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Abstract: The environment is a key element that affects many aspects of our society, including the
economy, education and talents. In this article, the main purpose is to provide statistical models,
algorithms and quantitative evidence regarding environmental effect evaluation (EEE). To accomplish
this investigation, I first establish a theoretical EEE model and then apply a quantile-type path-
modeling algorithm in the developed EEE model at different quantile levels. In the real-data analysis,
this article investigates hypotheses regarding this theoretical EEE model and illustrates the statistical
performances of quantile-type path-modeling EEE estimators through bootstraps. The results mainly
illustrate that the environment has indispensable impacts on the economy, education and science
and technology talent directly and has indirect effects on scientific infrastructure and science and
technology output. Compared with the existing classical path-modeling algorithm, quantile-type
path-modeling EEE estimators make full use of quantile regression and then overcome the classical
exploration of only average effects. Both the quantile-type EEE model and quantile-type path-
modeling algorithm capture changes in the relations among constructs and between the constructs
and observed variables, and this helps to analyze the entire distribution of the outcome variables in
this EEE model.

Keywords: environmental effects; quantile regression; path modeling; model assessment

1. Introduction

Various experts and researchers have conducted qualitative investigations regarding
different kinds environmental topics [1–9]. Cao et al., (2022) performed a study on the
priorities for the development of China Certified Emission Reduction (CCER) forest carbon
sink projects under the context of carbon neutrality goals [10]. Zhai et al., (2020) applied a
structural equation model and analyzed the influencing factors of green transformation in
China’s manufacturing industry under environmental regulation [11].

Feng et al., (2017) investigated green development performance and its influencing
factors from a global perspective [12]. Carmen et al., (2010) researched environmental
innovation and environmental performance [13]. Pearce et al., (1990) studied the economics
of natural resources and the environment [14]. Pearce et al., (1990) focused on economics
and the environment in the third world and investigated its sustainable development [15].
Arntzen (1989) chose Rural Botswana and studied its environmental pressures and adapta-
tions [16]. Schramm et al., (1989) conducted investigations in environmental management
and economic development [17].

Different from the existing studies, this article focuses on investigating environmental
effects in a qualitative way and establishing comprehensive evaluation models, which
have not been well developed. As we know, the environment has impacts on the economy,
education, talents and many other aspects, such as scientific infrastructure and science and
technology output. Environmental effect evaluation (EEE) becomes increasingly important
and complex and needs to comprehensively consider all the above aspects.

This article first defines the environment as a combination of the natural environ-
ment status (including energy, water and air) and social environment conditions (such

Sustainability 2023, 15, 4399. https://doi.org/10.3390/su15054399 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15054399
https://doi.org/10.3390/su15054399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su15054399
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15054399?type=check_update&version=1


Sustainability 2023, 15, 4399 2 of 21

as biocapacity, pollution and laws) and then evaluates the environment’s effects on the
economy, education, science and technology talent, scientific infrastructure and science
and technology output. It is easily understandable that a well-developed environment
provides a solid basis for life and a good atmosphere and supports the development of the
economy, education, science and technology talent, scientific infrastructure and science and
technology output. Environmental pollution terribly hinders societal development all over
the world.

The main contributions of this article are to provide statistical models, algorithms
and quantitative evidence regarding EEE based on the proposed theoretical research hy-
potheses from the perspective of the entire distribution of variables rather than the clas-
sical exploration of only average effects. Thus, I chose a quantile-type EEE model and a
quantile-type path-modeling algorithm, which is the well-known quantile composite-based
path-modeling approach (Davino et al., 2016) [18]. Based on these quantile-type method-
ologies, this article is able to evaluate the environment from the perspective of quantiles
and to highlight changes in the relations among different aspects.

The introduction of the quantile level brings difficulty; the accomplishment of coeffi-
cient estimation requires a quantile-type path-modeling algorithm rather than the classical
partial least squares algorithm. Currently, both partial least squares (PLS) and its extensions
in quantile regression have been investigated by many researchers in various applications
(Chatelin et al., 2002; Jarvis et al., 2003; Ciavolino et al., 2013a and 2013b; Esposito et al.,
2010; Davino et al., 2016; Davino et al., 2017; Davino et al., 2018; Cheng 2020) [19–27]. Using
a quantile-type path-modeling algorithm, the estimated coefficients can be estimated at
each quantile level.

The rest of the paper is organized as follows. The theoretical basis of the research
is described in Section 2. In this section, I define the environment and its effects, the
research hypotheses, the EEE conceptual framework and the EEE indicator measurement
in Sections 2.1–2.4, respectively. Section 3 introduces the data-preprocessing methods and
data-preparation work and then describes the data through violin plots. Section 4 describes
the methodology, including the quantile-type EEE model in Section 4.1 and quantile-type
path-modeling algorithm in Section 4.2. Section 5 applies the models and algorithms to real-
data analysis. Section 5.1 shows the path and loading coefficient estimations at different
quantile levels. Section 5.2 demonstrates statistical performance investigations through raw
estimation and bootstraps. Section 5.3 investigates the model assessment and validation of
the quantile-type EEE model. Some final discussions are placed in Section 6.

2. Theoretical Basis of the Research
2.1. Definitions of the Environment and Its Effects

The environment (EN) is a key issue for society, and, in this paper, it refers to a
combination of the natural environment’s state and social environmental conditions. The
environment can be viewed as an important factor that directly affects the economy (EY),
education (ED) and science and technology talent (TA) as well as many other aspects, such
as scientific infrastructure (SI) and science and technology output (OU). The International
Institute for Management Development (IMD) World Competitiveness Yearbook explains
the constructs involving the environment and its effects.

The environment can be reflected through ten institutional indicators, including the
energy intensity, the paper and cardboard recycling rate, waste water treatment plants,
the water consumption intensity, CO2 emissions, renewable energies, the total biocapacity,
sustainable development, pollution problems and environmental laws. Both the GDP per
capita and government consumption can explain a country’s economic status. Government
consumption refers to the consumption expenditure of public services provided by gov-
ernment departments for the entire society and the net expenditure of goods and services
provided to households free of charge or at a lower price. Many experts have investigated
the relationship between government consumption and economic growth and found a
tight association between them (Wu et al., 2009) [28].
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Education expenditure per capita, English proficiency and the educational system are
appropriate elements to cover the definition of education. To investigate the environmental
effects based on 61 economies, English proficiency is used an indicator to reflect the educa-
tion internationalization level. Here, we do not consider enrollment in higher education
mainly due to the following reason: the overall plan for deepening the reform of education
evaluation in the new era requires that Party committees and governments at all levels shall
not use the enrollment index or the enrollment rate of the college entrance examination as
the assessment standard, and it is strictly prohibited to publish, publicize or hype the “top
scorer” and enrollment rates of the college entrance examination. This paper does not use
enrollment in higher education and instead considers the education expenditure per capita,
English proficiency and educational system to explain the definition of education.

Science and technology talent can be expressed by the labor force, researchers and
scientists and brain drain. For science and technology output, Nobel prizes and patent ap-
plications can be used to reflect a country’s science and technology achievements. Scientific
infrastructure can be reflected through the total expenditure on R&D, scientific research
legislation and intellectual property rights.

2.2. Research Hypotheses

According to the analysis of the environment and its effects, I propose the following
theoretical hypotheses regarding their relations.

Hypothesis 1. The environment positively affects the economy, while the other variables are
unchanged (denoted as H1). The EEE model uses β1,1(τ) to represent H1.

Hypothesis 2. The economy positively affects science and technology talent, while the environment
and its other effects are unchanged (denoted as H2). The EEE model uses β5,1(τ) to represent H2.

Hypothesis 3. Science and technology talent has a positive effect on science and technology output,
while the environment and its other effects are unchanged (denoted as H3). The EEE model uses
β3,1(τ) to represent H3.

Hypothesis 4. The economy has a positive impact on scientific infrastructure, while the envi-
ronment and its other effects are unchanged (denoted as H4). The EEE model uses β2,1(τ) to
represent H4.

Hypothesis 5. Education positively impacts science and technology talent, while the environment
and its other effects are unchanged (denoted as H5). The EEE model uses β5,3(τ) to represent H5.

Hypothesis 6. Scientific infrastructure positively affects science and technology talent, while the
environment and its other effects are unchanged (denoted as H6). The EEE model uses β5,4(τ) to
represent H6.

Hypothesis 7. The environment has a positive impact on science and technology talent, while the
other variables are unchanged (denoted as H7). The EEE model uses β5,2(τ) to represent H7.

Hypothesis 8. The environment positively affects education, while the other variables are un-
changed (denoted as H8). The EEE model uses β4,1(τ) to represent H8.

Hypothesis 9. Scientific infrastructure has a positive effect on education, while the environment
and its other effects are unchanged (denoted as H9). The EEE model uses β4,2(τ) to represent H9.

2.3. EEE Conceptual Framework

Having formulated nine research hypotheses regarding the environment and its effects,
the EEE conceptual framework is established as shown in Figure 1. Environment is the
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unique exogenous variable, while economy, scientific infrastructure, education, science
and technology talent and science and technology output are endogenous variables. These
exogenous and endogenous variables are all constructs and, thus, cannot be observed
directly. They are so-called latent variables. For further investigation, design indicators are
needed to support each construct as shown in Figure 1.
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2.4. EEE Indicator Measurement
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sured through its corresponding indicators (observed variables), which were introduced
in Section 2.1. According to the former theoretical basis research, the observed variables
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Table 1. The constructs and observed variables of the EEE model.
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EN4 Water consumption intensity Water withdrawal for each 1000 US$ of GDP m3

EN5 CO2 emissions Carbon dioxide emissions Metric tons
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EN7 Total biocapacity Biologically productive space Hectares per capita
EN8 Sustainable development Sustainable development is a priority in companies Scores
EN9 Pollution problems Pollution problems do not seriously affect the economy Scores
EN10 Environmental laws Environmental laws do not hinder businesses competitiveness Scores

Economy EY1 GDP per capita US$ per capita US$

(EY) EY2 Government consumption consumption expenditure of public services provided by government
departments US$ billions

Education ED1 Education expenditure per capita US$ per capita US$
(ED) ED2 English proficiency TOEFL Scores

ED3 Educational system The educational system meets a competitive economy’s needs Scores
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(TA) TA3 Brain drain Well-educated and skilled people drain does not hinder competitiveness Scores

S and T OU1 Nobel prizes Awarded since 1950 Pieces
output (OU) OU2 Patent applications Number of applications filed by applicant’s origin Pieces

Scientific SI1 Total expenditure on R&D US$ millions US$
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2.4. EEE Indicator Measurement

Each construct (latent variable) in Figure 1 is an abstract concept and needs to be mea-
sured through its corresponding indicators (observed variables), which were introduced
in Section 2.1. According to the former theoretical basis research, the observed variables
are listed to represent their corresponding constructs. Table 1 displays the constructs and
observed variables (O.V.) of the EEE model.

Table 1. The constructs and observed variables of the EEE model.

Constructs O.V. Original Name Description Unit

Environment
(EN)

EN1 Energy intensity Commercial energy consumed for each dollar of GDP kilojoules
EN2 Paper and cardboard recycling rate Percentage of apparent consumption %
EN3 Waste water treatment plants Percentage of population served %
EN4 Water consumption intensity Water withdrawal for each 1000 US$ of GDP m3

EN5 CO2 emissions Carbon dioxide emissions Metric tons
EN6 Renewable energies Share of renewables in total energy requirements %
EN7 Total biocapacity Biologically productive space Hectares per capita
EN8 Sustainable development Sustainable development is a priority in companies Scores
EN9 Pollution problems Pollution problems do not seriously affect the economy Scores

EN10 Environmental laws Environmental laws do not hinder businesses
competitiveness Scores

Economy
(EY)

EY1 GDP per capita US$ per capita US$

EY2 Government consumption consumption expenditure of public services provided by
government departments US$ billions

Education
(ED)

ED1 Education expenditure per capita US$ per capita US$
ED2 English proficiency TOEFL Scores

ED3 Educational system The educational system meets a competitive economy’s
needs Scores

S and T
talent
(TA)

TA1 Labor force Employed and registered unemployed Millions
TA2 Researchers and scientists Researchers and scientists are attracted to the country Scores

TA3 Brain drain Well-educated and skilled people drain does not hinder
competitiveness Scores

S and T
output (OU)

OU1 Nobel prizes Awarded since 1950 Pieces
OU2 Patent applications Number of applications filed by applicant’s origin Pieces

Scientific
infrastructure

(SI)

SI1 Total expenditure on R&D US$ millions US$

SI2 Scientific research legislation Laws relating to scientific research do encourage
innovation Scores

SI3 Intellectual property rights Intellectual property rights are adequately enforced Scores

The definitions of the observed variables refer to the IMD World Competitiveness Yearbook.
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3. Data Preparation

We mainly consider two issues regarding the data used in this paper. The first issue is
missing data in observed variables, which should be handled with appropriate approaches.
In this paper, the median imputation approach is used, which may avoid the effects brought
by extreme values of observed variables (Little et al., 1987) [29]. At length, the missing
values are filled with the median of the available observations for observed variables (OV)
containing missing data, which can be expressed as Equation (1),

OVimputed
missing = median

(
OVobserved

missing

)
(1)

Here, OV∗missing denotes these observed variables with missing data. OVobserved
missing denotes

the observed parts, and OVimputed
missing denotes the imputation values for the missing parts.

Having overcome the missing data problems, we standardize the data through the
following Equation (2), as this is the second issue.

Standardized OV = (OV −M)/SD (2)

Here, M denotes the mean value of an observed variable, and SD denotes the square
root of an observed variable’s variance.

To collect the data of 23 observed variables in Table 1, the IMD (International Institute
for Management Development) World Competitiveness Yearbook was chosen for part
of its data covering 61 economies. Table 2 shows the statistical characteristics of all the
observed variables.

Table 2. The statistical characteristics of the observed variables.

Constructs O.V. Min 25% Q Median Mean 75% Q Max Missing

EN

EN1 28.000 67.000 109.000 125.200 143.000 558.000 0
EN2 6.000 59.020 79.400 71.130 88.970 100.000 17
EN3 5.000 65.000 82.000 75.260 92.100 99.900 16
EN4 0.780 8.055 22.070 42.693 54.390 285.830 15
EN5 2.100 37.300 92.500 456.200 317.200 9040.700 0
EN6 0.000 5.500 12.000 16.020 22.600 88.300 0
EN7 0.060 1.190 2.670 4.129 4.110 29.550 2
EN8 3.270 5.270 5.710 5.867 6.920 8.340 0
EN9 3.180 5.040 6.130 6.096 7.200 8.790 0

EN10 3.930 5.350 5.890 5.990 6.720 7.710 0

EY
EY1 1638.000 9121.000 19,249.000 27,438.000 42,421.000 102,658.000 0
EY2 1.400 25.100 56.500 180.700 140.200 2572.000 0

ED
ED1 49.000 370.800 836.500 1442.300 2403.500 4820.000 1
ED2 71.000 84.000 89.000 88.490 93.000 100.000 0
ED3 1.880 3.930 5.450 5.354 6.700 8.740 0

TA
TA1 0.190 2.803 5.600 20.596 25.168 157.130 7
TA2 0.500 3.234 4.918 4.711 5.835 8.978 0
TA3 1.707 3.667 4.569 4.719 5.915 8.269 0

OU
OU1 0.000 0.000 0.000 9.481 4.750 285.000 7
OU2 87.000 729.000 2776.000 32,017.000 14,009.000 529,632.000 0

SI
SI1 18.000 933.200 3866.000 25,897.800 15,780.800 502,893.000 3
SI2 1.756 3.958 5.177 5.184 6.565 8.134 0
SI3 1.171 4.769 6.172 6.095 7.609 9.002 0

O.V., observed variables; Min, the minimum value; 25% Q, the 25% quantile; Median, the median value;
Mean, the mean value; 75% Q, the 75% quantile; Max, the maximum value; and Missing, the number of
missing observations.
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Furthermore, violin plots (Hintze and Nelson 1998) [30] are used to present the above
23 observed variables (as can be seen in Figure 2). As a combination of both box plots and
density plots, violin plots provide two kinds of information for each observed variable.
On the one hand, the length of each violin on the vertical axis provides the range of the
corresponding observed values. As in a box plot, the 25th, 50th and 75th percentiles of
each observed variable are calculated as the lower, median and upper hinge, and then
the smallest (largest) observation greater (less) than or equal to the lower (upper) hinge
− (+) 1.5 ∗ IQR is defined as the lower (upper) adjacent value.
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In Table 2, we find that EN2, EN3, EN4, EN7, ED1, TA1, OU1 and SI1 contain missing
data, and their missing rates are 17/61, 16/61, 15/61, 2/61, 1/61, 7/61, 7/61 and 3/61,
which equal 27.87%, 26.23%, 24.59%, 3.28%, 1.64%, 11.48%, 11.48% and 4.92%, respectively.
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The outliers are outside of the lower or upper adjacent values, which finally determine
the length of the vertical axis of each graph. On the other hand, the shape of each violin
on the horizontal axis presents the distribution of each observed variable in terms of the
variability and skewness, which is similar to a density plot. It should be noted that all
23 violin plots are not required to be placed in the same planes due to the differences of
measurement and scales among the different observed variables.

In Table 2, we find that EN2, EN3, EN4, EN7, ED1, TA1, OU1 and SI1 contain missing
data, and their missing rates are 17/61, 16/61, 15/61, 2/61, 1/61, 7/61, 7/61 and 3/61,
which equal 27.87%, 26.23%, 24.59%, 3.28%, 1.64%, 11.48%, 11.48% and 4.92%, respectively.
To present the raw distribution of the data, the missing data part of each observed variable
was removed before drawing each plot in Figure 2. However, concerning the quantile-type
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EEE model estimation, this may lose parts of the available information for completely
observed variables. Therefore, the median imputation is used to deal with missing observa-
tions before estimations. Then, the data is standardized through the data-preprocessing
methods, which was mentioned before.

4. Methodology
4.1. Quantile-Type EEE Model

The establishment of this quantile-type EEE model is based on structural equation
models (Bollen, 1989; Hair, et al., 2017) [31,32]. Therefore, under the framework of a classical
structural equation model, the EEE model can be expressed through Equations (3) and (4).

η
k
′ = γ

k
′
k
ξk + δ

k
′ (3)

Xpk
= λXpk

ξk + εXpk
, Yp

k′
= λYp

k′
η

k
′ + εYp

k′
(4)

Here, (3) is the EEE structural model, and (4) is the EEE measurement model. Both ξk
and ηk′ represent the environment and its effects, such as on the economy, education and
talents. The difference is, in this model, ξk represents the kth exogenous latent variable:
the environment. ηk′ represents the k

′
th endogenous latent variables, such as the economy,

education and talents. γ
k
′
k

is the path coefficient linking the kth exogenous latent variables

to the k
′
th endogenous latent variable with the error terms δ

k
′ .

We assume that δ
k
′ is a random measurement error variable with mean 0 and fixed

variance for the corresponding latent variable ξk. Xpk and Yp
k′

are observed variables for
the latent variables ξk and ηk′ , respectively. λXpk

and λYp
k′

represent the loading coefficients

linking the observed variables to latent variables with the error terms εXpk
and εYp

k′
. We

assume that εXpk
and εYp

k′
are random measurement errors, which have mean 0 and are

uncorrelated with their corresponding latent variables. It should be noted that, according
to the distinct feature of partial least squares, none of the strict assumptions about the
distributions of the random components δ

k
′ , εXpk

and εYp
k′

are needed.

Based on the above EEE model, the unknown path and loading coefficients γ
k
′
k
, λXpk

and λYp
k′

can be estimated through the most widely-used partial least squares (PLS) algo-

rithm due to its obvious advantages, including no assumptions about the data distribution
and independence. In this article, the PLS algorithm can be used as a comparison, which
will be discussed in the Methodology part. Furthermore, the EEE model is developed into
one kind of structural equation model in which both a path and loading coefficients can be
modified into a function of the quantile level (τ).

This article considers the following linear quantile regression (5) [33,34],

yi = xT
i β1(τ) + zT

i β2(τ) + εi, ∀τ ∈ (0, 1). (5)

where yi is the response, and xT
i and zT

i are covariates. β1(τ) and β2(τ) are quantile-specific
coefficients. εi is an independent and identically distributed error term with P(εi|xi, zi) = τ
for the τth quantile (0 < τ < 1). We assume that the covariates (x and z) contain the
constant 1; hence, the intercept term is not written out separately.

Quantile regression estimates β∗τ = (β1(τ), β2(τ))
T by solving

β̂QR
τ = argmin

n

∑
i=1

ϕτ

{
yi − xT

i β1 − zT
i β2

}
. (6)

where ϕτ(r) = r{τ − I(r < 0)} is the asymmetric L1 loss function in quantile regression.
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Thus, the quantile-type EEE model can be expressed as Equations (7) and (8). Specif-
ically, the quantile-type EEE model consists of two parts: a quantile-type EEE structural
model (7) and quantile-type EEE measurement model (8).

η
k
′ = γ

k
′
k
(τ)ξk + δ

k
′ (τ) (7)

Xpk
= λXpk

(τ)ξk + εXpk
(τ), Yp

k′
= λYp

k′
(τ)η

k
′ + εYp

k′
(τ) (8)

Here, ξk also represents the kth exogenous latent variable, and ηk′ represents the
k
′
th endogenous latent variables. Different from the classical structural equation model,

the monotonicity of the right-hand-side against τ is needed. That is to say, the quantile
estimation is appropriate only when the latent variables ξk and ηk are non-negative. Xpk

and Yp
k′

are observed variables for the latent variables ξk and ηk′ , respectively. γ
k
′
k
(τ)

is the path coefficient function of the quantile level (τ) linking the kth exogenous latent
variables to the k

′
th endogenous latent variable with the error terms δ

k
′ (τ).

We assume that δ
k
′ (τ) is a random measurement error variable with Q

(
δ

k
′ (τ)

)
= 0

and fixed variance for the corresponding latent variable ξk. The loading coefficients
function of the quantile level (τ) λXpk

(τ) and λYp
k′
(τ) link the observed variables to the

latent variables with the error terms εXpk
(τ) and εYp

k′
(τ). We assume that εXpk

(τ) and

εYp
k′
(τ) are random measurement errors with Q

(
εXpk

(τ)
)

= Q
(

εYp
k′
(τ)

)
= 0 and are

uncorrelated with their corresponding latent variables. It should be noted that, according
to the distinct feature of partial least squares, none of the strict assumptions about the
distributions of random components δ

k
′ (τ), εXpk

(τ) and εYp
k′
(τ) are needed.

Based on all the constructs and observed variables with the hypotheses about their
relations, the establishment of this environmental effect evaluation (EEE) model is based
on structural equation model theory. At length, the EEE model consists of two parts: the
EEE structural model and EEE measurement model. The distinct feature of this EEE model
is that both the structural model and measurement model contain quantile levels (denoted
as τ), which exploits quantile regression to investigate changes in the relations among
constructs and between constructs and the observed variables and, thus, overcomes the
classical exploration of only average effects.

Therefore, the paper proposes a quantile-type EEE model based on a quantile composite-
based path-modeling approach (Dolce et al., 2021; Davino et al., 2016; Zou et al., 2008) [18,35,36].
In practice, the quantile level τ is typically chosen to be evenly spread with sufficiently
dense grid points on (0, 1).

The quantile-type EEE structural model can be expressed as Equations (9)–(13),

EY = β1,1(τ)EN + δ1(τ) (9)

SI = β2,1(τ)EY + δ2(τ) (10)

OU = β3,1(τ)TA + δ3(τ) (11)

ED = β4,1(τ)EN + β4,2(τ)SI + δ4(τ) (12)

TA = β5,1(τ)EY + β5,2(τ)EN + β5,3(τ)ED + β5,4(τ)SI + δ5(τ) (13)

where the path coefficients vector B(τ) = (β1,1(τ), β2,1(τ), β3,1(τ), β4,1(τ), β4,2(τ), β5,1(τ),
β5,2(τ), β5,3(τ), β5,4(τ))

T links different constructs. The random error term vector ∆ =
(δ1(τ), δ2(τ), δ3(τ), δ4(τ), δ5(τ))

T has the mean vector (0, 0, 0, 0, 0)T , and all the random
error terms are uncorrelated with their constructs.
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The quantile-type EEE measurement model, which reflects the relations among dif-
ferent constructs and their observed variables at quantile level τ, can be expressed as
Equations (14)–(19),

ENj = λEN
j (τ)EN + εj

EN(τ) (14)

EYi = λEY
i (τ)EY + εi

EY(τ) (15)

EDl = λED
l (τ)ED + εl

ED(τ) (16)

TAm = λTA
m (τ)TA + εm

TA(τ) (17)

OUv = λOU
v (τ)OU + εv

OU(τ) (18)

SIk = λSI
k (τ)SI + εk

SI(τ) (19)

where Λ(τ) =
(

λEN
j (τ), λEY

i (τ), λED
l (τ), λTA

m (τ), λOU
v (τ), λSI

k (τ)
)T

is the loading coeffi-
cient vector linking each observed variable to its corresponding construct. Here, i = 1, 2,
j = 1, 2, ..., 10, l = 1, 2, 3, m = 1, 2, 3, v = 1, 2 and k = 1, 2, 3. The random error term
vector E =

(
εj

EN(τ), εi
EY(τ), εl

ED(τ), εm
TA(τ), εv

OU(τ), εk
SI(τ)

)T has the mean vector
(0, 0, 0, 0, 0, 0)T , and all the random error terms are uncorrelated with their constructs.

Therefore, I propose the quantile-type EEE model based on Equations (9)–(19) and do
not label the estimated coefficients (B(τ) and Λ(τ)) in Figure 3 for brevity. It should be
noted that, although the constructs cannot be directly observed and are formed by variables,
the arrows still go from construct to variables, which is consistent with the well-known
European customer satisfaction index (Askariazad et al., 2015) [37].
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Figure 3. Quantile-type EEE model. EN1, energy intensity; EN2, paper and cardboard recycling rate;
EN3, waste water treatment plants; EN4, water consumption intensity; EN5, CO2 emissions; EN6,
renewable energies; EN7, total biocapacity; EN8, sustainable development; EN9, pollution problems;
EN10, environmental laws; EY1, GDP per capita; EY2, government consumption; ED1, education
expenditure per capita; ED2, English proficiency; ED3, educational system; TA1, labor force; TA2,
researchers and scientists; TA3, brain drain; OU1, Nobel prizes; OU2, patent applications; SI1, total
expenditure on R&D; SI2, scientific research legislation; and SI3, intellectual property rights.

Figure 3. Quantile-type EEE model. EN1, energy intensity; EN2, paper and cardboard recycling rate;
EN3, waste water treatment plants; EN4, water consumption intensity; EN5, CO2 emissions; EN6,
renewable energies; EN7, total biocapacity; EN8, sustainable development; EN9, pollution problems;
EN10, environmental laws; EY1, GDP per capita; EY2, government consumption; ED1, education
expenditure per capita; ED2, English proficiency; ED3, educational system; TA1, labor force; TA2,
researchers and scientists; TA3, brain drain; OU1, Nobel prizes; OU2, patent applications; SI1, total
expenditure on R&D; SI2, scientific research legislation; and SI3, intellectual property rights.
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4.2. Quantile-Type Path-Modeling Algorithm
4.2.1. The Framework of the Quantile-Type Path-Modeling Algorithm

Essentially, the quantile-type path-modeling algorithm introduces quantile regression
into the framework of the classical partial least squares path-modeling algorithm [38–41].
The parameter estimation of the classical partial least squares path-modeling framework
follows a double approximation of the latent variables: external estimation and internal
estimation, which is also the foundation of the proposed quantile-type path-modeling
algorithm (which can be seen in Table 3).

Table 3. Double approximation procedure.

Phrase Description

External estimation
Latent variables are obtained as the product of

their corresponding block of
observed variables with the external weights

Internal estimation
Latent variables are obtained as the product of

their external estimations
with the internal weights

Based on Table 3, the quantile-type path-modeling algorithm is performed as follows.
To estimate the inner weights, we need to calculate the quantile correlation value between
each pair of latent variables’ external estimations or use a centroid scheme (that is, the sign
of the quantile correlation) to obtain the inner weights. In the external weight updating
procedure, the observed variables can be treated as the response variable of the latent
variables. The outer weights are computed estimating the quantile regressions. The weight
estimation is an iterative procedure between the external estimation and internal estimation.
The whole procedure iterates between the inner and outer approximation phases until
convergence of the outer vectors is achieved, i.e., until it reaches the maximum number of
iterations or until the change in the outer weights of two subsequent iterations is smaller
than a predefined stop criterion value at the same time.

4.2.2. Assessment Measures

Model assessment in the quantile-type EEE model is different from classical partial
least squares path modeling. In other words, the standard assessment measures (Hair et al.,
2019; Benitez et al., 2020) [42–44] cannot be directly applied. Based on pseudo − R2

(Koenker et al., 1999), Davino et al., (2016) and Dolce et al., (2021) have proposed new
quantile-type assessment measures [24,35,45].

For the inner model, pseudo− R2 can be considered as an indicator of the goodness
of fit to measure the explanatory power of the independent latent variables in expressing
dependent latent variables. For the outer model, Dolce et al., (2021) [35] has proposed new
quantile-type communality and redundancy indicators (denoted as Com(τ) and Red(τ),
respectively). In the quantile-type path-modeling background, communality indicates the
amount of the variance of the observed variables explained by the corresponding latent
variable, which can be expressed as Equation (20). communality indicates the amount
of the variance of the observed variables explained by the corresponding latent variable,
which can be expressed as Equation (20).

Redundancy measures the percent of variance of the observed variables in a dependent
block predicted from the corresponding explanatory latent variable, which can be written as
Equations (21) and (22). Equation (21) is for each observed variable of the dependent block,
while (22) is for a whole dependent block averaging the redundancies of the observed
variables within the block.

Com(τ)k =
1

pk
∑
pk

pseudo− R2(τ) (20)
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Red(τ)pk
= Com(τ)pk

pseudo− R2(τ)k (21)

Red(τ)k =
1

pk
∑
pk

Red(τ)pk
(22)

where pk denotes the number of observed variables of the kth block.

5. Results
5.1. Coefficient Estimations
5.1.1. Analysis of Environmental Effects Based on the Estimated Path Coefficients

Figure 4 displays the estimated path coefficients of the quantile-type EEE model at the
quantile levels 0.25, 0.50 and 0.75. It should be noted that these estimated path coefficients
are also presented as the raw estimation in Table 6. This indicates that the signs of the
estimated path coefficients satisfy all the theoretical hypotheses except for H5 and H8 at
certain quantile levels. As expected, the environment has a positive impact on the economy
(consistent with H1) and science and technology talent (consistent with H7), while the other
variables remain unchanged at all quantile levels (0.25, 0.50 and 0.75).
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Figure 4. The estimated path coefficients of the quantile-type EEE model at quantile levels 0.25, 0.50
and 0.75.

Table 4. The indirect effects for the environment and its effects for science and technology talent (TA)
and science and technology output (OU) at quantile levels 0.25, 0.50 and 0.75.

Path (Target: TA) 0.25 0.50 0.75 Path (Target: OU) 0.25 0.50 0.75

EN→EY→TA 0.305 0.427 0.507 EN→EY→TA→OU 0.000 0.029 0.021
EN→ED→TA −0.052 −0.039 −0.003 EN→ED→TA→OU 0.000 −0.003 0.000
EY→SI→TA 0.332 0.313 0.250 EY→SI→TA→OU 0.000 0.021 0.011
SI→ED→TA 0.117 0.175 −0.028 SI→ED→TA→OU 0.000 0.012 −0.001

− − − − EN→TA→OU 0.000 0.008 0.006
− − − − EY→TA→OU 0.001 0.042 0.026
− − − − SI→TA→OU 0.001 0.061 0.030
− − − − ED→TA→OU 0.000 0.013 −0.001

Table 4 represents the following two main findings. (1) From the perspective of
the environment’s impacts on science and technology talent (TA), on the one hand, the
environment (EN) has a relatively large and positive impact on science and technology
talent (TA) through the economy (EY) at all quantile levels (0.25, 0.50 and 0.75). The indirect
effects are 0.305, 0.427 and 0.507, respectively. On the other hand, the environment (EN)
has a relatively small but negative impact on science and technology talent (TA) through

Figure 4. The estimated path coefficients of the quantile-type EEE model at quantile levels 0.25, 0.50
and 0.75.

The economy positively affects science and technology talent (consistent with H2)
and scientific infrastructure (consistent with H4), while the environment and its other
effects remain unchanged at quantile levels 0.25 to 0.75. Science and technology talent has
a positive effect on science and technology output, while the environment and its other
effects remain unchanged (consistent with H3) at all quantile levels (0.25, 0.50 and 0.75).
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Scientific infrastructure positively affects science and technology talent (consistent
with H6) and education (consistent with H9), while the environment and its other effects
remain unchanged for quantile levels 0.25 to 0.75. At both quantile levels 0.25 and 0.50, the
environment has a negative impact on education (opposed to H8), which negatively effects
science and technology talent (opposed to H5) at quantile level 0.75. Their corresponding
estimated path coefficients are −0.405, −0.208 and −0.031, respectively.

In Figure 4, in this quantile-type EEE model, no matter which quantile level is chosen,
the environment (EN) always has a relatively large and positive impact on the economy
(EY). The estimated path coefficients are 0.518, 0.697 and 0.806 at the quantile levels 0.25,
0.50 and 0.75, respectively. Furthermore, the impacts of the environment on the economy
increase from lower quantile levels to higher quantile levels.

Compared with other relations regarding the environment and its effects, the economy
(EY) always has a relatively large and positive impact on science and technology talent
(TA) with the estimated path coefficients equaling 0.589, 0.612 and 0.629 at quantile levels
0.25, 0.50 and 0.75, respectively. Scientific infrastructure (SI) has almost the largest effects
on both science and technology talent (TA) and education (ED). For scientific infrastructure
(SI), the estimated path coefficients are 0.938, 0.895 and 0.711 for science and technology
talent (TA) and 0.911, 0.928 and 0.899 for education (ED) at the quantile levels 0.25, 0.50
and 0.75, respectively.

Based on the above analysis, it can be concluded that the quantile-type path-modeling
algorithm does provide different findings for the environment and its effects at different
quantiles from the perspective of structural relations. As expected, the quantile-type EEE
model overcomes the classical exploration of only average effects and exploits quantile
regression to investigate the entire distribution of outcome variables and changes in the
relations among the environment and its effects.

Another finding is that all the analyses are based on path coefficients, which are direct
measures reflecting the relations between each pair of constructs. In other words, there also
exist indirect effects in the quantile-type EEE structural model, such as the environment
(EN)’s impact on science and technology output (OU) through science and technology
talent (TA). According to the features of the quantile-type EEE, it can be found that the
indirect effects may only exist among two kinds of relations, where the target construct is
science and technology output (OU) or science and technology talent (TA). The indirect
effects can be calculated by the products of all corresponding path coefficients. The indirect
effects regarding the environment and its effects are presented in Table 4.

Table 4. The indirect effects for the environment and its effects for science and technology talent (TA)
and science and technology output (OU) at quantile levels 0.25, 0.50 and 0.75.

Path (Target: TA) 0.25 0.50 0.75 Path (Target: OU) 0.25 0.50 0.75

EN→EY→TA 0.305 0.427 0.507 EN→EY→TA→OU 0.000 0.029 0.021
EN→ED→TA −0.052 −0.039 −0.003 EN→ED→TA→OU 0.000 −0.003 0.000
EY→SI→TA 0.332 0.313 0.250 EY→SI→TA→OU 0.000 0.021 0.011
SI→ED→TA 0.117 0.175 −0.028 SI→ED→TA→OU 0.000 0.012 −0.001

− − − − EN→TA→OU 0.000 0.008 0.006
− − − − EY→TA→OU 0.001 0.042 0.026
− − − − SI→TA→OU 0.001 0.061 0.030
− − − − ED→TA→OU 0.000 0.013 −0.001

Table 4 represents the following two main findings. (1) From the perspective of
the environment’s impacts on science and technology talent (TA), on the one hand, the
environment (EN) has a relatively large and positive impact on science and technology
talent (TA) through the economy (EY) at all quantile levels (0.25, 0.50 and 0.75). The indirect
effects are 0.305, 0.427 and 0.507, respectively. On the other hand, the environment (EN)
has a relatively small but negative impact on science and technology talent (TA) through
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education (ED) at all quantile levels (0.25, 0.50 and 0.75). The indirect effects are −0.052,
−0.039 and −0.003, respectively.

(2) From the perspective of the environment’s impacts on science and technology
output (OU), due to the tiny estimated path coefficients between science and technology
talent (TA) and science and technology output (OU), the indirect effects are small, especially
at quantile level 0.25. Specifically, the indirect effects for path EN → EY → TA→ OU are
0.000, 0.029 and 0.021 at quantile levels 0.25, 0.50 and 0.75, respectively. The indirect effects
for path EN → ED → TA→ OU are 0.000, −0.003 and 0.000 at quantile levels 0.25, 0.50
and 0.75, respectively. The indirect effects for path EN → TA→ OU are 0.000, 0.008 and
0.006 at quantile levels 0.25, 0.50 and 0.75, respectively.

In this article, both direct and indirect effects are investigated based on the estimates
of the quantile-type EEE model. We further present that the combination of both can be
considered to cover the comprehensive effects from the environment to other constructs.
For brevity, only the comprehensive effects from the environment are presented, which
focuses on the main purpose of this article. For those who are interested in the effects from
other constructs in this EEE model, it is easy to calculate the corresponding results, and
thus they are omitted here but available upon request from the authors.

Concerning the comprehensive effects from the environment, there exist two kinds
of paths: One is from the environment (EN) to science and technology talent (TA), which
consists of { EN → TA }, { EN → ED → TA } and { EN → EY → TA }. The other path is
from the environment (EN) to science and technology output (OU), which consists of
{ EN → TA→ OU }, { EN → ED → TA→ OU } and { EN → EY → TA→ OU }. Table 5
displays the comprehensive effects (EC) from the environment at quantile levels 0.25, 0.50
and 0.75.

Table 5. The comprehensive effects (EC) from the environment at quantile levels 0.25, 0.50 and 0.75.

0.25 0.5 0.75
Source Medium Target ED EI EC ED EI EC ED EI EC

- 0.282 - 0.121 - 0.151 -
EN ED TA - −0.052 0.535 - −0.039 0.509 - −0.003 0.655

EY - 0.305 - 0.427 - 0.507

TA - 0.000 - 0.008 - 0.006
EN ED→TA OU - 0.000 0.000 - −0.003 0.034 - 0.000 0.027

EY→TA - 0.000 - 0.029 - 0.021

ED, direct effects from the environment; and EI, indirect effects from the environment.

5.1.2. Analysis of Environmental Effects Based on Estimated Loading Coefficients

In this part, the estimated loading coefficients for the quantile-type EEE measurement
model are represented at the quantile levels 0.25, 0.50 and 0.75 (as seen in Figure 5). It
should be noted that these estimated loading coefficients are also presented as the raw
estimations in Table 7.
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equaling {1.048, 1.021} at quantile level 0.25, {0.999, 0.979} at quantile level 0.50 and {0.943,
0.922} at quantile level 0.75, respectively. The estimated loading coefficients between science
and technology talent (TA) and researchers and scientists (TA2) or brain drain (TA3) are rel-
atively large, equaling {0.966, 0.948} at quantile level 0.25, {0.959, 0.866} at quantile level 0.50
and {0.996, 0.732} at quantile level 0.75, respectively. We also find similar conclusions for
the estimated loading coefficients for {EY→EY1}, {ED→ED1}, {ED→ED2} and {ED→ED3}
at all quantile levels (0.25, 0.50 and 0.75).
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Figure 5. The estimated loading coefficients of the quantile-type EEE model at quantile levels 0.25,
0.50 and 0.75.

From the perspective of each quantile level, different conclusions are found as follows:
(1) At quantile level 0.25, the estimated loading coefficient between the environment

(EN) and water consumption intensity (EN4) has a relatively large absolute value but is
negative, equaling −0.376. Similar conclusions can be obtained for the estimated loading
coefficients for {OU→OU2}.

(2) At quantile level 0.50, the estimated loading coefficients between the environment
(EN) and paper and cardboard recycling rate (EN2), science and technology output (OU)
and Nobel prizes (OU1) are relatively large, equaling 0.401 and 1.018, respectively. The
environment (EN) has relatively large but negative impacts on both renewable energies
(EN6) and water consumption intensity (EN4) with estimated loading coefficients of−0.252
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From the perspective of all quantile levels (0.25, 0.50 and 0.75), the following conclu-
sions can be found:

(1) The estimated loading coefficients between the environment (EN) and pollution
problems (EN9), environmental laws (EN10), sustainable development (EN8) and waste
water treatment plants (EN3) are positive and relatively large, equaling {0.935, 0.842,
0.920, 0.748} at quantile level 0.25, {0.831,0.764,0.731,0.443} at quantile level 0.50 and
{0.901,0.777,0.605,0.461} at quantile level 0.75, respectively. The estimated loading coefficient
between the environment (EN) and energy intensity (EN1) is negative, and its absolute
value is relatively large, equaling −0.242, −0.385 and −0.713 at quantile levels 0.25, 0.50
and 0.75, respectively.

(2) The estimated loading coefficients between scientific infrastructure (SI) and sci-
entific research legislation (SI2) or intellectual property rights (SI3) are relatively large,
equaling {1.048, 1.021} at quantile level 0.25, {0.999, 0.979} at quantile level 0.50 and {0.943,
0.922} at quantile level 0.75, respectively. The estimated loading coefficients between science
and technology talent (TA) and researchers and scientists (TA2) or brain drain (TA3) are rel-
atively large, equaling {0.966, 0.948} at quantile level 0.25, {0.959, 0.866} at quantile level 0.50
and {0.996, 0.732} at quantile level 0.75, respectively. We also find similar conclusions for
the estimated loading coefficients for {EY→EY1}, {ED→ED1}, {ED→ED2} and {ED→ED3}
at all quantile levels (0.25, 0.50 and 0.75).



Sustainability 2023, 15, 4399 15 of 21

From the perspective of each quantile level, different conclusions are found as follows:
(1) At quantile level 0.25, the estimated loading coefficient between the environment

(EN) and water consumption intensity (EN4) has a relatively large absolute value but is
negative, equaling −0.376. Similar conclusions can be obtained for the estimated loading
coefficients for {OU→OU2}.

(2) At quantile level 0.50, the estimated loading coefficients between the environment
(EN) and paper and cardboard recycling rate (EN2), science and technology output (OU)
and Nobel prizes (OU1) are relatively large, equaling 0.401 and 1.018, respectively. The
environment (EN) has relatively large but negative impacts on both renewable energies
(EN6) and water consumption intensity (EN4) with estimated loading coefficients of−0.252
and −0.421, respectively. Similar conclusions can be found for the estimated loading
coefficients for {TA→TA1}.

(3) At quantile level 0.75, the estimated loading coefficients between the environment
(EN) and paper and cardboard recycling rate (EN2), total biocapacity (EN7) or renewable
energies (EN6) are relatively large, equaling 0.533, 0.311 and 0.218, respectively. We can also
find similar conclusions for the estimated loading coefficients for {OU→OU2},{OU→OU1},
{EY→EY2} and {TA→TA1}(with negative estimated loading coefficients).

5.2. Statistical Performance Investigations

To investigate the performance of the quantile-type path-modeling algorithm in the
EEE model background, 200 bootstraps were conducted to calculate the standard errors,
p-values and 95% confidence intervals of the estimated path and loading coefficients [46].
Table 6 displays the standard errors, p-values and 95% confidence intervals of the estimated
path coefficients. Table 7 shows those of the estimated loading coefficients.

Table 6. Raw estimation (Raw), standard error (Std), P-value (P), 95 % lower confidence limit (Low)
and 95 % upper confidence limit (Upp) of the estimated path coefficients at quantile levels 0.25, 0.50
and 0.75.

τ Path Raw Std P Low Upp

0.25

EN→EY 0.518 0.133 0.000 0.252 0.783
EY→SI 0.354 0.212 0.101 −0.071 0.779

EN→ED −0.405 0.178 0.027 −0.761 −0.049
SI→ED 0.911 0.199 0.000 0.513 1.309

EN→TA 0.282 0.113 0.016 0.055 0.509
EY→TA 0.589 0.202 0.005 0.184 0.994
SI→TA 0.938 0.198 0.000 0.543 1.334

ED→TA 0.128 0.160 0.427 −0.193 0.449
TA→OU 0.001 0.004 0.866 −0.007 0.009

0.50

EN→EY 0.697 0.067 0.000 0.564 0.830
EY→SI 0.350 0.165 0.038 0.020 0.680

EN→ED −0.208 0.179 0.252 −0.567 0.152
SI→ED 0.928 0.154 0.000 0.620 1.236

EN→TA 0.121 0.154 0.434 −0.187 0.429
EY→TA 0.612 0.172 0.001 0.269 0.956
SI→TA 0.895 0.171 0.000 0.552 1.238

ED→TA 0.189 0.186 0.316 −0.185 0.562
TA→OU 0.068 0.022 0.003 0.024 0.112

0.75

EN→EY 0.806 0.094 0.000 0.618 0.993
EY→SI 0.351 0.142 0.016 0.067 0.636

EN→ED 0.095 0.195 0.629 −0.296 0.486
SI→ED 0.899 0.150 0.000 0.599 1.199

EN→TA 0.151 0.161 0.353 −0.172 0.474
EY→TA 0.629 0.177 0.001 0.274 0.984
SI→TA 0.711 0.235 0.004 0.241 1.181

ED→TA −0.031 0.277 0.912 −0.586 0.525
TA→OU 0.042 0.107 0.694 −0.172 0.256
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Table 7. Raw estimation (Raw), standard error (Std), P-value (P), 95 % lower confidence limit (Low)
and 95 % upper confidence limit (Upp) of the estimated loading coefficients at quantile levels 0.25,
0.50 and 0.75.

0.25 0.5 0.75

Raw Std P Low Upp Raw Std P Low Upp Raw Std P Low Upp

EN→EN1 −0.242 0.078 0.003 −0.399 −0.086 −0.385 0.124 0.003 −0.633 −0.137 −0.713 0.184 0.000 −1.081 −0.345
EN→EN2 0.061 0.253 0.811 −0.445 0.567 0.401 0.088 0.000 0.226 0.576 0.533 0.127 0.000 0.279 0.786
EN→EN3 0.748 0.235 0.002 0.279 1.218 0.443 0.140 0.003 0.162 0.723 0.461 0.120 0.000 0.221 0.700
EN→EN4 −0.376 0.106 0.001 −0.588 −0.165 −0.421 0.056 0.000 −0.534 −0.308 0.000 0.155 1.000 −0.309 0.309
EN→EN5 −0.004 0.007 0.546 −0.018 0.009 −0.040 0.025 0.114 −0.090 0.010 −0.100 0.056 0.079 −0.211 0.012
EN→EN6 −0.100 0.115 0.391 −0.330 0.131 −0.252 0.183 0.175 −0.619 0.116 0.218 0.222 0.330 −0.226 0.661
EN→EN7 −0.010 0.051 0.853 −0.112 0.093 −0.061 0.115 0.600 −0.290 0.169 0.311 0.231 0.184 −0.152 0.774
EN→EN8 0.920 0.134 0.000 0.651 1.188 0.731 0.132 0.000 0.467 0.995 0.605 0.102 0.000 0.400 0.809
EN→EN9 0.935 0.079 0.000 0.776 1.093 0.831 0.066 0.000 0.699 0.964 0.901 0.066 0.000 0.770 1.033
EN→EN10 0.842 0.102 0.000 0.638 1.047 0.764 0.129 0.000 0.507 1.021 0.777 0.086 0.000 0.605 0.950

EY→EY1 1.009 0.009 0.000 0.991 1.026 1.012 0.002 0.000 1.010 1.015 1.030 0.003 0.000 1.025 1.035
EY→EY2 0.024 0.021 0.264 −0.019 0.066 0.046 0.048 0.347 −0.051 0.142 0.305 0.252 0.230 −0.198 0.809

SI→SI1 0.023 0.009 0.012 0.005 0.040 0.044 0.023 0.058 −0.002 0.089 0.092 0.114 0.422 −0.136 0.320
SI→SI2 1.048 0.036 0.000 0.976 1.120 0.999 0.039 0.000 0.921 1.076 0.943 0.037 0.000 0.869 1.016
SI→SI3 1.021 0.039 0.000 0.944 1.098 0.979 0.046 0.000 0.886 1.072 0.922 0.040 0.000 0.842 1.001

ED→ED1 0.688 0.110 0.000 0.468 0.908 0.826 0.091 0.000 0.643 1.008 0.903 0.089 0.000 0.726 1.080
ED→ED2 0.881 0.113 0.000 0.654 1.107 0.673 0.120 0.000 0.433 0.914 0.565 0.084 0.000 0.396 0.734
ED→ED3 0.992 0.082 0.000 0.828 1.156 0.916 0.077 0.000 0.762 1.069 0.841 0.068 0.000 0.705 0.977

TA→TA1 −0.004 0.029 0.883 −0.062 0.054 −0.259 0.095 0.008 −0.448 −0.070 −0.362 0.159 0.026 −0.679 −0.044
TA→TA2 0.966 0.084 0.000 0.798 1.133 0.959 0.053 0.000 0.854 1.065 0.996 0.064 0.000 0.868 1.125
TA→TA3 0.948 0.061 0.000 0.827 1.069 0.866 0.053 0.000 0.761 0.972 0.732 0.105 0.000 0.522 0.942

OU→OU1 0.000 0.055 1.000 −0.110 0.110 1.018 0.064 0.000 0.891 1.146 1.028 0.028 0.000 0.972 1.084
OU→OU2 1.008 0.000 0.000 1.008 1.008 −0.004 0.541 0.995 −1.086 1.079 1.125 1.374 0.416 −1.624 3.874

Table 6 consists of three layers in total, which display the standard errors, p-value, 95%
lower confidence limit and 95 % upper confidence limit of the corresponding estimates in
the path coefficients, respectively. Each layer represents those corresponding results at each
quantile level.

As expected, at different quantile levels, we find different conclusions regarding
the standard errors, p-values and 95% confidence intervals. From the perspective of the
standard errors, almost all the path coefficient estimators have relatively small standard
errors (less than 0.200) except for EY → SI , EY → TA and SI → TA at quantile level 0.25
and SI → TA and ED → TA at quantile level 0.75. From the perspective of the P-values,
the estimated path coefficients for EN → EY , SI → ED , EY → TA and SI → TA have
obviously small p-values compared with 0.050 at all quantile levels (0.25, 0.50 and 0.75).

In addition, the estimated path coefficients for EN → ED and EN → TA have obvi-
ously small p-values compared with 0.050 at quantile level 0.25, and so do TA→ OU at
quantile level 0.50 and EY → SI at quantile level 0.75. It should be noted that, although the
p-values for other estimated path coefficient estimators are relatively larger than 0.05, the
relations among the corresponding constructs in the quantile-type EEE structural model
are kept due to their importance in supporting environmental effect evaluation in the
real world.

In Table 7, most standard errors of the estimated loading coefficients are relatively
small at quantile levels 0.25, 0.50 and 0.75 except for { EN → EN2} and { EN → EN3} at
quantile level 0.25, {OU → OU2} at quantile level 0.50 and { EN → EN6}, { EN → EN7},
{ EY → EY2} and {OU → OU2} at quantile level 0.75. These standard errors are relatively
large (more than 0.200). The p-values for { EN → EN5}, { EN → EN6}, { EN → EN7} and
{ EY → EY2} are larger than 0.050 at all quantile levels (0.25, 0.50 and 0.75).

At quantile level 0.25, the p-values for { EN → EN2}, {OU → OU1} and { TA→ TA1}
are larger than 0.050. At quantile level 0.50, the p-value for {OU → OU2} is larger than
0.050. At quantile level 0.75, the p-values for { EN → EN4}, {OU → OU2} and { SI → SI1}
are larger than 0.050. It should be noted that, although the p-values for these estimated
loading coefficient estimators are relatively larger than 0.05, we still maintain the relations
among the constructs and their corresponding observed variables in the quantile-type EEE
measurement model due to their importance in supporting environmental effect evaluation
in the real world.
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5.3. Model Assessment and Validation

This part investigates the assessment of the internal and external estimation parts of
the the quantile-type EEE model. To accomplish the above analysis concerns in the quantile
background, a series of assessment assignments were performed separately at each quantile
level. Regarding the measurement model, the amount of variability of the endogenous
constructs explained by their explanatory constructs is measured by the Pseudo.R2 results.

A synthesis of the evaluations regarding the whole inner model can be obtained
by the average of all the Pseudo.R2 results. The evaluation of endogenous blocks also
covers the external part of the model through the Redundancy measures, expressing the
percentage of the variance of the observed variables in the endogenous blocks, as predicted
from explanatory constructs. The averages of the observed variable redundancies of the
endogenous blocks can be denoted as RedundancyBlock.

The communality values for each block, related to each observed variable and to the
whole block, are stored in Communality and CommunalityBlock, respectively. We present
the Pseudo.R2 of the quantile-type EEE model at the quantile levels 0.25, 0.50 and 0.75 in
Table 8 and the Redundancy and Communality of the quantile-type EEE model at quantile
levels 0.25, 0.50 and 0.75 in Tables 9 and 10, respectively.

Table 8 represents the Pseudo.R2 for each endogenous construct at each quantile level.
Clearly, at all quantile levels, only OU has very tiny Pseudo.R2 values, which illustrates that
its unique explanatory construct TA provides very limited contributions to the explanation
of OU. Compared with other endogenous constructs, it can be understood that OU is
only directly affected by TA. The limited number of selected factors may lead to the tiny
Pseudo.R2 values. From the perspective of each quantile of interest, the explanatory power
of its exogenous variables is greater in the group of countries with middle- and high-level
economic (EY) conditions.

The same conclusions can be found for SI, ED, TA and OU. For the synthesis of the
evaluations regarding the whole inner model, those who are interested can calculate the
average of all the Pseudo.R2 values at each quantile level, which can be seen in the last
column of Table 8.

Table 8. Pseudo.R2 of the quantile-type EEE model at quantile levels 0.25, 0.50 and 0.75.

EY SI ED TA OU Average of
Pseudo.R2

Pseudo.R2
0.25 0.314 0.295 0.501 0.556 0.000 0.333
0.50 0.433 0.387 0.572 0.603 0.041 0.407
0.75 0.403 0.372 0.636 0.604 0.002 0.403

Table 9. Redundancy of the quantile-type EEE model at quantile levels 0.25, 0.50 and 0.75.

SI 0.25 0.50 0.75 TA 0.25 0.50 0.75 ED 0.25 0.50 0.75

SI1 0.004 0.009 0.002 TA1 0.000 0.045 0.048 ED1 0.184 0.303 0.380
SI2 0.235 0.313 0.297 TA2 0.328 0.387 0.374 ED2 0.186 0.177 0.215
SI3 0.234 0.301 0.286 TA3 0.345 0.315 0.284 ED3 0.290 0.321 0.356

SIBlock 0.158 0.208 0.195 TABlock 0.225 0.249 0.235 EDBlock 0.220 0.267 0.317

EY 0.25 0.50 0.75 OU 0.25 0.50 0.75 - - - -

EY1 0.302 0.425 0.387 OU1 0.000 0.034 0.002 - - - -
EY2 0.002 0.004 0.014 OU2 0.000 0.000 0.000 - - - -

EYBlock 0.152 0.215 0.200 OUBlock 0.000 0.017 0.001 - - - -

SIBlock and RedundancyBlock for SI and its block of observed variables; TABlock and RedundancyBlock for TA and its
block of observed variables; EDBlock and RedundancyBlock for ED and its block of observed variables; EYBlock and
RedundancyBlock for EY and its block of observed variables; and OUBlock and RedundancyBlock for OU and its block
of observed variables.
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Table 10. Communality of the quantile-type EEE model at quantile levels 0.25, 0.50 and 0.75.

0.25 0.50 0.75 0.25 0.50 0.75

EN1 0.163 0.167 0.206 EY1 0.964 0.981 0.961
EN2 0.005 0.187 0.162 EY2 0.006 0.010 0.033
EN3 0.216 0.205 0.130 EYBlock 0.485 0.496 0.497
EN4 0.158 0.208 0.000 ED1 0.368 0.530 0.598
EN5 0.003 0.013 0.034 ED2 0.372 0.309 0.338
EN6 0.019 0.018 0.021 ED3 0.579 0.561 0.559
EN7 0.001 0.001 0.069 EDBlock 0.440 0.467 0.498
EN8 0.326 0.284 0.318 TA1 0.000 0.075 0.079
EN9 0.573 0.592 0.673 TA2 0.591 0.641 0.619

EN10 0.463 0.412 0.446 TA3 0.621 0.523 0.471
ENBlock 0.193 0.209 0.206 TABlock 0.404 0.413 0.390

SI1 0.015 0.024 0.006 OU1 0.000 0.820 0.903
SI2 0.795 0.809 0.799 OU2 1.000 0.001 0.100
SI3 0.795 0.779 0.770 OUBlock 0.500 0.411 0.501

SIBlock 0.535 0.537 0.525 - - - -

ENBlock and CommunalityBlock for EN and its block of observed variables; SIBlock and CommunalityBlock for SI and its
block of observed variables; TABlock and CommunalityBlock for TA and its block of observed variables; EDBlock and
CommunalityBlock for ED and its block of observed variables; EYBlock and CommunalityBlock for EY and its block of
observed variables; and OUBlock and CommunalityBlock for OU and its block of observed variables.

In Table 9, we find that, from the perspective of the external part of the quantile-type
EEE model, different Redundancy values measure different percents of the variance of
the observed variables in their corresponding endogenous blocks that are predicted from
the explanatory constructs related to the endogenous constructs SI, TA, ED, EY and OU.
From the perspective of each quantile of interest, the Redundancy is greater in the group of
countries with middle-quantile-level scientific infrastructure (SI) or science and technology
output (OU) conditions.

The Redundancy is greater in the group of countries with the highest education (ED)
conditions. From the perspective of RedundancyBlock, the Redundancy is greater in the
group of countries with middle-quantile-level scientific infrastructure (SI) or science and
technology output (OU) conditions. RedundancyBlock is also greater in the group of coun-
tries with the highest education (ED) conditions, while, for other constructs, it is greater in
the group of countries with middle-quantile-level conditions.

Table 10 displays that, at all quantile levels (0.25, 0.50 and 0.75), the variance of EN9 is
explained most by its corresponding construct EN when compared with the other observed
variables. The variance of SI2 is explained most by its corresponding construct SI when
compared with the other observed variables. The variance of EY1 is explained most by its
corresponding construct EY when compared with the other observed variable EY2.

For ED, TA and OU, the conclusions are different at each quantile level. The variance
of ED3 is explained most by its corresponding construct ED when compared with the other
observed variables at quantile levels 0.25 and 0.50, while the variance of ED1 is explained
most by its corresponding construct ED when compared with the other observed variables
at quantile level 0.75. The variance of TA2 is explained most by its corresponding construct
TA when compared with other the observed variables at quantile levels 0.50 and 0.75, while
the variance of TA3 is explained most by its corresponding construct TA when compared
with the other observed variables at quantile level 0.25.

The variance of OU1 is explained most by its corresponding construct OU when
compared with the other observed variables at quantile levels 0.50 and 0.75, while the
variance of OU2 is explained most by its corresponding construct OU when compared
with the other observed variable OU1 at quantile level 0.25. From the perspective of
CommunalityBlock, which can be calculated for each block using the average of the observed
variable Communality, there do not exist obvious differences in the block of each construct
at the different quantile levels.
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6. Discussions

This article focused on investigating environmental effect evaluation from the per-
spective of qualitative analysis using a quantile-type path model and algorithm. The envi-
ronment affects many things, including the economy, education, science and technology
talent, scientific infrastructure and science and technology output. Therefore, I proposed
the quantile-type EEE model and applied a quantile-type path-modeling algorithm under
the premise of nine theoretical research hypotheses.

The investigations showed that the environment had indispensable direct impacts
on the economy, education and science and technology talent and had indirect effects
on scientific infrastructure and science and technology output. Due to the advantages of
quantile regression, the quantile-type EEE model and path-modeling algorithm overcame
the classical exploration of only average effects and instead captured different relations
regarding the environment and its effects at the quantiles of interest.

In the future, additional investigations will be conducted to further clarify these findings,
and more constructs will be introduced into the model to deeply investigate the effects of
the environment. In this case, the investigation on only the environmental effects may not
be sufficient, and environmental factors will be considered at the same time. When both the
environmental effects and factors become dynamic over time and when the coefficients of
the EEE model vary, more promising statistical models and algorithms are greatly needed
(Fan et al., 2008; Chiou et al., 2012; Cheng et al., 2022; Wei et al., 2022) [47–50].

Another potential direction is establishing a comprehensive indicator based on a new
kind of environmental-effects model using a hierarchical latent-variable model. Specifi-
cally, environmental effects will be evaluated through certain sub-effects or dimensions.
Furthermore, other kinds of path-modeling algorithms considering more complex model
estimations and applications should be investigated in near future [51–54].
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