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Abstract: With the rapid growth of automobile numbers and the increased traffic congestion, traffic
has increasingly significant effects on regional air quality and regional sustainable development in
China. This study tried to quantify the effect of transportation operation on regional air quality
based on MODIS AOD. This paper analyzed the space-time characteristics of air quality and traffic
during the epidemic by series analysis and kernel density analysis, and quantified the relationship
between air quality and traffic through a Geographically Weighted Regression (GWR) model. The
main research conclusions are as follows: The epidemic has a great impact on traffic and regional air
quality. PM2.5 and NO; had the same trend with traffic congestion delay index (CDI), but they were
not as obvious as CDI. Both cities with traffic congestion and cities with the worst air quality showed
strong spatial dependence. The concentration areas of high AOD value in the east areas of the Hu
line were consistent with the two gathering centers formed by cities with traffic congestion in space,
and also consistent with the gathering center of cities with poor air quality. The concentration area
of AOD decline was consistent with the gathering center formed by cities with the worst air quality.
AOD had a strong positive correlation with road network density, and its GWR correlation coefficient
was 0.68, then These provinces suitable for GWR or not suitable were divided. This study has a great
significance for the transportation planning, regional planning, air quality control strategies and
regional sustainable development, etc.

Keywords: quantitative analysis; congestion delay index; spatiotemporal characteristics; MODIS
AOD; GWR

1. Introduction

According to the Ministry of Public Security of China (MOT), by 2022, the number
of motor vehicles had reached 417 million, and car parc has now passed the 319 million,
surpassing the US to become the country with the most automobiles. The dramatic increase
in motor vehicle causes traffic congestion. The research from Abdull [1], Oishi [2], Lv [3],
Wang [4], Li [5], Lima [6], Pathak [7], and Jeong [8] have confirmed that traffic congestion
brings more emissions in Kyoto, Nagoya (Japan), Beijing, Jinan, Hong Kong (China),
Bogota (Brazil), Delhi (India), and Toronto and Ontario (Canada) respectively. Road traffic
emissions to NO, and PM2.5 were the highest in Hamburg and EU [9,10], and the private
cars were the main contributors accounting for 60% CO and SO, emissions in Bogota,
Colombia [11]. Analyses of PM2.5 sources in Beijing, Hangzhou, Jinan, and other cities
have also shown that motor vehicle emissions have surpassed coal to become the main
source of urban PM2.5 pollution in China. Judging from the car parc per 1000 people,
China’s car parc will continue to mount (in 2019, China’s car parc per 1000 people was 192,
the United States as high as 837, Japan was 519, Malaysia was 433 which was equivalent
to China’s per capita GDP, and Russia was 373, from McKinsey China Auto Consumer
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Insights 2019). Traffic emissions have increasingly significant effects on regional air quality
and regional sustainable development. Quantify the effect of traffic operation condition
on regional air quality are of great importance in regional sustainable development and
government decision. With the rapid development of big data technology, traffic-related
vehicle big data in traffic operation, traffic emission, air quality (monitoring and modeling)
are becoming more widely used [12,13]. Néstor considered a traffic congestion detection
system based on connected vehicles and big data through which drivers can identify
traffic congestion and change routes accordingly to reduce emissions and shorten travel
time [14]. The cost-benefit of five taxi emission reduction countermeasures were analyzed
in detail based on multi-mode travel big data [15]. Qin proposed a method for constructing
driving cycles in Chinese cities based on big data analysis [16]. Carbon emission flow
from self-driving tours and its spatial relationship with scenic spots were examined with a
traffic-related big data method [17-19]. The major navigation companies in China (Amap
and Baidu Maps) launched traffic big data monitoring platforms (https://www.amap.com/
(accessed on 30 April 2022), https://map.baidu.com (accessed on 30 April 2022)) since
2014, which real-time monitor the traffic operation status of major cities in China in real
time. The congestion delay index (CDI) based traffic big data proposed to express the time
cost brought by traffic congestion to travelers. This has currently become an important
basis for evaluating the traffic operations of a city, and an important reference for public
transportation, government decision makers, and research institutions.

For the spatiotemporal characteristics of remote sensing data, the analysis of re-
gional air quality and its changes based on remote sensing data has become an important
method [20]. The strong correlation between the aerosol optical thickness (AOD) from
remote sensing data and the concentration of near surface particles have already been
confirmed by many research studies and free MODIS (Moderate Resolution Imaging Spec-
troradiometer) data is the most widely used in air pollution research [21-23].

COVID-19 wreaked havoc on people’s production and life. According to Amap, after
the outbreak of COVID-19, both urban residents’ travel intensity and traffic congestion
levels in Chinese cities declined differently in the first quarter in 2020, and rush hour con-
gestion delay index (RHCDI) in Beijing, Wuhan, Tianjin, and other major cities decreased
by more than 20% compared with the fourth quarter of 2019 (https://report.amap.com/
download.do(accessed on 30 April 2022)). However, it also provided a rare opportunity to
analyze the effects of transportation operation on regional air quality and regional sustain-
able development. Traffic volumes, road crash risk, and traffic levels in Rome, Los Angeles,
South Korea, etc. were all monitored the significant decline during the period of COVID-
19 [24-26]. Air quality in China [27-31], India [32,33], Ecuador [34], Spain [35], Canada [36],
Moscow [37], the Middle East [38], etc. during COVID-19 were widely analyzed, and
the remote sensing data such as TROOMI [39,40], OMI [41], and MODIS [41] were also
widely used in air quality monitoring research. Those were researched that the effects
of transportation on air quality during COVID-19 in Beijing [42], Shanghai [43], Chinese
megacities [44], nationwide (China) [45], Los Angeles [46], New York [47], Istanbul [48],
Poland [49], a northwestern US city [50], and Padova (Italy) [51]. These research studies
mainly focus on statistical analysis of monitoring data.

Based on MODIS data and traffic big data, this study tried to quantify the effect
of traffic operation condition on air quality in China by spatial analysis model during
COVID-19.

2. Materials and Methods
2.1. Materials
2.1.1. Research Area and Time

As the world’s largest developing country, China has achieved rapid development, but
there are also many problems, such as unbalanced economic and population development.
East of the Hu line, which accounts for 43% of China’s land area but 94% of its national
population and 96% of the GDP, traffic is heavy, and air quality is poor. According to
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AMAP monitoring data, in 2020, 93 of the top 100 cities for traffic congestion were located
east of the Hu line (Figure 1). Among the 100 cities with the worst air quality in 2020, only
Lanzhou, Yinchuan, and Urumgi were west of the Hu line (Figure 1). Nearly half of the
cities were coincident between the top 100 cities for traffic congestion and the 100 cities with
the worst air quality. For the present study, five cities were selected for analysis—namely;,
Wuhan (COVID-19 outbreak), Beijing (the capital of China, megacity), and Jinan (capital of
Shandong Province; ranked first in the peak congestion index for 2017-2018, and poor air

quality) (Figure 1).
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Figure 1. The top 100 cities for traffic congestion and cities with the worst air quality. The base map
is the population density map for China in 2015 (https://www.resdc.cn/DOI/DOILaspx?DOIlid=33
(accessed on 8 January 2023)), and 93 of the top 100 cities for traffic congestion and 97 of the top 100
cities with the worst air quality in 2020 were located east of the Hu line; that is, almost all cities with
heavy traffic or poor air quality are located in economically developed areas.

The research time is from 1 January to 30 April in 2020 and 2019, and it was divided
into four phases; see Table 1.

Table 1. Research phase (compared to 2019).

Time Phase Remarks

1 January-22 January I the early period of the epidemic, only Wuhan city was

affected
23 January-9 February I Wuhan was in lockdown, t}.1e country was kept in
quarantine
10 February-7 April I resume work
8 April-30 April v Wuhan was unlocked

2.1.2. Research Data
Traffic Data

Congestion delay index (CDI) is an evaluation index that the Amap (https:/ /report.
amap.com/diagnosis/index.do (accessed on 8 January 2023)) and Baidu map (https://
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jlaotong.baidu.com/top (accessed on 8 February 2023)) platforms use for real-time traffic
monitoring in major cities. It is the ratio of travel time in traffic congestion (actual traffic
time) to that of free flow (the traffic time in unblocked state).

CDI — Timefree flow

Timexyagtic congestion @
The rush hour congestion delay index (RHCDI, 7:00-9:00 in the morning, 17:00-19:00
in the evening) is an evaluation index of urban congestion that intuitively represents
traffic in a city’s road network, and it is also a reflection of exhaust emissions. CDI > 2 is
generally considered to indicate serious congestion. The velocity of urban free flow shows
considerable differences. In the top 100 congested cities in 2019, the average free-flow
velocity was 43.93 km/h. Chongqing had the highest free-flow velocity of 49.51 km/h
while Jinhua had only 37.65 km/h. According to Amap, in the first quarter of 2019, for
example, the RHCDIs in Beijing city and Chongging city were above 2.0. The RHCDIs of
Wuxuan Road, Yangtze River First Road, and other parts of Chongqing were all above 4.2.
Road network data was collected, including text format and vector format, etc.

Air Quality Data

The national ambient air quality monitoring network includes 1547 air quality monitor-
ing stations. Monitoring results are published on the China Air Quality Online Monitoring
and Analysis Platform (https://www.aqgistudy.cn/ (accessed on 8 January 2023)). The
air quality monitoring factors are as follows: six pollutants (i.e., PM2.5, PM10, SO,, NO,,
CO, and O3) and air quality index (AQI). AQI is a dimensionless index that quantitatively
describes air quality. It is the expression of air pollution degree and air quality state derived
from six parameters (e.g., PM2.5), ranging from 0 to 500. The lower the index, the better the
air quality. Figure 2 shows data for the six parameters in Wuhan during the study periods
(O3 data were given as the average of eight hours while others were for one hour; for the
different scales, O3 was not used) pollutants.
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Figure 2. Air quality data for Wuhan from January-April 2019 and January-April 2020. AQI, PM2.5,
and PM10 had almost the same variation trends.

As can be seen in Figure 2, AQI, PM2.5, and PM10 had almost the same variation
trends. CO and SO, content were relatively low, especially CO, without obvious fluctuation
patterns. NO; content was higher than SO2 and lower than AQI, PM2.5, and PM10.
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MODIS Data

MODO08 products (daily product, 8-day product and monthly product) are L3 atmo-
sphere product of MODIS, and that includes aerosol, water vapor, and cloud information
(https:/ /ladsweb.modaps.eosdis.nasa.gov/ (accessed on 8 January 2023)). The resolution
of MODOS 13 products are 1 degree.

2.1.3. Data Preprocessing

The collected data were preprocessed including, for example, the inspection and
processing of data quality, the synthesis of AOD data according to the research phase, the
provincial statistics of road network density, the statistics of CDI data, etc.

2.2. Methods
2.2.1. Time Series Analysis

Time series data is a series of data arranged in chronological order, changing with time
and related to each other. By studying time series data, we can find the law of historical
data, evaluate the current status, predict the change trend of future. Time series analysis
was used to analyze the temporal characteristics of CDI, PM2.5, NO, and the MODISAOD
during COVID-19 based on the corresponding to time series data.

2.2.2. Spatial Analysis
Kernel Density Analysis

Kernel density analysis uses the kernel function to calculate the quantity value per unit
area according to the point or polyline features, then fit each point or polyline into a smooth
conical surface according to data value [26]. This tool is used to calculate the density of
features in their surrounding neighborhoods, so it can measure the spatial distribution
characteristics of variables.

) = o Tk (55 @

where: h is the search radius; N is the number of variables; x is the variable, and x — x; is
the distance between any two points; The calculated result is the nuclear density of point x.

Geographically Weighted Regression

Geographically Weighted Regression is a local linear regression method based on
spatial change relationship modeling. It generates a regression model describing the
local relationship in every part of the study area, which can well explain the local spatial
relationship and spatial heterogeneity of variables.

p
y; = Bo(ui, vi) + Y Br(ui, vi)xix + & 3)
k=1

where Bo(u;, v;) is the coordinates of sample point i; By (u;, v;)xj is the kth regression
parameter at sample point I; and ¢; is the error correction term.

3. Results Analysis
3.1. Temporal Characteristics
RHCDI and Urban Air Quality

First, Jinan city was taken as an example, to analyze the time changes of traffic (RHCDI)
and air quality (AQI) during the epidemic (January-April 2019 and 2020), as shown in
Figure 3. Jinan is the capital of Shandong Province. It ranked first among the cities in rush
hour congestion delay index for 20162018, and the air quality was poor.
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AQI and CDI in Jinan from Jan. to Apr. in 2020
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Figure 3. The peak of AQI almost corresponds to the peak of CDI due to the major human activities
during phase II-IV.

Both AQI and CDI in Jinan were in a high level in phase I (only Wuhan city was
affected), and both AQI and CDI had a big decline. CDI showed obvious cyclical changes
(7 days). Weekdays were higher, weekends were lower, and Monday and Friday were
slightly higher than the other working days except during holiday. COVID-19 altered
these patterns, leading to low CDIs in Phase II. Except for the increase in CDI (1.35) caused
by rain and snow on 6 February, the other time CDI was all below 1.2. After the return
to worm (Phase III), CDI began to rise gradually, and the weekly fluctuation low of CDI
recovered. The cyclical fluctuation of AQI is not obvious, but the values from Phase II to IV
were far lower than that in Phase I. During phase II-1V, the peak of AQI almost corresponds
to the peak of CDI due to the major human activities in time. Since 10 February, enterprises
have resumed work and AQI has reached a peak; the highway toll stations closed due to
the epidemic in the whole province and were all lifted from lockdown 21 February, AQI up
to p peak; emergencies response level adjusted from Level I to Level Il on 7 March, AQI
peaked; on 30 April, Tomb Sweeping Day, peak; on 15 April, resume classes, peak; and on
the eve of Labor Day, AQI peaked. When AQI reached its peak, CDI also reached its peak.
That is, AQI was closely related to people’s activities (CDI) during the epidemic.

Then, we took Wuhan (COVID-19 outbreak) and Beijing (the capital of China, megac-
ity) as examples for analysis. The CDI, PM2.5, and NO; of Beijing and Wuhan, January-
April 2019 and 2020 were shown in Figure 4A,B. Nationwide AQI and CDI were analyzed,
and the average D-values of CDIs, PM2.5, and NO, were shown in Figure 4C-E. We
calculated the average values of CDIs, PM2.5, and NO, during the four stages respectively.

Wuhan, where COVID-19 initially broke out, was sealed until 8 April 2020. From the
mid-term phase I to phase III, the CDI of Wuhan was far below the level during the same
period in 2019, especially in phases II and III (lockdown period) when it was stable at a
very low level (<1.1). It began to gradually rise until phase IV (lift lockdown). PM2.5 and
NO; had the same trend with CDI, and the NO, decreased significantly, but they were not
as obvious as CDI. The trend of AQI and CDI over time in Beijing is basically the same
with that in Jinan.
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Figure 4. CDI, PM2.5, and NO,, January—-April 2019 and 2020. PM2.5 and NO; had the same trend
with CDI, but they were not as obvious as CDIL

In phase I of 2020, except for Wuhan, CDI, PM2.5, and NO, in most cities was basically
unchanged compared with the same period in 2019, although there were some high and
low levels. The average CDI of the top 100 cities in 2019 was only 0.049 higher than in
2020, and average NO, of the top 100 cities with the worst air quality in 2020 decreased by
7.57 ug/m?3, but the average PM2.5 showed a situation higher than that in 2019. During
phase II (lockdown period, including Spring Festival), the CDI of all cities fell sharply, and
the average CDI of the top 100 cities was only 1.14. PM2.5 and NO; in major cities also
dropped considerably, especially for NO,, which was far lower than in 2019 (PM2.5 and
NO; peaks occurred around 29 January and 12 February in Beijing; confirmed that haze
during COVID-19 lockdown was driven by the enhancement of secondary pollution [30]).
The average D-value of CDIs were 0.245 in phase II, while PM2.5 and NO, decreased by
40.02 and 16.85 pg/m?3, respectively. In phase I1I, as COVID-19 eased, the CDI of all cities
showed steady recovery, although the CDIs were below the levels in 2019. The PM2.5 and
NO; of all cities were also lower than the levels during the same period in 2019. During
phase IV, the social and economic activities had basically recovered, and the CDI, PM2.5,
and NO; of all cities basically recovered to the level of the same period in 2019. Some cities
even showed levels higher than in 2019. In brief, although the trends of PM2.5 and NO,
were not as obvious as CD], the trends of them were similar; that is, urban traffic operation
still has a significant effect on regional air quality.

3.2. Spatial Characteristics of Traffic Congestion Cities and Cities with Poor Air Quality

The average AOD from January to April in 2019 is shown in Figure 5A,B as well as the
results of the kernel density analysis of the top 100 cities for traffic congestion and the top
100 cities with the worst air quality.
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Figure 5. (A) is the average AOD from January to April in 2019. The darker the color, the higher the
value, and the more serious pollution. (B) is the results of kernel density analysis of the top 100 cities
for traffic congestion and the top 100 cities with the worst air quality. The concentration areas of high
AQOD value in the east areas of the Hu line were consistent with the two gathering centers formed by
cities with traffic congestion in space, and also consistent with the gathering center of cities with poor
air quality.

For Moran index (or spatial autocorrelation index), when the value is greater than 0,
this indicates a positive spatial correlation; the larger the value, the more obvious the spatial
correlation. When Moran’s I is less than 0, there is a negative spatial correlation; the smaller
the value, the greater the spatial difference. When Moran’s I is 0, the space is random)
is used to measure to measure whether traffic congestion cities and cities with poor air
quality are spatially correlated [27]. The values of Moran’s I of the top 100 cities for traffic
congestion and the top 100 cities with the worst air quality were 0.28 and 0.16 respectively;
that is, cities for traffic congestion and poor air quality indicated strong spatial dependence.
Further, kernel density analysis was used to analyze the spatial cluster characteristics of
these two types of cities, and Figure 5 shows the result of the kernel density analysis.

As shown in Figure 5A, the AOD values in the east areas of the Hu line were higher
than the west, whereas east of the Hu line, which accounts for 94% of its national popula-
tion, 93 of the top 100 cities for traffic congestion and 97 of the top 100 cities with the worst
air quality. The AOD high value area of Xinjiang in the west of the Hu line was due to the
impact of sandstorms. There were severe sandstorms on 29-31 January, 16-18 February,
16-19 March, and 21-25 March (from January to April in 2019), according to the meteoro-
logical information (http://www.weather.com.cn/ (accessed on 8 January 2023)).

As shown in Figure 5B, cities with traffic congestion formed two high-aggregation
centers in the Yangtze River Delta and Pearl River Delta (two major economic development
areas in China). Meanwhile, Beijing, Jinan, and other cities were closely connected with the
Yangtze River Delta, and they shaped a long strip contact strips belt. A weak gathering
center was formed in the Sichuan Basin. The 100 cities with the worst air quality have
formed a large gathering center in the eastern land area, which was almost consistent with
the gathering area of the Yangtze River Delta (including the formed belt area) formed by the
traffic congestion cities. Sichuan Basin weak gathering center was also the same. However,
they do not exactly correspond to each other. Especially in the center of the Pearl River
Delta (composed of cities with traffic congestion), no city has entered the top 100 cities
with the worst air quality. The cities in the Pearl River Delta are closest to the ocean, and
the exchange of proximity to the land-sea process help to circulate air. Besides, there is no
winter heating in southern China, so coal consumption is low.
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As seen in Figures 4B and 5A, the high value concentration areas of AOD in the east
areas of the Hu line were consistent with the two gathering centers formed by cities with
traffic congestion in space, and also consistent with the gathering center of cities with poor
air quality. That is, the air quality is related to the local economy and transportation.

3.3. Spatial-Temporal Analysis

Remote sensing data can reflect the spatial distribution characteristics, and remote
sensing data of time series can reflect the spatiotemporal changes of the research object.
The AOD differences in between four phases were shown in Figure 6.
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Figure 6. AOD in 2020 was mostly lower than that in the same period in 2019 From Phases II to
Phases IV: the concentration area of AOD decline was consistent with the gathering center formed by
cities with the worst air quality.

During Phases I (not yet affected by the epidemic), the AOD in 2020 in most areas east
of the Hu Line was higher than that in 2019. From Phases II to Phases IV, AOD in 2020
was mostly lower than that in the same period in 2019 because of the reduction of human
activities caused by the epidemic. Phase II was the period most affected by the epidemic,
Wuhan lockdown, and the whole country was in isolation. The concentration area of AOD
decline was consistent with the gathering center formed by cities with the worst air quality,
as shown in Figure 6.

3.4. Quantitative Analysis Based on GWR

From the above analysis, there is a relationship between regional air quality and traffic.
AOD has a strong correlation with regional air quality, and road network density is related
to traffic flow and traffic congestion, which has been confirmed by many studies, so, AOD
and road network density were selected to represent air quality and traffic respectively.
GWR was used to quantitatively analyze the relationship between AOD and road network
density. Average AODs from January to April in 2019 and 2020 and the road network
density by province (excluding Taiwan Province) were separately modeled and used to
build GWR model. The standard deviations of the AOD models constructed based on the
in the study area are shown in Figure 7.
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Figure 7. (a) GWR analysis result in 2019. (b) GWR analysis result in 2020. AOD and road network
density has a strong correlation based on GWR. The provinces with the high correlation and low
correlation in 2020 were almost similar to that in 2019.

The square of correlation coefficient (R?) between AOD in 2019 and road network
density based on GWR was 0.68, so, there is a strong correlation between the two, and
the correlation relationship can be described by mathematical formula. The advantage of
GWR over an ordinary regression model are that it can build a regression model for each
sample. The positive coefficient represents a facilitating impact, and the negative means
an inhibiting impact. The regression coefficient B (u;, v;) of the models based GWR in this
paper was all positive, so the road network density had a facilitating impact on AOD.

The provinces with the high correlation and low correlation were shown in Figure 7.
The provinces with the highest correlation between AOD and road network density were
Heilongjiang, Jilin, Liaoning, Inner Mongolia, and the local R2 were all above 0.75, Hebei,
Beijing and Tianjin were also above 0.6, and Shandong, Henan, Shanxi and other provinces
located in the gathering centers formed by cities with the worst air quality were also above
0.5. The provinces with low correlation were Guangdong, Guangxi, Xinjiang, Hainan,
Yunnan and Guizhou, and the local R2 were all below 0.15. These provinces were not
suitable for the correlation analysis between road network and air quality.

The R? between AOD in 2020 and road network density based on GWR was 0.61, and
the provinces with the high correlation and low correlation in 2020 were almost similar to
that in 2019.

4. Discussion

In this study, there are still many problems and uncertainty in quantifying the effect of
transportation on regional air quality.

Transportation is a very complex system affected by many factors, and traffic operation
is a very complex system with many influencing factors. CDI and road network density
were used to reflect traffic operation in this study. Although CDI can reflect the situations
of traffic congestion and traffic operation, road density is also closely related to traffic
flow, and AOD is also strongly related to regional air quality; after all, there were certain
differences which can affect the accuracy of research results, but it is difficult to quantify the
effect. Air quality is also a very complex system affected by many factors such as weather,
terrain, emissions pollutants, secondary reaction of air pollutants, etc. For example, during
the COVID-19 lockdown, heavy air pollution events still occurred in Beijing on 11-13
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February 2020 in Beijing. It was confirmed that this was driven by the enhancement of
secondary pollution, and the benefits of emission reductions were overwhelmed by adverse
meteorology [28]. Therefore, there are many uncertain factors for two complex systems
when analyzing the impact of traffic on air quality.

In addition, the AOD data are commonly missing on days with heavy pollution or
very little pollution, and the missing data affect the accuracy of analysis. For instance,
there is a serious lack of AOD data (no valid value) in parts of Qinghai, Tibet, Xinjiang
and other provinces. The missing data rate of the synthesized AOD monthly product
from January—April 2019 was still 14.5%, and the most missing data rate of daily product
in 2019 was up to 44.87%. The retrieval algorithm of AOD was improved from “dark
target method” and “dark blue algorithm” to MAIAC (multi-angle implementation of
atmospheric correction algorithm), and the space resolution was improved from 10 km,
3 km to 1 km, but the algorithm and resolution of remote sensing retrieval AOD need further
improvement [52,53]. Although remote sensing data can retrieve the spatial distribution
characteristics of the AOD (air pollution) well, as it is instantaneous data, it can only
represent the spatial distribution of the satellite transit time. However, the AOD and traffic
emissions are always changing, so the AOD retrieved by remote sensing has the problem
of time scale deduction.

These provinces with low correlation can be divided into two classes, one was close
to the sea, such as Hainan and Guangdong, and the other was undulate terrain, such as
Yunnan, Guizhou, and Xinjiang. Regional air quality is a very complex system effected by
many factors, especially the meteorology factor. As a ligament connect between land and
sea, coastal areas have frequent exchanges between land and sea and the active weather,
which causes the effect of a reduction of traffic on air quality. As shown in Figure 8,
the DEM of Tibet, Xinjiang, Yunnan and Guizhou are all high, and these provinces were
located in Qinghai-Tibet Plateau and Yunnan- Guizhou Plateau. The surface conditions
in undulate terrain are complex, which not only cause the accuracy reduction of remote
sensing retrieval AOD (that were confirmed in China [54-56], East Asia, central Asia [57],
the European Alpine region [58]), but also result in the decline of the calculation accuracy
of the road network.

Quantifying the effect of traffic operation condition on regional air quality can provide
the ground for managers to formulate traffic management policies and regional air quality
control measures [59-61]. For instance, if the air quality in the A region attempts to be
controlled at the Y level, according to the constructed GWR model, the road network
density in the A region should be approximately X. Compared with the currently road
network density Z, reasonable planning of regional road network will be made. The
decision making on traffic management-control solutions and emission reduction measures
can consult the results of the model and CDI, which is of great significance to regional
sustainable development.
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Figure 8. These provinces with low correlation can be divided into two classes, one was close to the
sea, and the other was undulate terrain (high value area of DEM). The base map was the DEM (digital
elevation model) with 250 m resolution (https:/ /www.resdc.cn/data.aspx?DATAID=123 (accessed
on 8 January 2023)).

5. Conclusions

This study quantified the effect of traffic operation on air quality by spatial and
temporal analysis based on MODIS AOD and traffic data. The main research conclusions
are as follows: The epidemic has a great impact on traffic and regional air quality. PM2.5
and NO; (air quality) had the same trend with CDI (traffic congestion) in time, and the
peak of AQI almost corresponds to the peak of CDI due to the major human activities
during epidemic phases II-1V. In space, the concentration areas of high AOD value were
consistent with the two gathering centers formed by cities with traffic congestion and the
gathering center of cities with poor air quality. The concentration area of AOD decline was
also consistent with the gathering center formed by cities with the worst air quality in space.
AQOD had a strong positive correlation with road network density, and the correlation
coefficient it was based on was 0.68. Those provinces suitable for GWR or not suitable
were divided. This study has a great significance to the transportation planning, regional
planning and air quality control strategies and regional sustainable development, etc.
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