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Abstract: In the perspective of observing the latest worldwide and European strategies toward green
transition and delivering a secured access to local resources, the objective of this study was to analyze
the research progress on critical materials and, more specific, critical metals and review the future
research hot-topics for critical metals. Consequently, a bibliometric analysis for the assessment of
the current state of the art research, future trends as well as evolution through time of the critical
metals research was performed in the present work. The study included four phases of work:
(i) search string selection, (ii) data collection, (iii) data processing, and (iv) data interpretation. A
total of 433 publications on critical metals were collected from Scopus database between 1977 and
2023, with an increasing yearly trend and a burst in 2013. The data retrieved showed a significant
increase in publications related to the topic in the last 10 years. The results show that research
interest is concentrated around six critical areas: (i) bioleaching as an important process of critical
metal recovery, (ii) circular economy concepts and recovery of critical metals by urban mining from
e-waste, (iii) resource recovery from waste landfills as urban mines, (iv) targeted studies on various
critical elements (copper, zinc, gallium, silver, lithium), (v) rare elements as industry vitamins and,
(vi) coal deposits and coal ashes as an alternative source of critical metals. This analysis could
provide important guidance for further directions on the development of research for recovery of
critical metals.

Keywords: circular economy; critical metals; mine waste; recovery; recycle; research trends

1. Introduction

Currently, the European Union (EU) is in the process of transformation towards a
bioeconomy and circular economy. The circular economy model was first announced in
2014 [1]. The circular economy assumes a transition from a linear model based on take–
make–dispose to a circular model, in which waste, if it arises, becomes a valuable resource
for another production cycle [2,3]. Thus, an optimized model is designed that foresees
an innovative approach, namely, make–use–reuse–remake–recycle and again, make [4,5].
Wealth from waste is now considered an opportunity for future practice [6].

Already, the world is experiencing a shortage of various resources that cannot be recreated
or replaced. An example, rare earth metals used in everyday electronic devices—tantalum,
silver, gallium, and indium, may disappear in the next 20–50 years [7]. At the same time, only
8.6 % of materials are returned to the economy [8].

As the demand for mineral resources is expected to grow due to global competition
and the industrialization of developing countries [9], the digitalization of the economies of
developed countries [10], and socio-economic disturbances in the process of a profound
transformation of the international economic order [11], it is considered that the depen-
dence on critical raw materials may soon replace dependence on oil and gas [12]. A reliable
and sustainable supply of both primary and secondary raw materials, especially critical
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raw materials for key technologies and strategic sectors [4] such as renewable energy, elec-
tromobility, digital technologies [10], space and defense, is one of the necessary conditions
for achieving national security and independence for every region [8].

The methodology for identifying critical minerals from the total mass of minerals
and products of their primary processing is based on an assessment of the significance
(demand) of its use in production (important in use) and the degree (probability) of a
potential risk in limiting its supply (availability) to the consumer (likelihood of a supply
restriction) [4,13,14].

Among critical raw materials, the metals are the object of this paper. The term criti-
cal metals has become inextricably linked with the concept of sustainable development.
Questions that brought this into discussion are, among others: What kind of sustainabil-
ity can there be when there is a risk of stability in the supply of raw materials? On the
other hand, what will be left for future generations if the resources are depleted? Trying
to answer these questions, the present is presenting an overview of worldwide research
towards recovery and recycling of critical metals from mine waste as an important source
of valuable raw materials.

Formulation of the Research Questions

As the technologies are advancing rapidly, so is the demand for high-tech critical
metals. Sustainable sourcing for the critical materials by finding alternative sources of
supply, including from recovery and recycling from waste, could be a viable option as it can
address the increasing demand with minimum environmental impact. As a result, research
on critical metals has gained importance over the years. In this context, for studying the
research trend on critical metals, the following research questions were framed:

• What is the trend of research over the years on critical metals?
• Who are the leading countries, authors, and publication sources (number of research

articles, top cited) across the world performing research related to critical metals?
• Which are the most relevant keywords used in research studies related to the topic?

As mentioned above, this study is searching to find the answers to these questions
using bibliometric analysis.

Therefore, this paper is reporting an overview through publication history, aiming to
summarize the research progress related to critical metals and their recovery from secondary
sources such as mine tailings, dams, and residues in a circular economy approach.

2. Materials and Methods

For the bibliographic analysis and literature review, the scientific literature on critical
metals was studied. For the bibliometric analysis, a total of 433 published articles between
1977 and 2023 were analyzed. These papers were retrieved through the scholarly database
of Scopus. Scopus is one of the most trusted and widely used bibliographic databases for
bibliometric analysis [15], offering comprehensive coverage of excellent publications in
general academic fields, ease of access, and advanced search and filtering features.

The search was carried out in November 2022. The initial search string used in the
literature withdrawal included: “critical metals” and “recovery” or “recycling” and “mine”
or “mine and waste” or “mine and tailing” or “mine and residue” or “mining and waste”
or “mining and residue”. Initially, no language filter and no country filter were applied.
The search field was limited to “title”, “abstract”, and “keyword.” Subsequently, the data
collection was further demarcated through inclusion and exclusion criteria according to the
proposed scope of the analysis to be carried out.

As a first criterion, it was considered appropriate as an eligibility choice to exclude docu-
ment types from the category of editorial note, erratum, and note (three documents excluded).

For the selection phase, documents in the category of trade journal were excluded, as
they were considered to be irrelevant for analysis towards research progress. In the same
time, taking into consideration further keywords and contents analysis of the present study,
the selection was limited to documents in the English language.
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The final database included author, institution, country, keyword, source, category, and
citation information from 397 documents that constitute the cornerstone of the processing
and data interpretation of the study (Figure 1). The collected data were exported as an Excel
file and VOSviewer (version 1.6.18, Center for Science and Technology Studies, Leiden
University, Leiden, The Netherlands) software was used for analysis [16] of cooperation
networks and keyword co-occurrences of the collected literature data.
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Figure 1. Flow chart describing methodology for collection of publications from SCOPUS database.

3. Results and Discussion
3.1. Scientific Production Analysis

Scientific production analysis was focused on a threefold approach. First, the annual
publications and the growth trend were examined, then contributions to the subject as
of originating country of the authors affiliation was analyzed, and finally, the most cited
publications were examined.

3.1.1. Annual Publications and Growth Trend

The search carried out in the Scopus platform resulted in a total of 397 publications
on critical metal recovery from mine tailings with an average of 28.08 citations per docu-
ment. Among these, the majority were research articles (223, 56.17%), followed by reviews
(90, 22.67%), conference proceedings (64, 16.12%), books and book chapters (10, 2.52%),
conference reviews (5, 1.26%), and short reports (5, 1.26%). As plotted in Figure 2, during
the last 10 years there was a growing interest in research related critical metal recovery
from mine tailing. The number of documents increased gradually by 2012. This could be
related to the first release of the European critical raw material list in 2011. Other countries
(e.g., US, Japan, and Australia) have elaborated analogous reports and lists. Generally, from
2 or 3 publication per year between 1986–2007, the scientific production arrived at up to
71 scientific articles published in 2022, taking into consideration the string search that was
used in this analysis (Figure 2).

Approximately half of the scientific publications belong to the period 2019–2022, and
this could be correlated with several drivers.

First, in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
was reported in Wuhan, Hubei Province, China. In January 2022, as the region was highly
impacted by COVID-19, China implemented strict restrictive movement policies related to
work conditions that triggered disruptions on its international trade, exposing the dependence
of the world economy on the supply chain related to metals, plastics, electronics, and other
goods for which China is the leading world exporter [17]. Therefore, the reinforcement of
the need for sustainable exploitation of local resources and the importance of overcoming
the vulnerability of the supply chain for critical materials could be seen as triggered by the
COVID-19 crisis.
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Second, at the European level, the Green Deal strategy was released as early as 2019.
The European Green Deal covers all major aspects of the European economy, taking into
account climate and ecological imperatives, according to the new plans contained by the
European Commission. One of the key subjects is related to securing a local supply of
raw materials. It is, thus, considered that the EU’s access to critical raw materials must
be supported by an efficient use of resources, thus, involving research development and
innovation actions.

Therefore, research towards assuring a secure and reliable supply of critical metals is
important not only for the European economy but also for the successful implementation
of the European Green Deal.

Finally, the current crisis related to the socio-politic situation of the Russian–Ukrainian
conflict has also raised issues on supply chain interruptions related to critical metals.

Therefore, for the regions endangered by supply chain vulnerabilities, the diversi-
fication of secondary sources and superior exploitation of known critical raw materials
reserves is a must.

A polynomial trend was checked for the assessment of the correlation between the
number of documents and the publishing year (Figure 3). For this, documents from
2013 to 2022 were included. While exclusion of the year 2023 was decided on the basis of
actual search date, the data before 2013 were excluded taking into consideration the first
assessment of the criticality of raw materials in 2014. A good fit of the polynomial curve to
the increasing trend of publications was observed, and a high coefficient of determination
was obtained (R2 = 0.9662). As already pointed out, as socio-economic context is evolving
towards necessity to endure local supply, concerns on the subject may continue to grow in
the coming years.

3.1.2. Country Contributions

According to the affiliation of the authors, the contribution to the topic as analyzed by
country indicates that a total of 62 countries across the world bring up research related to
critical metal recovery from mine waste (Figure 4).

United States stands up for the highest scientific production, with 82 publications
on critical metal recovery in English in the Scopus database, accounting for 20.65% of all
countries during the analyzed period.
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In fact, the first study that brought into light the concept of critical materials was the
criticality matrix elaborated by the National Research Council in 2008. This matrix was
built to assess the criticality of a wide range of materials based on demand emerging or
increasing, dependence on imported materials, social or environmental pressure, policy
measures, and concentration of production [13,18].

While most of the critical raw materials come from China, it is interesting to find that
almost 15% of the scientific production on the analyzed topic comes from this country.
Australia is in the third place (40 documents, 10.58% of total), followed by most of the
European countries, such as Germany, France, United Kingdom, Belgium, Italy, Spain,
and Sweden (summarizing 166 documents and a share of 41.81% of the total). Overall,
the European research progress on critical metal recovery accounts for over 60% of the
analyzed database.
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The graphical representation of the contribution by country is shown in Figure 5. The
larger the node is, the more publications the corresponding country has produced. The
connecting lines between the nodes designate the network of collaborative relationships
between the different countries. The closer the distance, the stronger the connection
between the countries, suggesting that respective regions have built strong collaboration.
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Figure 5. Co-authorship of selected publications.

The co-authorship of the 62 countries is included within 17 clusters (various colors
used) with a total of 238 links and a total link strength of 326.

The United States represents the most productive country with the largest association
(326 co-authorships), connected to 10 other countries or territories.

When speaking of the citations of the published works by country, the ranking posi-
tions change, and if taking into account the first top cited papers by country, three more
countries are added to the list (Netherlands with 2081 citations, Switzerland with 386, and
Canada with 380). The top cited country’s work from the most productive countries is,
however, Belgium, with a share of 12% of the total citations (2610 citations) (Table 1).

Table 1. Citations of the published work, by country.

Document
Rank Country Region Documents Share of

Total
Citations

Rank Citations Share of Total
Citations

1 United States North
America 82 20.65% 3 2097 9.68%

2 China Asia 59 14.86% 7 912 4.21%

3 Australia Australia 42 10.58% 5 1670 7.71%

4 Germany Europe 26 6.55% 2 2509 11.59%

5 France Europe 21 5.29% 14 189 0.87%

6 India Asia 21 5.29% 8 687 3.17%

7 United
Kingdom Europe 21 5.29% 4 1986 9.17%

8 Belgium Europe 19 4.79% 1 2610 12.05%

9 Italy Europe 19 4.79% 9 507 2.34%
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Table 1. Cont.

Document
Rank Country Region Documents Share of

Total
Citations

Rank Citations Share of Total
Citations

10 Spain Europe 19 4.79% 11 405 1.87%

11 Sweden Europe 19 4.79% 10 503 2.32%

12 South Korea Asia 18 4.53% 6 1198 5.53%

13 Brazil South
America 14 3.53% 15 78 0.36%

14 Portugal Europe 12 3.02% 12 315 1.45%

15 Austria Europe 10 2.52% 13 232 1.07%

This analysis is highlighting the participation of developed countries and their concern
for critical metal recovery from mine waste.

3.1.3. Most Cited Publications

The scientific production analyzed (397 articles) returned 11,150 citations.
Most citations (2557) were generated by the 22 articles published in Journal of cleaner

production (Figure 6). The second most cited publication was Separation and Purification
Technology, which generated 715 citations for the three articles published in 2017, 2022, and
2023. All the three articles were review papers dealing with the selective recovery of rare
earth elements from e-waste via ionic liquid extraction [19], critical assessment of chemical
route for generation of energy and valuable products coupled with metal recovery [20],
and recovery and recycling of lithium [21].
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In Table 2, the top 10 of the most cited documents are presented, with a total of
4589 citations, representing 41.16% out of the total citations. The top 10 most cited papers
are included in the paper type review.

Table 2. The top ten most cited papers by author.

No Publication
Year Document Title Authors Citations

Per Article Journal Title Citations
Per Year

1 2013 Recycling of rare earths: A
critical review Binnemans et al. 1458 Journal of Cleaner

Production 146

2 2017 Recovery and recycling of
lithium: A review Swain 712 Separation and

Purification Technology 119

3 2013

Deep-ocean mineral deposits
as a source of critical metals

for high- and
green-technology

applications: Comparison
with land-based resources

Hein et al. 518 Ore Geology Reviews 52

4 2019

Rare earth elements: A
review of applications,

occurrence, exploration,
analysis, recycling, and
environmental impact

Balaram 495 Geoscience Frontiers 124

5 2015

Towards zero-waste
valorisation of

rare-earth-containing
industrial process residues:

A critical review

Binnemans et al. 367 Journal of Cleaner
Production 46

6 1992

Potential use of constructed
wetlands for treatment of

industrial wastewaters
containing metals

Dunbabin et al. 265 Science of the Total
Environment 9

7 2014
Hidden values in bauxite

residue (red mud): Recovery
of metals

Liu et al. 257 Waste Management 29

8 2013

Selective extraction and
recovery of rare earth metals
from phosphor powders in

waste fluorescent lamps
using an ionic liquid system

Yang et al. 201 Journal of Hazardous
Materials 20

9 2019

A critical review on
remediation, reuse, and

resource recovery from acid
mine drainage

Naidu et al. 170 Environmental Pollution 43

10 2014

Exploring rare earths supply
constraints for the emerging

clean energy technologies
and the role of recycling

Habib et al. 146 Journal of Cleaner
Production 16

The study by Binnemans et al. entitled “Recycling of rare earths: A critical review” [22]
was the most cited publication, with 1458 citations. This article presents an overview of the
state-of-the-art of the challenges and possible solutions associated with the recycling of the
rare earths, as encountered during (mainly) lab-scale R&D efforts. Although recognizing
the importance of such a research direction, the study does not tackle critical metal recycling
from new and landfilled industrial residues (e.g., red mud, phosphogypsum).
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The study by Swain (2017) entitled “Recovery and recycling of lithium: A review” [21]
was the second most cited publication, with 712 citations. In this study, recovery and
recycling of lithium from various primary resources such as different ores, clay, brine,
seawater and secondary resources such as the recycling of batteries by different technique
were reviewed. The author highlighted the need for Li recovery technology development
from low-grade sources and recommended urgency for the alternative recycling method
from secondary resources. Moreover, the author concluded that considering the benefits,
hydrometallurgical recycling of LIB should be a focus.

The paper by Hein et al. (2013) entitled “Deep-ocean mineral deposits as a source of
critical metals for high- and green-technology applications: Comparison with land-based
resources” [23] retrieved 518 citations. The authors report on general characteristics of
deep-ocean mineral deposits and their distributions and compare the deep-sea ores with
land-based resources. Moreover, challenges, potential barriers and enhancers, and major
advantages and disadvantages of deep-ocean mining were explored.

REE applications, occurrence, exploration, analysis, recycling, and environmental
impact were investigated by V. Balaram, 2019 [24].

The author also investigated deep sea mining as a promising option for the future,
however, pointing out that the potential risks and drawbacks associated with this process
should be considered before investing in this technology. The deep-sea mining of REE was
presented as an attractive option as it would reduce the negative environmental impacts
caused by land-based mining. This would also help in reducing the cost associated with the
mining process as the extraction from the deep sea would be much cheaper and easier than
from the land-based sources. However, deep sea mining also has some drawbacks that
need to be addressed. The deep-sea environment is highly fragile and could be damaged
by the extraction of REE, thereby leading to the destruction of marine life. Additionally, the
extraction of REE from the deep sea is much more difficult and risky than from the land-
based sources. This could lead to an increase in the cost associated with the mining process.
Moreover, the current technology and infrastructure is not advanced enough to undertake
deep sea mining; hence, a significant investment is required to make this possible.

The review highlights that one of the most promising new strategies for the supply of
REE is the extraction of rare earth elements from coal-fired ash. This approach involves the
recovery of REE from the ash produced from coal combustion and has been investigated in
recent years. The potential for recovering REE from coal-fired ash is very attractive as it
could provide a large and consistent supply of REE for industry. The process of extracting
REE from coal-fired ash involves the physical separation of the REE-bearing minerals from
the ash and then the chemical extraction of the REE from these minerals [24].

Another identified strategy for the future supply of REE is the recycling of REE from e-
waste, such as end-of-life electronics and electrical equipment. As Balaram summarized, the
process of extracting REE from e-waste involves the physical separation of the REE-bearing
components from the e-waste and then the chemical extraction of the REE.

In another highly cited review, Bimermans [25] discusses the existing options for the
recovery of rare earths from alternative large volume sources such as phosphogypsum, red
mud, mine tailings, metallurgical slags, coal and incinerator ash, and waste water streams.
Although they contain low concentrations of REEs, these secondary sources could bring
back into the economy important amounts of critical metals, as they are largely spread
across industry [25].

While studying the natural wetlands as effective sinks for metals, Dubabin and
Bowmer (1992) [26] showed that they have a high capacity to store and retain metals
due to the complex physical, chemical, and biological processes that occur in these systems.
Wetland vegetation takes up and stores metals, and sediments and soils act as sinks to
trap metals, including the ones included in the criticality lists. Dunbabin and Bowmer
also found that the metal concentrations in the root systems of the affected plants were
significantly higher than those in the rhizomes and leaves. This suggests that the roots are
the primary sites of metal uptake in plants exposed to contaminated soils. Additionally,
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they found that the metal concentrations in green leaves were significantly lower than
those in non-green leaves, indicating that the green leaves may be serving as a sink for the
metals, preventing them from entering the plant’s vascular system [26].

Metallurgical processes for aluminum, sodium, iron, titanium, vanadium, scandium,
and other valuable element recovery from red mud were investigated by Liu et al. [27];
the authors concluded that bauxite residue or red sludge is a viable option for recovery of
scandium resources due to the concentration and availability of scandium. However, red
mud is less usable for the extraction by pyrometallurgical method of other trace elements
because of substantial energy requirements and environmental pollution.

Another highly cited paper (221 times) reported on selective extraction and recovery
of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic
liquid system [28]. This study demonstrates the importance of considering the effects of
different mineral acids on the leaching of indium from LCD panel glass. The findings
suggest that hydrochloric acid should be used for leaching at lower solid to liquid ratios
due to its higher leaching efficiency. This study provides valuable insights for the industrial
production of indium from LCD panel glass [28].

The processes of acid mine drainage formation were reviewed by Naidu et al. in the
paper entitled “A critical review on remediation, reuse, and resource recovery from acid
mine drain-age” [29]. Economic implications, prevention of acid mine drainage (AMD)
formation, and rehabilitation of affected areas are aspects tackled in this study. As AMD
rises as an important alternative source for the recovery of REEs, several treatment processes
can lead to obtaining increased quality water for reuse. Nevertheless, there are also
bottlenecks that need to be studied, such as increased operation cost, brine management,
and the need for membrane pretreatment [29].

While investigating on “Exploring rare earths supply constraints for the emerging
clean energy technologies and the role of recycling”, the study of Habib et al. [30] explored
the risk of supply constraints for two rare earth elements, namely, neodymium (Nd)
and dysprosium (Dy), considering the predicted high demand of Nd and Dy and their
forecasted supply in the short-to-long term future. The authors demonstrated that a normal
primary supply is unable to meet the forecasted demand of Nd and Dy in their modeled
demand scenarios by 2050. Although recycling is unlikely to close the wide gap between
future demand and supply by 2050, in the long term, secondary supply from recycling can
potentially meet almost 50 % of the demand, i.e., by 2100. It is evident that recycling can
play a major role in reducing the geopolitical aspects of supply risk [30].

3.2. Co-Occurrence Keyword Network

The co-occurrence analysis of indexed keywords helps to better understand the re-
search progress and interest of a certain domain. The analysis involves a first step of
cleaning and filtering the database of resulting keywords. A total number of 4795 keywords
resulted from the selected publications related critical metals. A large number of these
keywords had only 1 (3546, 73.95%) or 2 (553, 11.53%) occurrences, while 138 (2.88%)
keywords had more than 10 occurrences.

Table 3 presents the top 20 words with the highest link strength and occurrence.

Table 3. The top 20 main words with the highest link strength in selected documents.

Ranking Keyword Total Link Strength Occurrences

1 metal recovery 1406 168

2 recycling 1331 130

3 mining 991 84

4 rare earths 893 78

5 metals 822 77

6 rare earth elements 659 61
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Table 3. Cont.

Ranking Keyword Total Link Strength Occurrences

7 electronic waste 591 48

8 metal 576 39

9 lanthanide 526 29

10 rare earth element 516 29

11 waste management 515 39

12 copper 513 42

13 recovery 507 50

14 leaching 498 48

15 critical raw materials 434 38

16 controlled study 415 26

17 coal 387 55

18 sustainable development 363 38

19 yttrium 344 19

20 metallurgy 335 27

Figure 7 details the co-occurrence network map of the most frequent keywords in
publications related to the topic. Each keyword is represented by a sphere (node), while
the lines connecting the spheres show links between the selected keywords to the number
of co-occurrences between two keywords.
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The sphere size is related to the number of the keyword’s links, and line thickness
is proportional.

The co-occurrence maps were designed considering the keywords with at least
10 occurrences, which resulted in 138 keywords. Moreover, these were manually refined by
excluding irrelevant words (country names, generic concepts, etc.).

The keyword database revealed six clusters indicated by different colors.
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Cluster 1 (red color)
This cluster contains a number of 33 items mainly related to methods for recovery

of critical metals from various sources. “Leaching” is the word with most occurrences
(48), with a total link strength of 498 and a number of 124 links. Other keywords such
as “metallurgy” (27 occurrences), “hydrometallurgy” (16 occurrences), “pyrometallurgy”
(10 occurrences), “bioleaching” (23 occurrences), “solvent extraction” (18 occurrences),
“extraction” (31 occurrences), and “mine tailing” (16 occurrences) and “tailings” (25 occur-
rences) are keywords included in this cluster.

Bioleaching uses microbial strains to bio solubilize metal-containing inorganic com-
pounds [31,32]. Due to the shortage of resources and the need to extract critical metals
from secondary sources (low-grade tailings; solid or liquid waste) microbial-activity-based
methods are developing as innovative alternatives for the supply of critical metals and
materials [33–36]. Various process drivers and limitations such as reaction time, pH, temper-
ature, mass transfer rate, nutrient requirement, pulp density, and particle size are important
research parameters to take into account [37–41].

Indeed, many strategies for critical material recovery are based on pyrometallurgical
processing in combination with hydrometallurgical methods such as leaching, solvent
extraction, and precipitation [42–45].

Cluster 2 (green color)
This cluster contains a number of 31 items mainly related to recycling methods for

sourcing critical metals from secondary sources. The circular economy concept is very
well represented in this cluster by inclusion of waste electric and electronic equipment in
the research interest [46,47]. The most used keyword of this cluster is “recycling” with an
occurrence of 130 times, a total link strength of 1280, and total links of 129. “Metals” has an
occurrence of 77 times, while “electronic waste” is the second most used for this cluster,
with an occurrence of 48, 115 links, and a total link strength of 575. Other related keywords
are “electronic equipment”, “waste electric equipment”, “e-waste”, and “waste disposal”.

With the depletion of primary reserves, the focus is slowly shifting to processing the
urban mines, such as electronic (e-)waste [45].

Recovery of critical metals from waste electric and electronic equipment and their re-
cycling in a sustainable circular economy approach in additive manufacturing applications
was detailed by Efstratiadis in a recent detailed review [48]. Bioleaching was described
as an alternative process with reduced undesirable environmental issues. Bioleaching is
involving the use of microorganisms, either bacteria of fungi, in a stirring environment
or cultivation without agitation, which eventually proved to be more efficient due to less
energy consumption.

Cluster 3 (dark blue color)
The third cluster includes 30 items and is mainly related to mining of critical metals

from tailings, dams, and ores. The most important keyword is “mining” (84 occurrences)
with the number of links of 131 and a total link strength of 941.

Keywords related to mining are among the most used in this cluster: “metal” (39 oc-
currences), recovery (50 occurrences), “resource recovery” (16 occurrences).

Generally, it is widely recognized that extracting critical metals from old and aban-
doned tailings is a reasonable option, as costs associated with mining activity are low due
to the fact that ores are partly processed and ground. In the same time, there is a higher
possibility to find critical metals at an economically viable concentration than in new ores
as the past technologies were less efficient than present ones [49].

Nevertheless, urban mining is an important topic in the analyzed publications. “Re-
source recovery” from waste landfills as urban mines is a subject of particular interest in
the scientific literature. However, “controlled studies” (26 occurrences) are needed for
demonstrating the economic efficiency of such processes.

Cluster 4 (yellow color)
This cluster includes 17 items related to critical metals per se. “Copper” is the most

used keyword (42 occurrences), with a total link strength of 488 and the number of links
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of 124. Other keywords are “zinc” (25 occurrences), “iron” (20 occurrences), “gallium”
(16 occurrences), “silver” (11 occurrences), and “lithium” (14 occurrences).

Among the existing critical metals, copper is categorized as cross-cutting, being vital
in renewable energy and clean storage technologies [50]. Copper is used in rechargeable
batteries, electric motors, electrical wiring and connectors, and charging stations, as well as
in supporting infrastructures needed to connect renewable energy to the main electrical
grid [50,51].

Cluster 5 (indigo color)
The fifth cluster comprises 12 items and includes rare earth elements and related keywords.
“Rare earths” (78 occurrences) and “rare earth elements” (61 occurrences) are the

most used keywords in this cluster, closely related to “cerium”, dysprosium”, “europium”,
“lanthanide”, “neodymium”, and “yttrium”.

Rare earth metals, or rare earth elements, were given their name not because they are
rare in the earth’s crust but because they are rarely found in volumes and quantities suffi-
cient for economically viable extraction. These elements can be found in the earth’s crust
as often as nickel, zinc, chromium, and lead. The rare earth elements include 17 elements
from the periodic table of Mendeleev: 15 lanthanides (with atomic weights from 57 to 71 in
the periodic system), as well as scandium and yttrium. Yttrium with an atomic weight of
39 and scandium are often considered to be in the REM group since they have the same
chemical and physical properties and are also found in the same deposits [19,52]. Cerium,
yttrium, lanthanum, and neodymium are found most frequently in the earth’s crust [53,54].
All these elements have unique physical and chemical properties. Rare earths are important
and the most expensive components of magnetic, optical, and electronic devices that are
produced in the defense and aerospace industries: drones, guided missiles, laser guidance
devices for satellite communications [28,55].

Cluster 6 (light blue color)
“Metal recovery” is the central keyword of this last cluster. With an occurrence rate of

168 and 168 links, this is one of the most used keywords in the selected publications.
This cluster includes 10 items, most of them related to coal, such as “coal deposits”,

“coal industry”, “coal mines”, and “fly ash”.
Extraction and utilization of critical elements from coal and coal ash seems to be an

alternative for sourcing critical metals [56]. Literature sources have already demonstrated
that critical elements such as uranium, germanium, REEs, yttrium, gallium, and aluminum
can be extracted from coal combustions products [56–58]. More research should be per-
formed on finding highly elevated concentrations of critical elements in metals, and the
efficient extraction technology should be optimized.

The demand for critical metals in the context of the development of high-tech indus-
tries is steadily growing, and ensuring reliable and stable supplies has become an issue.
Uncertainties focus on the future supply of such elements, which are critical to production
but vulnerable to potential supply disruptions.

The trend towards the transition from carbon energy to renewable energy, which has
recently overwhelmed mankind, has sharply shifted the raw material priority of the world
industry and economy from hydrocarbons to metals. In an effort to move away from fossil
energy sources, the global community is being drawn into a new dependence on other
types of raw materials.

Electricity instead of hydrocarbons is a good idea, and there is sound rationality in the
energy transition itself. However, humanity, trying to solve the global warming issues, ran
with this transition, and now the concern is about how industry and the economy should keep
up with it. Solar energy demanded copper, aluminum, and chromium; wind energy—copper
and zinc; geothermal—nickel and chromium; hydrogen—nickel and platinoids. Some metals
can be mined quickly and are not expected to be in short supply, but others are a problem,
including cobalt. An average EV battery requires about 9 kg of cobalt [59]. The production of
electric vehicles has received massive support from governments around the world. Europe
has set a plan to completely abandon the internal combustion engine in the coming years [60],
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and in 2021 alone, the price of this element has increased by more than 100% [61], being now
one of the most expensive battery components—the price per ton is around $35,000 [62]. Thus,
research towards this critical element is expected to increase.

Providing the economy with critical metals occupies an important position for every
national security, while being a determining condition for the development of industrial
modernization. The global introduction of modern technologies, such as: technologies for
creating high-speed vehicles and intelligent control systems for new modes of transport;
technologies for new and renewable energy sources, including hydrogen energy; technology
for creating new-generation rocket-space and transport equipment, is not possible without
critical metals.

As recovery of valuable raw materials from waste is rising, maybe a good research
direction is to explore the work implemented on extraction of metals from heavy tonnage
waste, such as metallurgical slag. Slag is a waste product from the pyrometallurgical
processing of various ores. According to Piatak (2015), based on 150 different studies, the
mineralogical and geochemical properties of different types of slag were analyzed and
classified in two categories, namely, ferrous and nonferrous slag [63]. The ferrous slag is to
be separately studied as historical iron slag and steel and iron slag. The nonferrous slag
includes copper slag, zinc slag, lead–zinc slag, and nickel slag. Several studies highlighted
the importance of reprocessing waste piles for secondary metal recovery, thus, generating
revenues [64,65]. Of course, one of the keys issues to be addressed is that the slag is
generally characterized by an uneven distribution of the target components throughout the
slag dump [66]. However, the laboratory tests performed by Kasikow et al. demonstrated
that a recovery process for large volumes of nickel–cobalt technogenic raw materials
is valid to the total volume of slag [66]. On the other hand, bio-assisted extraction of
metals from historical slag by use of Acidithiobacillus thiooxidans was demonstrated as being
technical feasible and, at the same time, economically efficient [65]. Another already in
practice example of metal recovery is the modern smelter of Zambian Copperbelt where
the historical copper tailing was revisited for extraction of cobalt recovery [64].

In the same line, another in-depth two articles review was put forward by Phiri et al.,
who investigated the potential for copper slag waste as a resource for a circular econ-
omy [67,68]. An overview of copper and cobalt production from ore reserves and of global
demand and supply risks for these metals was presented. The mainstream idea has revealed
the current knowledge about metallurgical slags, including the chemical and mineralogical
characterization of copper slag from 21 major producing countries, metal recovery, and
importance for reducing environmental harm. Among others, the authors have pointed
out the efficiency of using sulfuric acid as the leaching agent for copper in the process of
metal extraction for the recovery of technologically critical elements such as cobalt [68]. The
authors have succeeded in demonstrating that the circular economy approach to existing
waste has the potential to return economic value by assuring a supply of critical metals
while reducing the impacts of metal production on the environment.

A study by Loksin et al. extensively addressed the extraction of critical metals from
phosphogypsum. The study pointed that a high efficiency for the purification of phospho-
gypsum is to complement sulfuric acid leaching with initial water washing [69].

It is, however, important to highlight once again that the criticality of one specific
element depends on supply and demand. Obviously, while for the United States, a certain
element is critical, for the European Union, for example, it is not considered critical. At the
same time, there are common elements for several regions. Although most of the critical
elements come from China, even this region registers issues with some raw materials.

Naturally, research paper publications are focused on certain critical metals as a result
of the common methods or technologies available for exploitation or recovery.

4. Conclusions and Future Directions

A limitation of this study is that it might have excluded high-quality scientific articles
that were deficient in choosing relevant keywords or where the publishing language was
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other than English. Another limitation is that the topic was researched and evaluated using
the Scopus database. Other databases for scientific literature, such as Google Scholar, Web
of Science, are for sure important sources for catching existing trends. As a future direction,
the search will be extended to include patents databases as well.

Eventually, one of the most important drawbacks when analyzing research on crit-
ical materials is that the natural resources are considered a national asset and research
related to these might remain unpublished as it must comply with a specific national
regulatory framework.

The recent worldwide crisis situations such as the pandemic and military conflicts,
have drawn once again attention to the risk of industrial sectors supply disruptions and the
need to strengthen the sources of supply with critical raw materials. Therefore, identifying
alternative sources through the development of technologies for the recovery of critical
metals is of great importance.

This paper involved the use of bibliometric methods to survey scientific publication
relating to critical metals and to highlight the dynamics of knowledge production in the field.
The concept of critical metals over the past decades has been widely used by economists,
policy makers, and scientists in industrialized and rapidly developing countries. They have
become common in scientific and technical literature, denoting a material that is practically
indispensable for the latest industrial technologies but, at the same time, extremely scarce
or vulnerable to supply disruptions. In the scientific literature, the concepts of “scarce”
and “strategic” are also used, which have a similar meaning to the concept of “critical” in
relation to raw materials. The term “strategic” is more often used in politics and “deficit”
in economics. Critical metals are vital to the adoption of new digital and low-carbon
technologies, including smartphones, photovoltaics, solar panels, and electric vehicles.
They own unique properties that ensure their wide application in various industries.

Using data extracted from Scopus and assessment methods available within VOSviewer,
friendly graphical tools showed the relations between publications, taking into consideration
various parameters such as keywords, affiliation countries, and citations. Interpretations of
work that researchers are producing knowledge in this field were also presented.

By analyzing the co-occurrence of keywords, six areas of research in critical metals
recovery were defined: (i) bioleaching as an important process in critical metal recovery,
(ii) circular economy concepts and recovery of critical metals by urban mining from e-
waste, (iii) resource recovery from waste landfills as urban mines, (iv) targeted studies on
various critical elements (copper, zinc, gallium, silver, lithium), (v) rare elements as industry
vitamins, and (vi) coal deposits and coal ashes as an alternative source of critical metals.

This paper was envisioned to support scientist who intend to perform a critical metals
study by showing criticality research area map as well as research gaps.
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