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Abstract: Forecasts of corporate defaults are used in various fields across the economy. Several
recent studies attempt to forecast corporate bankruptcy using various machine learning techniques.
We collected financial information on 13 variables of 1020 companies listed on the KOSPI and
KOSDAQ to capture the possibility of corporate bankruptcy. We propose a data processing method
for small-sample domestic corporate financial data. We investigate the case of random sampling of
non-bankrupt companies versus sampling non-bankrupt companies based on approximate entropy
and optimized threshold based on AUC to address the imbalance between the number of bankrupt
companies and the number of non-bankrupt companies. We compare the performance measures
of corporate bankruptcy prediction models for the small sample data structured in two ways and
the full dataset. The experimental results of this study contribute to the selection of an appropriate
corporate bankruptcy prediction model.

Keywords: corporate bankruptcy; bankruptcy prediction; performance comparison; imbalanced
financial data

1. Introduction

Many sectors of the economy use predictions of corporate bankruptcy. A bankruptcy
prediction model allows companies to diagnose the current state and establish strategies
and management to operate the business more stably by managing key indicators that
affect its bankruptcy risk. It also allows investors to establish investment strategies and
improve their portfolios and governments to establish policies to improve macroeconomic
soundness and financial regulatory policies.

Several recent studies use various methods to predict corporate bankruptcy. In partic-
ular, since the 1990s, computational economics focused on predicting corporate bankruptcy
with artificial neural networks [1–10].

Barboza et al. [3] compare machine learning models with traditional models for
bankruptcy prediction and show that machine learning models had 10% better performance
in accuracy on average. Specific machine learning bankruptcy prediction models include
classification models such as support vector machines (SVM), logistic regression (LR),
k-nearest neighbors (k-NN), decision tree (DT), and random forest (RF), and time series
models such as recurrent neural network (RNN) and long short-term memory (LSTM).
These models are widely used as consumer bankruptcy prediction models and corporate
bankruptcy prediction models [11–14].

Classification is a supervised learning technique to conduct predictive analytics with a
categorical outcome, whether binary or multiclass. Much current research concentrates on
classification using several algorithms from basic to advanced, such as logistic regression,
discriminant analysis, Naïve Bayes, decision tree, random forest, support vector machine,
neural network, and so on [15]. These are well developed and successfully applied to
many application domains. However, the majority of supervised learning techniques were
developed for balanced class distribution, leaving imbalanced class distribution relatively
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neglected. For this reason, many researchers seek to address the imbalance between the
number of bankrupt companies and the number of non-bankrupt companies.

Kim et al. [7] use RNN and LSTM models to predict bankruptcy and compare their
performance with other classification models, including of SVM, LR, and RF. From experi-
ments, Kim et al. [7] demonstrate that the RNN and LSTM models outperformed in terms
of accuracy, precision, recall, and AUC, using the monthly financials from the Compustat
North America Dataset for about 45,472 non-financial firms for January 2007 to December
2019. Since 2057 of the firms went bankrupt, the authors had a large amount of monthly
financial information on the bankrupt companies and thus had a sufficient training dataset
for the financial information of the bankrupt companies for time series models such as
RNN and LSTM. As a balanced classification, accuracy may be the unbiased metric for
evaluation. Therefore, a corporate bankruptcy prediction model suitable for unbalanced
corporate financial data is necessary.

In this study, we propose a random small sampling method of non-bankrupt compa-
nies and a method of small sampling of companies representing non-bankrupt companies
based on approximate entropy to improve corporate bankruptcy prediction performance
for imbalanced corporate financial data. To deal with the imbalanced class, we also propose
an optimal threshold method to improve AUC performance even when considering the
imbalanced total dataset. The optimal threshold method proposed in this study applies the
concept of the anomaly score defined in [16] to corporate bankruptcy prediction models. We
provide experimental results to analyze the effectiveness of models for predicting corporate
bankruptcy for imbalanced corporate financial information in Section 3.

To derive these results, we established the following research questions:

� Research question 1: How can we derive data sampling methods that improve the
performance of corporate bankruptcy prediction models for imbalanced corporate
financial information?

� Research question 2: How can we derive an optimal threshold technique that improve
AUC performance even when considering the imbalanced corporate financial information?

In order to solve the above two research questions, the research results were derived
according to the research process as shown in Figure 1.
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2. Data and Methods
2.1. Data and Sampling
2.1.1. Data

We collected the 13 financial information items for about 1020 companies listed on
the Korea Composite Stock Price Index (KOSPI) and Korean Securities Dealers Automated
Quotations (KOSDAQ) from 2012 to 2021. As 20 companies went bankrupt, it is not possible
to build a sufficient training dataset for the RNN and LSTM time series models. Table 1
summarizes the items collected for this sample, excluding the parent company equity
holder item. The corporate financial information in Table 1 corresponds to the criteria
that characterize bankrupt and non-bankrupt companies [2]. Cha and Kang [2] conducted
a multivariate discriminant analysis to select the 29 variables like in Appendix A that
correspond to the criteria characterizing bankrupt and non-bankrupt companies from a
set of continuous independent variables of financial information. After calculating the
correlation coefficient of these 29 variables to create highly correlated variable groups, we
conducted a t-test to detect statistically significant differences between the population mean
of bankrupt and non-bankrupt companies within each variable group. Table 1 presents the
resulting 14 variables with the lowest p-values. We collected the 13 financial information
items from FnGuide through the FnDB Navigator.

Table 1. Financial information collected for each sample company (excluding the parent company
equity holder item. Source: [2]).

Financial Information t-Test p-Value

Total assets 2.33 × 10−5

Parent company equity holder 3.59 × 10−4

Intangible assets ratio 4.84 × 10−2

Equity capital ratio 1.48 × 10−20

Debt ratio 9.63 × 10−6

Cash flows/total liabilities 2.23 × 10−8

Total assets growth rate 2.88 × 10−14

Operating revenue/operating expense 6.71 × 10−13

Gross margin 2.45 × 10−4

ROA (income from continuing operations before tax) 1.79 × 10−9

ROA (operating profit) 2.06 × 10−10

ROE (income from continuing operations before tax) 2.89 × 10−5

ROE (operating profit) 2.52 × 10−2

Total debt turnover ratio 5.68 × 10−27

Among the 1020 listed companies, we define those delisted between 2012 and 2021 as
bankrupt and used the financial data of the 20 bankrupt companies and 1000 non-bankrupt
companies as the input for the LSTM, LR, k-NN, DT, and RF bankruptcy prediction models.
To test bankruptcy prediction performance while preventing overfitting in the models
caused by the data of non-bankrupt companies due to the small number of bankrupt
companies, we conducted an experiment using the data of all companies, a subsample of
10 bankrupt companies, and a subsample of 20 non-bankrupt companies for the training
dataset and test dataset. Table 2 summarizes the collected financial information configured
as the input and label data of the model. Figure 2 shows the input data and label data of LR,
k-NN, DT, and RF bankruptcy prediction models. For companies that went bankrupt in
2013, financial data for 2013 were padded and used as financial data from 2014 to 2021, and
for companies that went bankrupt in 2020, financial data for 2020 were used as financial
data for 2021. We applied the same padding technique to label data [17].



Sustainability 2023, 15, 4794 4 of 17

Table 2. Input and label data in the proposed bankruptcy prediction model.

LSTM input data:
Company

(Financial information in 2012, . . . , 2020)

LSTM label data:
Company

(Bankruptcy or non-bankruptcy): (1)/(0)

LR, k-NN, DT, RF input data:
Company

(Financial information in 2012)
...

(Financial information in 2020)

LR, k-NN, DT, RF label data:
Company

(Bankruptcy or non-bankruptcy in 2013)
...

(Bankruptcy or non-bankruptcy in 2021)
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information items.

As we must configure the input data for the LSTM model with time series data
in an experiment on all of the 1020 companies, the training and testing datasets were
configured with data from 10 bankrupt companies and 500 non-bankrupt companies for
the experiment. For the LR, k-NN, DT, and RF models, we set the financial information in
the n-th year as the input data and bankruptcy or non-bankruptcy in year n + 1 as the label
data, creating 9 times more input data than the LSTM model for each company. Hence, the
training and testing datasets were configured with the data of 90 bankrupt companies and
4500 non-bankrupt companies for the experiment. As the input data for the LR, k-NN, DT,
and RF models have 9 times as many bankrupt companies as the LSTM model, we expect
better bankruptcy prediction performance.

With data from a small sample of bankrupt companies, overfitting occurs for non-
bankrupt companies in the LR, k-NN, DT, and RF models when conducting an experiment
using all companies. As a result, bankruptcy prediction performance of the models de-
creases. Therefore, considering the number of bankrupt companies, we set the financial
information of 10 bankrupt companies and 20 non-bankrupt companies as small sample
data consisting of the training and testing datasets and conducted a comparison with
an experiment using all 1020 companies. For a small sample, we randomly sampled
the non-bankrupt companies 5 times and report the mean performance measure of the
5 repeated experiments.
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Similarly, we set the training and testing datasets for the LSTM model using the data
of 10 bankrupt companies and 20 non-bankrupt companies for the experiment.

2.1.2. Sampling

In the small-sample data experiment, we used the financial information of bankrupt
10 companies and 20 non-bankrupt companies as the training dataset. We found perfor-
mance differences depending on the sampling method used to select the 20 non-bankrupt
companies from the 1000 non-bankrupt companies, as described in Section 3. To reduce this
difference, we conducted random sampling of the non-bankrupt companies 5 times and
used the mean performance measure of 5 repeated experiments. As data imbalances may
still occur using this method, we set the time series for each of the 13 financial information
items and compared the performance with the sampling of 20 non-bankrupt companies
which we consider as having characteristics that represent non-bankrupt companies as
their entropy is low.

The approximate entropy we used is a method that measures the entropy of a time
series, with the following definition [18]: we configure N−m+ 1 vectors xm(i) = [u(i + k) :
0 ≤ k ≤ m− 1] for time series [u(j) : 1 ≤ j ≤ N]. The number of vectors xm(j) within the
distance of r from xm(i) is set as Bi and the number of vectors xm+1(j) within the distance of
r from xm+1(i) as Ai. m is the length of compared sequences, and r is a matching tolerance,
where the constant is determined before measuring approximate entropy. The distance
between two vectors xm(i) and xm(j) is

d(xm(i), xm(j)) = max{|u(i + k)− u(j + k)| : 0 ≤ k ≤ m− 1},

where Cm
i (r) = Bi

N−m+1 , Cm
i (r) is the probability that vector xm(j) exists within the distance

of r with xm(i).
Approximate entropy ApEn(m, r, N) is

1
N −m + 1 ∑N−m+1

i=1 ln|Cm
i (r)| − 1

N −m ∑N−m
i=1 ln

∣∣∣Cm+1
i (r)

∣∣∣,
which is approximately 1

N−m ∑N−m
i=1

{
−ln

(
Ai
Bi

)}
.

Companies with a low approximate entropy across financial information items are
considered to represent the characteristics of non-bankrupt companies, as they have a low
degree of disorder across items. We sampled 20 non-bankrupt companies in the training
dataset in descending order of approximate entropy and compared the results with an
experiment using the data on a random, small sample. The mean approximate entropy
was measured for the time series of each financial information item, and the approximate
entropy of 20 sampled non-bankrupt companies was within 1.70. To measure approximate
entropy m = 3, we set r as the standard deviation of each financial information item.

2.2. Models and Performance Measures

We tested the LSTM, LR, k-NN, DT, and RF models as corporate bankruptcy prediction
models. The LR, k-NN, DT, and RF models used the Keras Library, and the LSTM model
was implemented using Python 3.8 for Ubuntu Linux as follows.

2.2.1. LSTM Model

The LSTM model is a deep learning model that uses time-series data as the input and
outputs future data, and it is used to predict river levels, solar power generation, fine dust,
energy demand, and stock prices [19]. Using the dataset in Section 2.1.1 as the input and
label data, we establish a model to predict bankruptcy in the next year. The mathematical
model of the LSTM is expressed as in Equation (1) and Figure 3. Output ht, outputgate
ot, memory cell ct, new memory content c̃t, forget gate ft, and input gate it in the LSTM
are modeled as in Equation (1) and illustrated in Figure 2. The sigmoid function σ(x) is
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defined as σ(x) = 1
1+e−x for real value x. If X is a matrix with real numbers as elements,

σ(X) is a matrix with the values of the sigmoid function for each element of X as elements

LSTM model pseudocode

Step (1)
train_corp_data = 9-year data of 13 financial information items of 10 bankrupt companies
test_corp_data = 9-year data of 13 financial information items of the other 10 bankrupt companies
train_corp_label = whether a company went bankrupt during 6 years, obtained by setting 4 years
as the sequence length for train_corp_data
test_corp_label = whether a company went bankrupt during 6 years, obtained by setting 4 years
as the sequence length for test_corp_data
Step (2)
Normalizing 4 datasets in Step 1
Step (3)
Stacking 4 years of financial information corresponding to the sequence length as input data for
each LSTM
Step (4)
Setting the hidden size of the LSTM at 256 and building the LSTM model using nn.LSTM()
provided from torch.nn
Step (5)
Store the output value of the LSTM in the output variable, while forwarding the input data of the
LSTM through the device.
Step (6)
Calculating a performance measure by outputting the confusion matrix

Output ht = ot tanh(ct) (1)

Output gate ot = σ(Woxt + Uoht−1 + Voct)
Memory cell ct = ftct−1 + it c̃t

New memory content c̃t = tanh(Wcxt + Ucht−1)

Forget gate ft = σ
(

W f xt + U f ht−1 + Vf ct−1

)
Input gate it = σ(Wixt + Uiht−1 + Vict−1)

2.2.2. Logistic Regression Model

The logistic regression model is a method of modeling the conditional probability
P(Y = 1|x1, x2, · · · , xk) as shown in Equation (2), where X1, X2, · · · , Xk are explanatory
variables and Y (Y is 0 or 1) is the binary response variable.

log
[

P(Y = 1|x1, x2, · · · , xk)

1− P(Y = 1|x1, x2, · · · , xk)

]
= α + β1x1 + β2x2 + · · ·+ βkxk (2)

From the training dataset, intercept α and the effect of xi, namely βi (i = 1, 2, · · · , k),
are estimated with maximum likelihood estimation.

It is an algorithm that solves the problem of binary classification as it considers new
data as Y = 1 if P(Y = 1|x1, x2, · · · , xk) obtained from Prediction Equation (2) is greater
than the pre-defined threshold and Y = 0 if it is smaller than the threshold.
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2.2.3. k-Nearest Neighbor (k-NN) Model

The k-nearest neighbor algorithm is a non-parametric supervised learning method
as a machine learning algorithm. The k-NN is a method of extracting the nearest k using
the distance measuring metric d among the existing data when new data are given and
predicting the class of new data for a classification problem and the prediction value of
new data for a regression problem based on the information of the extracted data. The
hyperparameters of the k-NN model include the number of searchable neighbors k and
metric d. The Euclidean distance, Manhattan distance, Mahalanobis distance, correlation
distance, and rank correlation distance are used as d.

2.2.4. Decision Tree Model

The decision tree model is a supervised machine learning method to solve regression
or classification problems and conduct prediction by categorizing decision-making rules
into a tree structure. The decision tree model is created using learning data and consists
of a hierarchy of branches in which the explanatory variables are expressed as nodes and
feature spaces are categorized into non-overlapping groups based on certain conditions.
Each internal node represents a test on an attribute (e.g., whether a coin flip comes up heads
or tails), each branch represents the outcome of the test, and each leaf node represents
a class label (decision taken after computing all attributes). The paths from root to leaf
represents classification rules. In the final nodes at the bottom, the dependent variables are
shown as the categorized groups.

2.2.5. Random Forest Model

The random forest (RF) model is an ensemble learning method as a machine learning
algorithm using multiple DTs. The RF algorithm is a method for solving regression and
classification problems. For classification problems, the class predicted by most DTs is
produced as the output. For regression problems, the average of the predicted values of
each DT is produced as the output. The RF algorithm is designed to solve the problem of
overfitting in the training dataset for the DT. It divides the training dataset into different
parts and randomly selects the pre-defined number of explanatory variables for each of the
training dataset parts to generate a new DT.

This method reduces variance in the model by learning several DTs and averaging the
prediction values from the DTs. Figure 4 is a diagram illustrating the RF algorithm.
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2.2.6. Performance Measure

As a small sample is not considered to be imbalanced data, we categorize a bankrupt
company if the probability value calculated for the test dataset from 5 trained models
is greater than the threshold of 0.5 and as a non-bankrupt company if it is not. As an
actual non-bankrupt company can be predicted as non-bankrupt or bankrupt and the
actual bankrupt company can be predicted as non-bankrupt or bankrupt, this results in the
confusion matrix in Table 3.

Table 3. Confusion matrix.

Prediction outcome

Non-bankrupt
company Bankrupt company

Actual outcome

Non-bankrupt
company True positive (TP) False negative (FN)

Bankrupt company False positive
(FP)

True negative
(TN)

Accuracy, non-bankruptcy precision, non-bankruptcy recall, bankruptcy precision,
bankruptcy recall, non-bankruptcy F1 score, and bankruptcy F1 score can be calculated
based on the confusion matrix. By comparing the experimental results and the actual label
values, we can create the graph of the ROC curve and the area under the ROC curve (AUC).
The definition of each measure is provided in Equation (3).

Accuracy =
TP + TN

TP + FP + TN + FN

Non-bankruptcy Precision =
TP

TP + FP

Non-bankruptcy Recall =
TP

TP + FN
(3)

Bankruptcy Precision =
TN

FN + TN

Bankruptcy Recall =
TN

FP + TN
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Non-bankruptcy F1 Score =
2× Non-bankruptcy Precision× Non-bankruptcy Recall

Non-bankruptcy Precision + Non-bankruptcy Recall

Bankruptcy F1 Score =
2× Bankruptcy Precision× Bankruptcy Recall

Bankruptcy Precision + Bankruptcy Recall

The ROC AUC graph has the false positive rate as the x-axis and the true positive rate
as the y-axis. It is drawn above the baseline y = x and convex upward. A graph drawn
above the baseline means better classification performance in the model. Hence, a higher
AUC value means the model has higher classification performance.

3. Performance Analysis Results

Table 4 shows the performance results in terms of the confusion matrix, accuracy,
non-bankruptcy precision, non-bankruptcy recall, bankruptcy precision, bankruptcy recall,
non-bankruptcy F1 score, bankruptcy F1 score, and AUC for the LR, k-NN, DT, and RF
models. The analysis was conducted for the small sample dataset created based on the
5 random samplings of 20 non-bankrupt companies, for the small sample dataset with
20 non-bankrupt companies chosen based on approximate entropy, and the total data.

The analysis of the LSTM model for the small sample data returned a confusion matrix

of
[

20 0
10 0

]
and the model did not learn the characteristics of bankrupt companies very well

as the sample of 10 companies is small. The analysis of the LSTM model for the total data

returned a confusion matrix of
[

500 0
10 0

]
and the model did not learn the characteristics of

bankrupt companies very well given the small number of 10 bankrupt companies, much
like the small sample data.

Panel (a) in Table 4 shows the performance results of the models with the small dataset
sampled randomly five times. The k-NN had the largest AUC, at 0.8676, and the RF had
the second largest AUC, at 0.8095, indicating that the k-NN and RF outperformed the LR
and DT in diagnosing non-bankrupt companies.

The LR had the highest non-bankruptcy F1 score in the performance measures of non-
bankruptcy prediction and non-bankruptcy recall, while the DT had the highest bankruptcy
F1 score in the performance measures of bankruptcy precision and bankruptcy recall. The
LR is the best among the five models in non-bankruptcy prediction and non-bankruptcy
recall, while the DT is the best in bankruptcy prediction and bankruptcy recall.

Panel (b) in Table 4 provides the performance measure results of the models for the
small sample data sampled using approximate entropy. Here, RF had the highest AUC, at
0.8326, and the k-NN had the second highest AUC, at 0.8076. Further, RF and the k-NN
outperformed the LR and DT in diagnosing non-bankrupt companies. RF had the best
performance in terms of non-bankruptcy precision, non-bankruptcy recall, bankruptcy
precision, and bankruptcy recall. Thus, RF is the best of the five models in terms of precision
and recall.

The performance results in Panels (a) and (b) in Table 4 show that the AUC of the k-NN
and RF was higher than that of the LR and DT. The analysis results for the small dataset
sampled using approximate entropy showed better performance measures of bankruptcy
precision and bankruptcy recall than those for the small sample data sampled randomly.

Panel (c) in Table 4 shows the performance results of the models for the total data.
Like the LSTM, the small number of 10 bankrupt companies led to overfitting to non-
bankrupt companies and subsequently resulted in 0 or close to 0 in bankruptcy precision
and bankruptcy recall, despite generating samples for 90 bankrupt companies, which is
9 times larger than the input data. These models did not predict bankruptcies very well.
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Table 4. Performance results: LR, k-NN, DT, and RF models for the small sample and total dataset.

Model Confusion Matrix Accuracy Non-Bankruptcy
Precision

Non-Bankruptcy
Recall

Bankruptcy
Precision

Bankruptcy
Recall

Non-Bankruptcy
F1 Score

Bankruptcy F1
Score AUC

LR
[

183 23
49 15

]
0.7333 0.7888 0.8883 0.3947 0.2344 0.8356 0.2941 0.7457

k-NN
[

183 23
53 11

]
0.7185 0.7754 0.8883 0.3235 0.1719 0.8281 0.2245 0.8676

DT
[

155 51
42 22

]
0.6556 0.7868 0.7524 0.3014 0.3438 0.7692 0.3212 0.6587

RF
[

178 28
49 15

]
0.7148 0.7841 0.8641 0.3488 0.2344 0.8222 0.2804 0.8095

(a) Performance results of the LR, k-NN, DT, and RF for the small random sample

Model Confusion Matrix Accuracy Non-Bankruptcy
Precision

Non-Bankruptcy
Recall

Bankruptcy
Precision

Bankruptcy
Recall

Non-Bankruptcy
F1 Score

Bankruptcy F1
Score AUC

LR
[

187 9
58 16

]
0.7519 0.7633 0.9541 0.64 0.2162 0.8481 0.3232 0.7929

k-NN
[

187 9
53 21

]
0.7704 0.7792 0.9541 0.7 0.2838 0.8578 0.4038 0.8076

DT
[

168 28
41 33

]
0.7444 0.8038 0.8571 0.5410 0.4459 0.8296 0.4889 0.5979

RF
[

182 14
43 31

]
0.7889 0.8089 0.9286 0.6889 0.4189 0.8646 0.5210 0.8326

(b) Performance results: LR, k-NN, DT, and RF for the small dataset sampled using approximate entropy

Model Confusion Matrix Accuracy Non-Bankruptcy
Precision

Non-Bankruptcy
Recall

Bankruptcy
Precision

Bankruptcy
Recall

Non-Bankruptcy
F1 Score

Bankruptcy F1
Score

AUC_1

AUC_2

LR
[

4514 2
74 0

]
0.9834 0.9839 0.9995 0 0 0.9916 Not defined

0.7906

0.9998

k-NN
[

4503 13
74 0

]
0.9810 0.9839 0.9971 0 0 0.9904 Not defined

0.6500

0.9998

DT
[

4398 118
68 6

]
0.9595 0.9848 0.9739 0.0484 0.0811 0.9793 0.0606

0.5477

0.9998

RF
[

4514 2
74 0

]
0.9834 0.9839 0.9996 0 0 0.9917 Not defined

0.7389

0.9998
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Table 4. Cont.

(c) Performance results: LR, k-NN, DT, and RF for the total data, where AUC_1 = AUC at the threshold of 0.5 and AUC_2 = AUC using the optimal threshold.

Accuracy Precision Recall F1 Score AUC

Logistic 0.7570 0.0001 0.2174 0.0002 0.4872

SVM 0.7236 0.0002 0.3913 0.0003 0.5575

RF 0.9899 0.0023 0.2174 0.0045 0.6037

RNN 0.9789 0.0024 0.4783 0.0048 0.7286

LSTM 0.9936 0.0058 0.3478 0.0114 0.6707

Ensemble 0.9826 0.0029 0.4783 0.0058 0.7305

(d) Performance results: Bankruptcy Forecasting Performance by Methodology [7]
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To overcome the problem of worsening performance due to data imbalance, we
propose a method to improve the AUC performance measure by applying the optimal
threshold. The LR, k-NN, DT, and RF models predict bankruptcy in the (n + 1)-th year
based on n-th year’s financial information. The anomaly score is the difference between
the value indicating bankruptcy by the model in year (n + 1) and the value indicating
actual bankruptcy (bankruptcy is 1, non-bankruptcy is 0). A higher anomaly score means
the status in year (n + 1) is likely to be an anomaly (bankruptcy). We use a supervised
thresholding mechanism to detect the optimal threshold for binarizing points as anomalous
or not. We obtain the minimum and maximum values of the anomaly scores calculated on
the training dataset and then consider each value from the minimum score to the maximum
score with a small step and select the value returning the highest F-score as the overall
model threshold. Figure 5 shows the optimal threshold mechanism.
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We believe that our proposed method would greatly enhance the value of the AUC
as in Panel (c) in Table 4, where the optimal threshold is applied. Using the informa-
tion obtained from the anomaly scores from the training dataset, we use the AUC-based
thresholds mechanism to identify the optimal thresholds for determining bankruptcy or
non-bankruptcy. The anomaly score is measured for the test dataset using the identified
optimal thresholds. If the anomaly score is above the identified threshold, then we re-
gard it as a bankruptcy (1). If it is below the identified threshold, then we regard it as
non-bankrupt (0).

As shown in Table 4, the AUC of the performance measures in Panels (a) and (b)
was generally larger than that in Panel (c), and the performance measures of bankruptcy
precision and bankruptcy recall were significant, suggesting that the method of learning
and predicting bankruptcy by configuring only some non-bankrupt companies as the
training dataset when there are few bankrupt companies can create a model that classifies
bankrupt and non-bankrupt companies well without greatly sacrificing accuracy. However,
the AUC value when the optimal threshold is applied in Panel (c) in Table 4 is greater than
the AUC of the performance measures in Panels (a) and (b) in Table 4, which suggests that
identifying the optimal threshold based on the AUC for classification is more effective than
applying small sampling to imbalanced data.

The observed difference in performance according to the models suggests that the
RF is the best model, with the highest AUC of 0.8326 in Panel (b) in Table 4 to diagnose
non-bankrupt companies. It is also the best model, with the highest non-bankruptcy
F1 and bankruptcy F1 scores of 0.8646 and 0.5210, respectively, in Panel (b), to classify
non-bankrupt and bankrupt companies. Panel (d) in Table 4 is the result of [7], an anal-
ysis of monthly financial information of about 45,472 non-financial firms collected from
January 2007 to December 2019 from the Compustat North America Dataset. Since it
included the monthly financial information of 2057 bankrupt companies, it offers a suffi-
cient training dataset for the RNN and LSTM. Hence, the RNN and LSTM had significant
AUC performance.
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The performance measures of precision, recall, F1 score, and AUC from the LR and RF
models trained with the small random sample and the LR and RF models trained with the
small sample created using approximate entropy were higher than those of the LR and RF
models in Panel (d) in Table 4. In addition, the AUC performance measure in Panel (c) and
the AUC performance measure when the optimal threshold was applied were higher than
those of the LR and RF models in Panel (d).

These results suggest that we identified a data processing method and two data
sampling methods that improve the performance of the corporate bankruptcy prediction
models for imbalanced corporate financial data, and a method using the optimal threshold
to improve AUC performance even when the total imbalanced data are used.

Figure 6 depicts four ROC AUC curves for four small random samples where a small
random sample is obtained by random sampling of the non-bankrupt companies five times.
From Figure 6, it can be seen that the performance of diagnosing non-bankrupt companies
is excellent for k-NN and RF, and it is difficult to compare the performances of LR and DT.
Figure 7 plots the ROC AUC curve the small sample generated using approximate entropy,
where RF had the best performance in diagnosing non-bankrupt companies, followed by
k-NN, LR, and DT. These results are consistent with those in Panels (a) and (b) in Table 4.
Figure 8 represents the optimal threshold identified based on the AUC for each model as
a dot.
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4. Conclusions

We collected 13 financial information items for about 1020 companies listed on KOSPI
and KOSDAQ from 2012 to 2021 and compared the bankruptcy prediction performance of
the LSTM, LR, k-NN, DT, and RF models.

As the collected financial data on the companies in Korea represents a small sample
due to the small number of bankruptcies, the LSTM is not a suitable corporate bankruptcy
prediction model.

As the LR, DT, RF, and k-NN classification models do not use time series data as an input,
we configured financial information in year n and bankruptcy or non-bankruptcy in year n+ 1
as the input and label data, which made it possible to generate nine times more input data
compared to the LSTM model and resulted in higher bankruptcy prediction performance.

The analysis of small sample data compared the random sampling method of non-
bankrupt companies in the training dataset with the sampling method using approximate
entropy, where the latter outperformed the former method in bankruptcy precision and
bankruptcy recall. The performance measures of the models trained with the dataset
constructed using five random samples and those generated using approximate entropy
were higher than those of the models trained with the sample data identified from [7],
confirming that our proposed method can improve the bankruptcy prediction performance
using a small sample relative to a large sample for an imbalanced dataset. In particular,
for the unbalanced financial data collected in this study, our analysis proved that the AUC
performance measure can be greatly improved by classification using the optimal threshold
identified based on the AUC, as shown in Panel (c) in Table 4. The results of this study
provide useful information for selecting a suitable bankruptcy prediction model when
using a dataset with relatively few bankrupt companies.

In this study, the number of bankrupt companies for which financial information was
collected is very small, so we need to use a strategy such as the cross-validation technique
to reduce the variation that may occur when performing experiments by sampling non-
bankrupt companies. We plan to conduct experiments applying these techniques in future
works. We measured the performance by averaging the experimental results of random
sampling with five repeated experiments, and it is necessary to increase the number of
such repeated experiments to improve the reliability of the experimental results, so we
plan to do so in future works. In this study, we did not conduct an experiment to compare
the experimental results of the benchmark model and benchmark dataset with the results
of this study, so we plan to add them in future works to ensure the reliability of the
research results.
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Appendix A

Table A1. Twenty-nine variables that correspond to the criteria characterizing bankrupt and non-
bankrupt companies.

Category Section Feature

Financial
Statements

Balance Sheet
(1000 won)

Accumulations

Retained Earnings

Net assets of controlling shareholders
(before capital stock reduction)

Owners of Parent Equity

Total Equity

Comprehensive Income Statement
(1000 won)

Earnings before tax

(Total Comprehensive Income Attributable to)
Owners of Parent Equity

Total Comprehensive Income

Cash Flow Statement
(1000 won) Cash Flow

Financial
Ratio

Stability (%)

Intangible Asset Ratio

Equity Capital Ratio

Borrowings and Bonds Payable Ratio

Borrowed Capital Ratio

Cash Flow/Total Debt

Cash Flow/Total Equity

Cash Flow/Total Asset

Growth
(yearly) (%) Total Asset Growth Rate

Profitability (%)

Operating Revenue/Operating Expense

Profit Margin Ratio

ROA (Current Net Income)

ROA (Earnings before tax)

ROA (Operating Profit)

ROA (Total Comprehensive Income)

ROE (Current Net Income)

ROE (Earnings before tax)

ROE (Operating Profit)

ROE (Net profit of controlling shareholders)

Activity (times)
Total Debt Turnover

Total Asset Turnover
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