, the relative transmission efficiency decreases significantly, indicating that light leakage
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occurs. As the incident angle increases, the number of reflections of light in the fiber
increases, and the light leakage becomes more serious. When the incident angle reaches
25 degrees, the relative transmission efficiency of the fiber decreases to less than 10%. When
the incident angle reaches a critical angle, which is 30◦, the relative transmission efficiency
is predicted to be close to 0. The experimental data illustrate that in the design of optical
fiber daylighting systems, the nominal attenuation rate of the optical fiber is too ideal and
not practical, and the leakage and the incident angle must be taken into account. Due to the
influence of light leakage, the light distribution of the output of optical fiber daylighting
systems also presents an uneven distribution of an intense center and darker edges, and the
angle of the output beam is ±30◦. In the design of optical fiber daylighting systems, both
the light leakage and the light distribution curve of the output beam should be considered.
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