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Abstract: This article proposes a lightweight YOLO-ACG detection algorithm that balances accuracy
and speed, which improves on the classification errors and missed detections present in existing
steel plate defect detection algorithms. To highlight the key elements of the desired area of surface
flaws in steel plates, a void space convolutional pyramid pooling model is applied to the backbone
network. This model improves the fusion of high- and low-level semantic information by designing
feature pyramid networks with embedded spatial attention. According to the experimental findings,
the suggested detection algorithm enhances the mapped value by about 4% once compared to the
YOLOv4-Ghost detection algorithm on the homemade data set. Additionally, the real-time detection
speed reaches about 103FPS, which is about 7FPS faster than the YOLOv4-Ghost detection algorithm,
and the detection capability of steel surface defects is significantly enhanced to meet the needs of
real-time detection of realistic scenes in the mobile terminal.

Keywords: defect detection; lightweight; cavity spatial convolution; spatial attention

1. Introduction

With the rapid development of industrial automation technology, the study of au-
tomated [1,2] detection of defects in industrial production is receiving more and more
attention. Due to the influence of various uncertainties, the surface of the steel plate in the
production process will produce a variety of defects [3–7], such as scratches, deformation,
welds, holes, etc. These defects [8–12] not only affect the integrity of the steel plate but
also make a certain impact on the quality of the steel plate, so a more accurate detection of
defects [13–16] on the surface of the steel plate is of paramount importance.

Conventional inspection methods use manual observation to detect defects, which
is not only time-consuming and labor-intensive, but the results still do not meet the ex-
pected requirements. Based on the traditional industrial inspection methods proposed,
the automated defect detection technology has been driven to a new level. Experts and
scholars at home and abroad have conducted more profound research and practice on
traditional machine vision in the detection of defects in steel plates. The enhanced BP
detection algorithm was presented by Peng et al. [17] to detect flaws in steel plates. While
this technique has a decent detection performance for flaws that are clear targets, it has a
sluggish convergence rate and poor performance for small samples. Wang Yixin et al. [18]
suggested a comparative detection approach utilizing machine vision; however, despite its
high accuracy in recognizing faults in steel plates, it has a higher environmental impact
and is incapable of detecting flaws in harsh conditions due to its difficulty with extracting
feature images.

At this juncture, the accuracy of steel plate surface flaw detection [19] has increased due to
the rapid development of deep learning technology in industrial inspection. Tian Siyang et al.
investigated at timeframe instances of hot-rolled strip steel surface faults, identifying two faults,
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watermarks and water droplets. The one-stage identification YOLOv2 [20] algorithm was
developed and tested for a wide range of surface flaws on steel sheets, as well as against several
interference effects caused by false defects. Although the approach can detect surface flaws
in hot-tied steel sheets with an average mAP of 92.54%, the detection speed of just 14 FPS
prevents real-time detection. Xu Qian et al. used a modified YOLOv3 [21] network structure for
the detection of surface defects in steel plates, reducing the model size of YOLOv3 by using a
lighter MobileNet [22] network model, adding a cavity convolutional neural network [23] to the
network to improve the defect detection capability of steel plates, and adding the Inceptionv3
structure to the network to make the number of layers richer.

In this paper, a defect detection technique for YOLO-ACG is proposed. First, the
model’s detection accuracy and speed have significantly increased thanks to the use of
GhostNet as the replacement for the backbone network of CSPMakenet53 in the YOLOv4
network. Secondly, by replacing the spatial convolutional pooling pyramids at different
scales in the original YOLOv4-Ghost network with more accurate spatial convolutional
pooling pyramids in the null space, the focus of the model on the significant regions of the
feature map target is increased and the perceptual regions of the feature map are enhanced
by combining the semantic information of the context. Finally, the pyramid network
structure of feature fusion with spatial attention mechanism is embedded in the network
design, and the loss of information at the edges of the feature map is addressed by using the
FPN structure to connect the fusion of two channels from top to bottom, which facilitates
the fusion of information at different scales. The experimental results demonstrate that the
YOLO-ACG algorithm can detect surface flaws in steel sheets more quickly and accurately
than other lightweight methods, meeting the expectations of industrial inspection. The
article will be followed by a more detailed analysis of the YOLO-ACG algorithm in terms
of network structure and experimental data.

2. Methodology
2.1. The YOLOv4 Backbone Network

The YOLO (You Only Look Once) algorithm was put forth as a ONE-STAGE target
detection technique by Redmon et al. [24] in 2016. The fundamental idea behind the
YOLO algorithm is to approach the object recognition problem as a regression problem
and utilize a convolutional neural network [25] structure to directly forecast the bounding
box and category probabilities from the input image. The fourth iteration of the YOLO
algorithm, YOLOv4, employs a variety of algorithmic network architectures, including
feature pyramid networks and complete convolutional networks. The CSPDarknet53
backbone network, which is seen in Figure 1, replaces the YOLOv3 algorithm’s Darknet53
backbone network topology. Additionally, YOLOv4 use a Mish function for the activation
function, logistic regression for the categorization of images, and a feature pyramid network
for multi-scale target detection, all of which maintain a high accuracy rate and ensure real-
time monitoring.

The YOLOv4 algorithm’s backbone network is CSPDakrnet53, which is also one of
the best backbone networks. CSPDarknet53 generates three outputs, designated P3, P4,
and P5, after applying convolutional layers 1 × 1 and 3 × 3. In this process, P3 and P4
are convolved once for 1 × 1 and then input to the enhanced feature extraction network
for feature fusion. P5 is convolved three times and input to the void pyramid pooling
layer, with the pooling results being input to the enhanced feature extraction network for
feature fusion.

2.2. GhostNet

Yolov4-ghost will replace the current YOLOv4 backbone network with the GhostNet
module [26], making the network lighter and easier to deploy on mobile terminals. The head
network uses a PAN (path aggregation network) network structure, while the backbone
network consists of convolution, spatial pyramid pooling (SPP), and GhostBottleneck.
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Figure 1. CSPDarknet53 backbone network.

GhostBottleneck is replaced by GhostNet as the network’s hub. In place of other
network modules, a plug-and-play reusable module called GhostBottleneck dramatically
decreases the computational load and model volume of method models. Two Ghost
modules are stacked to create a GhostBottleneck. The primary goal of the first Ghost
module is to enable the addition of additional channels and dimensions to the feature
extraction, usually in the form of an extension layer. The second Ghost module checks to
see if the feature extraction dimension still matches its input after lowering the number of
channels. The input and output of the two Ghost modules are finally connected. When the
second Ghost module is utilized, the ReLU function is not. Because of the variation in the
input data distribution between the front layer and the back layer following the activation
function, constant matching is required, which reduces training efficiency.

2.3. Loss Function

Steel plates can have a wide variety of imperfections, so the algorithm used in the
detection process needs to be extremely precise to identify the types and locations of flaws.
The three components that make up the loss function are as follows: (1) confidence loss;
(2) classification loss; and (3) bounding box regression loss.
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i is rep-
resented by the confidence that the jth bounding box in the ith grid has produced, Pi,j
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represents the objective function’s discriminant, Ĉj
i shows the measurement’s actual value;

P̂j
i (c) is represented as the expected likelihood that the jth bounding box in I grids belongs

to c; Pj
i (c) is defined as the actual likelihood that jth bounding box in ith grid belongs to c.;

dst, d as the intersection of the true and anticipated boxes, ρ is represented by the location of
the dst, d centroid. In Figure 2, where the square box represents the prediction box and the
rectangular box represents the real box, c is the diagonal distance between the minimum
closed loops of the two boxes.
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3. Our Approach
3.1. YOLO-ACG Algorithm

This study proposes the three-part YOLO-ACG network model, which is based on the
YOLOv4 algorithm and is visible in Figure 3. It includes a backbone network, a feature
fusion network, and a detection head network. RGB images with a three-channel output
are used as the input. The first step is to enlarge the feature scale of the image to 52 × 52,
26 × 26 and 13× 13 for image information screening and extraction through the P3, P4, and
P5 levels of the backbone network. Second, the extracted results are sent to the CBM and CA
attention mechanisms, and the ASPP module is added to the output of the extracted features
to enhance the effective recognition of target defect differences by merging global and local
characteristics with various perceptual fields. The CA attention mechanism then reinforces
the output features to improve their location correlations and interactions across latitudes.
The problem of the higher-layer network losing the feature information of the lower-
layer network during the information extraction process is effectively resolved by fusing
the extracted three-feature layers with various semantic information, passing the feature
information, and allowing the feature information to enter the feature fusion network after
the CA attention mechanism is finished. Finally, the non-maximal suppression algorithm
(NMS), whose thresholds are used to further filter the redundant anchor frames during
the NMS processing, is combined with the center distance factor of the prediction frame to
create the final prediction frame.

3.2. Ghost Module

The redundancy of feature maps in neural convolutional networks is one of the most
important features. When the feature maps are output for visualization, there are many
outputs with very similar features, which can be obtained by simple linear transformations
without complicated operations. As shown in Figure 4, the working principle of the
standard convolution and Ghost modules are presented separately.

As shown in Figure 4a for standard convolution, although ordinary convolution
extracts features by using a large number of convolutions, and thus, generates a feature
map, the excessive number of convolution kernels with the number of channels generates
redundant information and leads to an increase in computation. Additionally, the Ghost
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module in Figure 4b separates the regular convolution into two parts, extracts the partial
convolution to create the feature map, and then efficiently creates the whole feature map
using straightforward linear operations.
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To reflect the benefits of Ghost convolution in convolutional computing, the input
feature map’s width, height, and channel count are all assumed to be w, h, and c, re-
spectively. The output after one convolution is n ∗ h′ ∗ w′, where k and d are the sizes
of the linearly variable convolution kernel and standard convolution kernel, respectively.
Equation (4) illustrates that the amount of convolution computation performed in the
Ghost module serves as the denominator and the numerator of the equation, respectively.
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Comparing the two convolutional calculations reveals that for the same parameters, the
normal convolutional computation is s times larger than the convolutional computation in
the Ghost module.

rs =
n·h′ ·w′ ·c·k·k

n
s ·h′ ·w′ ·c·k·k+(s−1)· ns ·h′ ·w′ ·d·d

= c·k·k
1
s ·c·k·k+

s−1
s ·d·d

≈ s·c
s+c−1 ≈ s

(4)

3.3. Improved ASPP Module

The SPP [27] structure serves as the pyramidal pooling module for the whole YOLOv4
network. Large numbers of picture features must be stored in the SPP structure, and
feature extraction from the feature map requires laborious multi-stage training that takes
too long. The ASPP structure addresses the drawbacks of SPP by substituting the pooling
process in the SPP structure with null convolution, which is typically utilized as the
global feature extraction of the feature image and can be employed in the feature map
with emphasis on the picture, preventing the loss of image data, although improving the
semantic segmentation ability of the feature map and enhancing the perceptual field also
results in the loss of information details on the edges of the feature map. The ASPP structure
is a good answer to the aforementioned issue since it increases the perceptual field of the
feature map without losing the finer details of the edge information.

The ASPP structure has two parts, the first part consists of an 1 × 1 convolutional
layer and three 3× 3 null convolutional layers with sampling rates of [6,12,18], respectively,
whose convolutional kernels have a size of 256; the second part is a convolutional operation
of 1 × 1 by global level pooling, and the same convolutional kernels also have a size of
256. Figure 5 depicts the ASPP module’s structural layout. The method of null convolution
and upsampling and the multiscale structure are used to realize the feature extraction of
images in the environment of high resolution and perceptual field. This makes a significant
improvement in the perceptual field of the feature image and the processing of the details
of the edge of the feature image. The expansion rate is introduced in the convolution layer,
expressed as the number of zero values in the convolution kernel.
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3.4. CA Attention Mechanism Module

It was discovered throughout the target detection procedure that there was a lack
of effectiveness in the detection of subtle faults. To solve this issue, the network was
enhanced with the CA (coordinate attention) spatial attention mechanism [28], which
increases the significance of the location relationship and cross-latitude interaction on
the channel attention mechanism and improves the accuracy and sensitivity of the entire
network model to the information and location of the defective targets. To solve this
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issue, the CA (coordinate attention) spatial attention mechanism was incorporated into
the network to increase the significance of its location relationship and cross-latitude
interaction on the channel attention mechanism, making the entire network model more
accurate and sensitive to the information and location of the defective targets. Figure 6
depicts the structure of the added CA attention network, which involves pooling the feature
maps globally to obtain feature information in both directions. Sub-associative fusion and
1 × 1 convolutional transforms were then used to account for feature variation; finally,
the integrated feature maps were divided into two feature maps with an equal number of
channels by two 1 × 1 convolutions through transformation before being output by the
added CA attention network. The CA module encodes the feature map’s precise location
to produce the width and height, such as the output concatenate for feature fusion, which
is represented in Equation (5); Equation (6) represents the feature transformation of two
independent features to make the input’s dimensionality consistent; combining gn and gm

to create a weight matrix in Equation (7) represents the outcome.

f = β(F([zn, zm])) (5)

gn = δ(Fn( f n)), gm = δ(Fm( f m)) (6)

ya(i, j) = xa(i, j)× gn
c (i)× gm

c (j) (7)

where f denotes the mapped feature map, β denotes the nonlinear activation function,
zn and zm denote the horizontal and vertical position relationship, gn and gm denote the
feature map after the sigmoid output of two identical number of channels. Finally, xa
denotes the connected jump feature information.
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4. Experimental Preparation
4.1. Test Environment

The experimental platform is Win10 OS, CPU is 12th Gen Intel(R) Core(TM) i7-12700KF
3.60 GHz; memory is 64 GB; GUP is NVIDIA GeForce RTX3090Ti.Pytorch 1.10.2 is used;
the software runs in Anaconda 3.6; Cuda 10.0 and Cudnn 7.5 were installed to help speed
up the GUP process, and Tensorflow 1.13.1, Opencv4.1, and Numpy 1.14.2 were installed
in the environment. The auxiliary databases were installed to make the code run correctly.
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4.2. Production of Data Set

In terms of data set, it was discovered that the three types of flaws that have the most
impact on the quality of steel plate during the identification of defects in steel plate were
weld, hole, and scratch. The number of feature photos offered by these three categories
of steel plate defects was insufficient to meet the training needs, even though the existing
data collection of the surface defects of German DAGM steel plate has a total of 10 types of
steel plate defects. Therefore, the data set was expanded by combining the actual scene
shooting with the public data set. A total of 4500 defect feature images were obtained from
the entire self-made data set through on-site collection and selection of public data sets.
Because it was discovered that the format and size of the feature map would influence the
detection efficiency during the detection process, LabelImg labeling software was used to
label the area of each type of image in proportion to the area to be labeled, and the length
and width of the image were less than or equal to 3:1. This will help to better train the
neural convolution network model. XML files should be used to store critical data from
marked defect boxes in order to apply it to neural convolution network learning.

The target’s proportion in the image varies slightly as a result of variations in the
camera’s viewing distance, and the model’s capacity for adaptation is reduced by the
various target sizes. The method of random scaling, clipping, and distribution of the
logarithmic data set, which is more accurate for the training of the data set, was utilized to
carry out the random splicing of photos in the preprocessing stage to tackle this problem.
Figure 7 displays an illustration of data enhancement.
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5. Results and Discussion

The self-made data set utilized in this experiment randomly separated the training
set and test set at a ratio of 6:4. Several ablation experiments were then set up to assess
the effects of each model improvement on the training effect and to choose the best model.
The usefulness of the proposed algorithm was further confirmed by several sets of com-
parison experiments with the better steel defect detection methods already in use, and the
superiority of the algorithm was assessed by the average detection accuracy (map) and the
detection speed (FPS).

5.1. Training Model

The experiments in this paper were carried out in accordance with the predetermined
parameters: the image input size was 416 × 416; the epoch was set to 300 rounds; the
batch size was 128 for the first 50 rounds and 64 for the last 250 rounds; the learning rate
was 1 × 10−2 for the first 50 rounds and 1× 10−3 for the last 250 rounds; momentum was
the amount of stochastic gradient descent in order to obtain a better convergence effect,
momentum was set at 0.937. Momentum is the expression of the reduction in the learning
efficiency of the initialization of the weights in terms of momentum. Figure 8 depicts the
loss curve during the training phase.
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It can be observed from the figure that the loss value decreases continuously as the
epoch increases, and when the training proceeds to 50 rounds the loss curve is basically
in a stable state without generating an overfitting situation, and the loss value of the
YOLO-ACG algorithm converges to about 0.19 and 0.14 by increasing the accuracy of the
recognition model, so the overall parameter setting of the algorithm is reasonable.

5.2. Comparison Experiment

The YOLO-ACG method is compared with current popular detection techniques, such
as YOLOv4, YOLOv4-MobileNetv1, YOLOv4-MobileNetv2 [29], YOLOv4-MobileNetv3,
YOLOv3-tiny and YOLOv4-tiny, in a self-made data set, as shown in Table 1, to confirm
that the algorithm’s improvement is more genuine and reliable.

Table 1. Data set to compare the experimental results.

Model mAP Model Size/MB FPS

YOLOv4 96.35% 244.7 85.3
YOLOv4-MobileNetv1 88.39% 40.95 47.6
YOLOv4-MobileNetv2 89.52% 39.06 40.1
YOLOv4-MobileNetv3 89.75% 39.99 43.2

YOLO-ACG 92.49% 69.82 102.91

The chart shows that when employing a big network model, such as the YOLOv4 [30]
detection method, the algorithm has a very high detection accuracy of 96.35% but the
model’s size is relatively large at 244.7 MB, making it difficult to deploy on mobile devices.
Some lightweight models, Models 2 to 6 in Table 1, enhance the YOLO algorithm. The
comparison results reveal that the lightweight model’s size has been significantly decreased
in comparison to YOLOv4, which is more readily implemented in mobile devices, but
that the model’s detection accuracy has been significantly reduced in comparison to the
YOLOv4 algorithm.

In view of this, the YOLO-ACG network model proposed in this paper takes into
account the computational speed of the model, the detection accuracy, and the size of the
model. Its model size is about 1/4 times that of the YOLOv4 network model, although
slightly higher than that of Table 2–6 models, about 1/3 times that of 2–6 network models.
The suggested approach has unquestionable advantages in terms of operation speed,
reaching up to 103FPS. It surpasses roughly 18FPS, as compared to YOLOv4. It exceeds
by almost two times 2–6 models, realizing high-speed detection. The accuracy of the
YOLOv4-ACG model is around 2% greater than that of the models in Table 2–6, although
being about 4% lower than that of the YOLOv4 model. From the above three aspects, we
can see that YOLO-ACG is more efficient when deployed on mobile devices.
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5.3. Ablation Experiment

The ablation experiment is to improve different modules based on the YOLOv4 Ghost
algorithm and use self-made data sets to conduct training and performance evaluation.
Table 2 shows the comparison of evaluation results of all models.

Table 2. Training results of different algorithm models.

Experiment SPP ASPP SE ECA CBAM CA mAP FPS Size/MB Recall

1
√

89.17% 95.88 43.63 67.34%
2

√ √
88.49% 96.53 44.25 71.42%

3
√ √

88.37% 95.17 44.61 71.91%
4

√ √
87.84% 96.01 44.26 70.42%

5
√ √

88.61% 97.88 43.84 68.77%
6

√
91.64% 97.89 69.57 75.81%

7
√ √

91.09% 94.28 70.23 76.52%
8

√ √
90.49% 96.53 69.63 72.26%

9
√ √

89.76% 95.36 70.26 72.72%
10

√ √
92.49% 102.91 69.12 77.49%

As can be seen from the table, experiments conducted with the introduction of SPP and
ASPP modules in the model reveal that the model size of the algorithm is approximately
1.5 times larger when the ASPP module is introduced than when the SPP module is
introduced. In terms of accuracy, it is about 2% higher than the SPP module. In terms of
recall rate, there is a significant improvement of approximately 8% compared to the SPP
module. The detection speed is also improved compared with the introduction of the SPP
module, which can reach about 98FPS. The comparison of the total ablation experiment
reveals that, despite the model’s size being only slightly larger—by about a third—than
that of the method with the SPP module, it has far faster and more accurate detection. As
a result, the ASPP module is elected as the algorithm’s primary pooling layer. It can be
shown from comparative tests 6–9 that the accuracy and speed of the algorithm in the
detection algorithm with only the ASPP module are marginally improved, while the model
size is slightly decreased, when compared to the introduction of ASPP module and the
addition of SE [31], ECA, and CBAM. By comparing Experiments 6 to 10, it can be seen that
Experiment 10’s model size is only slightly smaller than Experiments 6 to 9’s. In terms of
recall, Experiment 10 exceeded Experiments 6 to 9 by about 2% to 5%, but experiment 10’s
precision is about 3% to 4% higher, and Experiment 10’s speed is about 103 FPS, which is
higher than Experiment 6 to 9’s speed by about 6 to 9 FPS.

The aforementioned studies demonstrate that the revised YOLO-ACG algorithm
approaches are efficient and increase the model’s accuracy in the detection of steel plate
surface flaws. In order to identify steel plate surface flaws more effectively, it possesses
the qualities of quick detection speed, lightweight models, and ease of deployment in
real-world situations.

6. Conclusions

This study suggests the YOLO-ACG method addresses the shortcoming of the YOLOv4
algorithm in handling flaw identification of steel plate data. From the three points below,
the algorithm has been improved. First, lower the model size and substitute the present
YOLOV4 method’s backbone network with the lightweight Ghost module to make the algo-
rithm simple to install on mobile devices. Then, to increase the maximum pooling efficiency
of the YOLOv4 algorithm, the ASPP module is introduced to replace the maximum pooling
layer. This considerably enhances the processing of the feature image’s edge details and
the feature image’s receptive field. Finally, employing the pyramid feature fusion network
CA module enables the enhancement of feature map fusion effectiveness in various scale
spaces and further enhances the analysis of feature maps’ edge information.

From the analysis of the experimental results, the proposed YOLO-ACG target detec-
tion algorithm applied to a homemade data set has a higher mAP of about 3% compared
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to the existing YOLOv4-MobileNet algorithm model. In comparison with the size of the
YOLOv4 algorithm model, the proposed algorithm is about 1/4 of the YOLOv4 algorithm
model. The detection speed of the YOLO-ACG algorithm can reach about 103 FPS, which is
twice as fast as the existing YOLOv4-MobileNet algorithm model. Therefore, YOLO-ACG
target detection has significantly improved the ability to detect defects on the surface of
steel plates and meet the mobile requirements for the real-time detection of realistic scenes.
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