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Abstract: Aquaculture has important economic and environmental benefits. With the development
of remote sensing and deep learning technology, coastline aquaculture extraction has achieved
rapid, automated, and high-precision production. However, some problems still exist in extracting
large-scale aquaculture based on high-resolution remote sensing images: (1) the generalization of
large-scale models caused by the diversity of remote sensing in breeding areas; (2) the confusion
of breeding target identification caused by the complex background interference of land and sea;
(3) the boundary of the breeding area is difficult to extract accurately. In this paper, we built a
comprehensive sample database based on the spatial distribution of aquaculture, and expanded the
sample database by using confusing land objects as negative samples. A multi-scale-fusion superpixel
segmentation optimization module is designed to solve the problem of inaccurate boundaries, and a
coastal aquaculture network is proposed. Based on the coastline aquaculture dataset that we labelled
and produced ourselves, we extracted cage culture areas and raft culture areas near the coastline
of mainland China based on high-resolution remote sensing images. The overall accuracy reached
94.64% and achieved a state-of-the-art performance.

Keywords: deep learning; negative samples; superpixel optimization; Gaofen-2; semantic segmentation

1. Introduction

Seafood is an essential source of nutrition for humans. According to statistics from
the Food and Agriculture Organization of the United Nations, the total global seafood
production in 2018 was about 179 million tons around the world, of which about 156 million
tons were for direct human consumption [1]. China has a vast territory, and its long coastline
covers tropical, subtropical, and temperate climate zones [2]. It has unique natural and
geographical conditions for aquaculture. The development of aquaculture has created
many jobs for people in coastal areas. However, while creating economic benefits, it also
brings a series of environmental problems, such as water pollution caused by a large
amount of breeding bait and chemical fertilizers [3], eutrophication caused by cultured
crop metabolites [4], antibiotic abuse [5], and the impact of the uncontrolled expansion of
breeding areas on coastal wetland systems and marine traffic [6]. Therefore, the aquaculture
industry’s enormous economic value and environmental benefits make it necessary to
conduct periodic and rapid supervision and statistics on the aquaculture industry. Limited
by the growth cycle of marine organisms [7] and the ecological complexity of water areas [8],
traditional field surveys have great difficulties and limitations. The monitoring work of
aquaculture must be completed on time and needs to be repeated year on year. Therefore,
improving the monitoring capability of aquaculture is of great significance for improving
the quality and efficiency of fisheries, improving the supply capacity of aquatic products,
and promoting the green development of offshore ecology.

The satellite remote sensing technology developed in the 20th century has provided
a large amount of satellite image data to assist in monitoring ground objects due to its
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wide imaging area and fast data collection cycle [9]. Compared with manual field surveys,
it has provided huge benefits. Early studies mainly used related methods such as visual
interpretation and geographical information systems to explore breeding areas’ spatial
and temporal changes from a macro perspective [10–13]. Methods such as the water body
index [14–16] and object-oriented classification [17–20] use prior knowledge to separate
water from land, and use the similarity characteristics of different regions to improve the
interpretation accuracy from a higher level.

The deep-seated value in massive remote sensing data has also been exploited thanks
to improved computing power and developed deep learning algorithms [21]. Deep learning
algorithms are currently the most widely used automatic information extraction method.
Automatic information extraction refers to the automatic extraction of feature information
in image data by machines using deep learning methods. Automatic information extraction
by deep learning algorithms has gradually replaced manual visual interpretation methods.
The deep learning method automatically encodes and extracts image features by stacking
many convolutional neural networks without manually designing feature extractors based
on expert knowledge [22]. It has better feature extraction capabilities and large-scale gener-
alization capabilities. Semantic segmentation technology in computer vision corresponds
to coastal aquaculture information extraction. Semantic segmentation algorithms based on
deep learning are mainly divided into four types: encoder–decoder, backbone, hybrid, and
transformer. The encoder–decoder network extracts features of different scales through
multiple pooling and upsampling [23,24]. The backbone network extracts features of differ-
ent scales through parallel feature modules [25,26]. The hybrid network fully combines the
advantages of the encoder–decoder and backbone types to improve the ability to extract
features of different scales [27]. The transformer network uses the self-attention mechanism
to suggest the global correlation of features [28]. It avoids the problem of limited receptive
fields of local features at different scales.

The convolutional neural network is the most commonly used method in deep learn-
ing. The following discusses some studies that used deep learning methods to extract
aquaculture features: Liu et al. [29] used Landsat 8 images to extract the main coastal
aquaculture areas within 40 km of the shore. Cheng et al. [30] used UNet and dilated
convolution to expand the receptive field, solved the problem that the breeding area was
easily gridded, and optimized the issue of misidentifying floating objects and sediments
on the water surface. Su et al. [31] used the RaftNet to optimize the extraction accuracy
of turbid seawater and made the model adaptable to different scales of raft culture areas.
However, the extraction of breeding areas often has blurred and glued edges, usually
caused by the complexity of the ocean background. The edge enhancement method has a
certain optimization effect for extracting aquaculture areas. Ottinger et al. [32] proposed
that a fine edge detection method using enhanced linear structure can improve the accuracy
of breeding area monitoring. Cui et al. [33] used the UPSNet with the PSE structure to adapt
to multi-scale feature maps to extract complex environments and improve the edge blurring
and adhesion that often occur in raft culture extraction. Fu et al. [34] extracted aquaculture
areas with an automatic labelling method based on convolutional neural networks. They
used multi-layer cascaded networks to aggregate multi-scale information captured by
dilated convolutions. Furthermore, the channel attention mechanism and spatial attention
mechanism modules are used to refine the feature layer to obtain better extraction results,
but the network model extraction speed is slow. Cui et al. [35] extracted the raft aquaculture
in the Lianyungang based on a fully convolutional neural network. Still, their network
could only identify a single raft aquaculture area under a simple seawater background.
Lin et al. [36] proposed a method for extracting ocean, land, and ships based on a fully
convolutional network. A multi-scale convolutional neural network adapts to the differ-
ences in scales of land and sea ships. The idea is also applicable to extraction in aquaculture
areas. Feng et al. [37] designed a homogeneous convolutional neural network to extract
small-scale aquaculture rafts in the image, sea and land were separated while extracting
and obtaining better results on the Gaofen-1 image. Ferriby et al. [38] used a Laplacian
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5× 5 convolution filter to improve the edge of fish pond extraction results, but it made
many pixels appear grey. Zhang et al. [39] proposed a segmentation network NSCT method
combined with non-subsampling contour transformation, which can enhance the main
contour features of raft culture in the ocean. The SE2Net [40] embedded the self-attention
mechanism module in the network and introduced the Laplacian operator to enhance edge
information. The simple edge enhancement algorithm has a certain effect on the edge ex-
traction of the breeding area. Still, it cannot solve the problem of a large number of broken
edges in a high-detail area. As a result, the breeding area is discontinuous and broken due
to the influence of ocean currents, clouds, etc. The extracted results are challenging to form
a completely large area from the blurred and disconnected areas.

For aquaculture extraction using remote sensing images, it is necessary to overcome
the environmental complexity and species diversity of target objects and adapt to the
characteristics of the spatial and temporal differences in the remote sensing images in the
study area. Extracting large-scale aquaculture based on high-resolution remote sensing
images still has the following problems.

• Remote sensing diversity of breeding areas. There are differences in the types of
aquaculture in different regions. Cage and raft cultures are different in size, colour,
shape, and scale. As a result, the model’s generalization ability faces significant
challenges in large-scale research areas, and the spatial distribution of samples is an
essential research factor.

• The complex background interference of land and sea. Although the background of
aquaculture is relatively simple in the ocean, there will be complex sea–land interlacing
in offshore aquaculture areas. In addition, cages and rafts will also appear in tidal
flats and ponds on land. The diversity and comprehensiveness of samples is also a
key research factor to avoid aquaculture sea–land interference.

• The boundaries of breeding areas are difficult to accurately extract. Because seawa-
ter may randomly submerge the edges of cage and raft cultures, the boundaries are not
completely straight, and irregular edges will appear. Therefore, affected by complex
imaging factors, it is not easy to extract the precise boundaries of breeding areas.

In response to the above problems, we propose a coastal aquaculture network (CANet)
to effectively extract large-scale aquaculture areas. The main contributions of this paper are
as follows:

• We constructed the sample database from the perspective of the balance of spatial
distribution. Considering the differences in the size, colour, and shape of aquaculture
areas in diverse regions, representative samples covering each region are labelled. In
this way, the model has a good large-scale generalization ability in all areas.

• We expanded the sample database by taking confused land objects as negative samples.
For the complex background conditions of land, the target of the land prone to
misdetection by the model is labelled as the negative sample. Then, the interference
of confusing land objects with aquaculture extraction from land areas is solved.

• We designed a multi-scale-fusion superpixel segmentation optimization module.
Considering the problem of inaccurate boundaries of extraction results, we take full
advantage of the sensitivity of superpixel segmentation to edge features and the
abstraction of features by semantic segmentation networks. In this way, the network
effectively optimized the accuracy of boundary identification and improved the overall
accuracy of aquaculture extraction.
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• Based on 640 scenes of Gaofen-2 satellite images, we extracted cage and raft culture
areas near the coastline in mainland China, covering a range of 30 km outward from
the coastline. The overall accuracy was satisfactory, and it can support the breeding
area and quantity statistics. Compared with other mainstream methods, our proposed
CANet achieved state-of-the-art performance.

2. Materials and Methods

In this section, we first propose an overall framework for the deep learning-based aqua-
culture extraction workflow. The overall workflow includes data acquisition, preprocessing,
sample production and iteration, model training and iteration, and product production.
Among these, sample production and negative sample iteration are key contributors to the
overall workflow. Then, for model training, based on the DeepLabV3+ network, we design
a multi-scale feature superpixel optimization method and build a CANet model. CANet is
a key contribution to the method design of deep learning models.

2.1. Study Area

The seashore in eastern China stretches from the mouth of the Yalu River in the
north to the mouth of the Kunlun River in the south, with a total coastline of more than
18,000 km [41]. Hangzhou Bay roughly bounds the coast of China. To the north of Hangzhou
Bay, the coastline passes through several uplift and subsidence zones, presenting an inter-
laced pattern of rising mountainous harbour coasts and descending plain coasts. To the
south of Hangzhou Bay, the coastline continues the same uplift zone, and has relatively
consistent characteristics. The average elevation of the coastline is below 500 m, with a
temperate marine monsoon climate, a subtropical marine monsoon climate, and a tropical
monsoon climate [42,43]. Most coasts are sea erosion coasts, characterized by steep twists
and turns and dangerous terrain. For millions of years, complex geological structures, ocean
currents, biological effects, and climate conditions have formed many coastal landforms,
such as bays and estuaries, providing a sufficient breeding ground for aquaculture [44].

There are more than 200 bays of various sizes in China, with more than 150 bays
with an area larger than 10 km2. Affected by factors such as regional structure, the bays
are distributed along the coastal sections with relatively solid dynamics and zigzagging
coastlines. Among them, the Zhejiang and Fujian coastal bays have the largest number of
distributions, followed by Shandong and Guangdong. Next are Liaoning, Guangxi, and
Hainan. The remaining coastal bays of Hebei, Tianjin, Jiangsu, and Shanghai are relatively
small in size. We selected the coastlines of the coastal provinces in mainland China as the
research area. The selected coastal bays were Liaoning, Hebei, Tianjin, Shandong, Jiangsu,
Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, and Hainan from north to south.

2.2. Data Source

We extracted aquaculture based on Gaofen-2 satellite images. The data was sourced
from the China Centre for Resources Satellite Data and Application (https://data.cresda.
cn/#/2dMap, accessed on 15 March 2023). The Gaofen-2 satellite is equipped with a
panchromatic camera with a resolution of 0.8 m and a multispectral camera with a resolution
of 3.2 m, with an imaging width of 45 km. The study selected 640 scenes of Gaofen-2 images
from 2019 covering the waters outside the coastline and about 30 km in the estuary. The
selection of images was determined by the growth cycle of farmed crops and the difficulty
of obtaining images. The distribution of marine animal cages does not change with the
seasons. However, the optimum temperature for marine plant growth is usually below
19 ◦C, so the date of the selected image should be near the crops vigorous growth period. In
addition, due to the influence of the downdraft in the coastal zone, the coastal area is often
covered by thick clouds throughout the year, especially the southern area during summer,
resulting in fewer available images in summer. The temporal resolution of Gaofen-2 is
limited, making it very difficult to obtain high-quality, low-cloud images that completely
cover the entire coastline in a short period. Therefore, the proportion of selected images
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distributed from October to March is relatively large, while the number from June to
September is relatively small. The seawater temperature used for mariculture varies very
little throughout the year, and aquaculture can be carried out all year round. There is no
significant change in the aquaculture area between summer and winter, so using images
from other months is acceptable. Even so, some areas are still completely covered by clouds.
These area were supplemented or replaced with images from the same period in 2018 and
2020. Furthermore, there is an overlap between the images as clouds cover obscured many
images. However, these unobstructed images are still usable.

2.3. Overall Framework

We first selected the high-resolution image data according to the growth cycle of
marine animals and plants, image quality, and cloud cover to obtain the original image
set. In the data preprocessing stage, the original image underwent three steps of de-
hazing/colour restoration, fusion, and registration to obtain a high-quality image set.
Then, a small number of representative images were selected from the high-quality image
set, and combined with prior knowledge and feature analysis, visual interpretation was
performed to obtain the primary samples. The next step was to build a computer vision-
based network model and use the primary samples to train a primary model and evaluate
its accuracy. Next, the primary model was used to predict images of the surrounding area
of the primary sample, and obtain corresponding prediction results. We performed human
visual judgment on the prediction results. The correct prediction results were added to
the sample set. The results with certain flaws were added to the sample set after being
manually labelled and modified. The results of the wrong predictions were added to the
sample set as a negative sample to expand the sample set. We used the new sample set to
retrain the model and again predict images of the surrounding area of the sample set, to
realize multiple rounds of sample and model iteration. Finally, we obtained a larger sample
set and a more stable advanced model. We used the advanced models to predict images of
the whole study area and evaluate the accuracy of the prediction results. Since the accuracy
of the model can be improved with multiple iterations of the sample set, we can set an
accuracy expectation value according to the task requirements, computing resources, and
time conditions. If the accuracy evaluation does not meet expectations, we can optimize
the model structure and training strategy to retrain the sample set. If the accuracy meets
expectations, we can obtain three major achievements: the cage and raft culture dataset,
coastline aquaculture area extraction products, and the coastline aquaculture area automatic
extraction model. The overall framework of this study is shown in Figure 1.

2.4. Dataset
2.4.1. Data Processing

The raw Gaofen-2 images must undergo a processing series before they can be used.
Seawater showed low radiation intensity in the image. The image’s original information
needs to be enhanced, especially to identify breeding areas in marine areas. The images
covered a large span of time and space. Data processing ensured that the processed data
had decent consistency.

First, the raw images generally have a bluish cast. Second, due to the weather, mist
exists in many images. In addition, the blue band of some images is missing or damaged,
which distorts image colour. Before the images can be input into the neural network,
we must precisely register the raw images between multiple periods in the same area
between different scenes. It is also necessary to ensure that the images are rich in colour,
moderate in saturation, and have good visibility to facilitate visual interpretation and
machine learning. The image is then de-hazed, and its colour restored in the form of batch
processing, and the resolution of its multispectral bands is improved by image fusion from
the panchromatic band.
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Figure 1. The overall framework of coastal aquaculture extraction.

2.4.2. Samples

The production of samples needs to consider the remote sensing diversity of the
breeding area and the complex background interference of the land and sea. The species
of cultured organisms located in different regions are different for aquaculture cages. The
scale and materials of the breeding cages vary in scale, size, colour, and shape, and various
forms and distribution patterns appeared in the remote sensing images. Marine plants
in the images will show their unique seasonal growth cycles for aquaculture rafts. This
makes breeding areas in different phases in the same area display periodic changes in
colour, texture, and structure, and the original biological characteristics will disappear after
harvesting. Therefore, we need to consider the representativeness and comprehensiveness
of the sample from the distribution of geographical factors.
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We selected sea areas with an average water depth of 2∼15 m and an average annual
seawater velocity of less than 3 m/s, including tropical, subtropical, and temperate climate
zones in the range of 18◦ N ∼ 45◦ N latitude. This was combined with the fishery statistics
in each province’s aquaculture production and large-scale marine pasture areas, after
removing important marine transportation hubs such as ports. The original primary
samples were labelled by human visual interpretation. All samples consisted of a remote
sensing image and corresponding ground truth label. As shown in Table 1, most of the
selected areas were bays, where the seawater depth is moderate, the flow rate is slow, and
the area is well-lit, which is suitable for aquaculture. These areas represent the differences
in breeding areas between the north and south, and cover multiple dimensional and climate
zones, ensuring the comprehensiveness and diversity of the samples. In addition, assuming
sufficient images for the same area, we tried to obtain multi-phase images for samples
where possible. In this way, the differences caused by the remote sensing data in terms
of time and irradiation conditions can be resolved. Therefore, we also considered the
differences in the images caused by different lighting and seasonal factors and images of
different quality when selecting samples.

Table 1. The latitude, average water depth, climate, and average annual sunshine hours of the bays
used for sample labelling.

Area Latitude Average
Water Depth Climate Average Annual

Sunshine Hours

Jinzhou Bay in Liaoning 39◦ N 3∼9 m temperate monsoon climate 2200∼3000
Sanggou Bay & Allen Bay in Shandong 37◦ N 5∼10 m temperate marine monsoon climate 2200∼3000

Haizhou Bay in Jiangsu 34◦ N 5∼10 m temperate monsoon climate 2200∼3000
Sansha Bay in Fujian 26◦ N >10 m subtropical monsoon climate 2200∼3000

Zhenhai Bay in Guangdong 21◦ N 5∼7 m subtropical monsoon climate 2200∼3000
Leizhou Bay in Guangdong 20◦ N 5∼7 m tropical monsoon climate 1400∼2000

Qinzhou Bay in Guangxi 20◦ N 2∼18 m subtropical marine monsoon climate 2400∼2600
South Bay in Hainan 18◦ N 2∼10 m tropical marine monsoon climate 2400∼2600

Although the marine environment will change due to waves, sea winds, ships, marine
life, etc., it can still be considered a relatively simple background compared to the complex
surface environment on land. Ground objects present the phenomena of same object with
a different spectrum and different object with the same spectrum in remote sensing data.
There will be a large number of images containing ground objects that are easily confused
with aquaculture targets. However, the terrestrial environment cannot be completely
discarded when extracting the aquaculture area because many aquaculture cages and
rafts are distributed in tidal flats and ponds on land. Therefore, in the land area and
complex background area of the coastline, we labelled some ground features with similar
characteristics or as easily confused features. We used these as negative samples to assist in
model training, thereby reducing the model’s false detection rate and improving model
accuracy. Figure 2 shows some examples of the sample database.

Figure 2. Sample database visualization for (a) cage culture, (b) raft culture, and (c) background.
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2.5. Coastal Aquaculture Network
2.5.1. Baseline

To maximize the advantages of the encoder–decoder and backbone networks simul-
taneously, we choose the hybrid network DeepLabV3+ [27] as the baseline network ar-
chitecture. The DeepLabV3+ network adopts the encoder–decoder structure to fuse the
multi-scale information of the network to meet the feature extraction requirements of
breeding areas of different sizes. However, encoder–decoder networks usually use pooling
operations to increase receptive fields and aggregate features. This leads to the problem
of a decrease in the resolution of the features. Although the upsampling is restored to
the decoder’s original size, the features’ details is still irreversibly lost, resulting in de-
creased accuracy. DeepLabV3+ adopts a dilated convolution operation commonly used in
backbone networks to increase the receptive field while avoiding the reduction in feature
resolution and the loss of feature information. Keeping the feature resolution unchanged
causes difficulties in feature aggregation. To solve this problem, DeepLabV3+ adopts a
multi-scale feature pyramid structure, encoding the features with dilated convolutions with
different dilation rates, and fuses the multi-scale information of the features. In addition,
the encoder adopts a depth-wise separable convolution to improve the speed of network
feature extraction.

2.5.2. Superpixel Optimization

In the multi-scale feature pyramid structure of DeepLabV3+, five parallel feature
aggregation encoding operations are performed on the feature map. These operations
include 1× 1 convolution, dilated convolutions at rates of 6, 12, and 18, and global pooling
operations. The encoded features, in addition to fusion and upsampling according to the
original DeepLabV3+ network, also construct five feature copies. After the five feature
copies are fused, the simple linear iterative clustering (SLIC) algorithm [45] is used for the
unsupervised segmentation of high-level features.

In the superpixel segmentation module of the network, the feature maps are converted
into approximate, compact, and uniform superpixel blocks for aggregation. The specific
implementation process of the SLIC algorithm is as follows:

After dimensionality reduction, the feature map is treated as an RGB colour space
image and converted to a CIELab colour space. The LAB colour space consists of three
components. L represents the brightness value of a pixel. The value ranges from 0 to 100,
where 0 represents pure black, and 100 represents pure white. A represents the relative
value between green and red. The value ranges from −128 to 127, where negative values
represent the green range and positive values represent the red range. B represents the
relative value between yellow and blue. The value ranges from−128 to 127, where negative
values represent the blue range, and positive values represent the yellow range. Then,
we can obtain a wider colour gamut from the input feature map. Finally, we can use
a five-dimensional vector composed of L, a, b, x, y to represent each pixel of the feature
map [45]. Among these, L, A, and B correspond to the three components in the colour
space, and x and y correspond to the relative coordinates of the pixel in the feature map.

The superpixel centre is first determined. The N number of superpixel blocks is
specified, and n reference points are generated in the map according to the proportion
of the feature map. If the number of pixels in the entire image is M, the size of the pre-
segmented superpixel blocks in the image is M/N pixels, and the side length of each
superpixel block is S =

√
M/N. The gradient of all pixels in the surrounding 3× 3 range

is calculated with the superpixel reference point as the centre. The centre of the superpixel
is then moved to the minimum gradient value in the range, which is the centre point of the
superpixel. The formula of the gradient is defined as:

G(x, y) = (V(x + 1, y)−V(x− 1, y)2 + (V(x, y + 1)−V(x, y− 1)2 (1)

Vi = [Li, ai, bi, xi, yi]
T (2)
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A class label is then assigned to each pixel within the 2S range of the superpixel
centre point. For each pixel, the colour distance Dc and space distance Ds between the
pixel and the centre point is calculated:

Dc =
√
(Li − Lj)2 + (ai − aj)2 + (bi − bj)2 (3)

Ds =
√
(xi − xj)2 + (yi − yj)2 (4)

D =

√
(

Dc

Nc
)2 + (

Ds

Ns
)2 (5)

where Nc is the maximum colour distance, representing the gap between two colours. In
this study, Nc takes a fixed constant of 15. Ns represents the maximum intra-class space
distance, and the value of Ns in this study is the side length S of the superpixel. Multiple
centre points around the pixel will search each pixel. When distance D between the point
and a certain centre point is minimum, the centre point will be the cluster centre of the
superpixel block.

The integrity of superpixel blocks is subsequently optimized. The above steps are
then iterated through until the cluster centre of each superpixel remains constant. If a
superpixel size is too small, it will merge into other adjacent superpixel blocks in this area.
Figure 3 shows the results when a different number of superpixel blocks are set in an image.

Figure 3. The visualized results when a different number of superpixel blocks are set in an im-
age. (a) Remote sensing image. (b) Superpixel blocks set as 64. (c) Superpixel blocks set as 128.
(d) Superpixel blocks set as 256.

2.5.3. Network Architecture

The semantic segmentation results obtained based on the baseline network have
completely classified semantic information, but the boundary accuracy is relatively poor.
The result of superpixel segmentation based on high-level features has accurate boundary
information. However, due to the limitations of unsupervised segmentation, no semantic
information is gathered. Therefore, each superpixel block cannot be automatically classified.
We use the semantic information of semantic segmentation to vote on superpixel blocks.
The dominant class in each superpixel block is used as the classification category of the
whole superpixel block. After this, we obtain precise optimization of the classification
boundary details. We call this network architecture a coastal aquaculture network (CANet).
Figure 4 shows the network detail diagram of CANet.
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Figure 4. The network detail diagram of the coastal aquaculture network.

2.5.4. Loss Function

To calculate the loss value of the CANet, as the learning motivation of the network,
it is necessary to normalize the model’s output with the softmax function and use cross-
entropy as the loss function. The cross-entropy formula for multi-classification problems is
as follows:

L = −
n

∑
i=1

y(i) · log ŷ(i) (6)

ŷ = P(ŷ = i|x) = eX(i)

∑n
j=0 eX(j)

(7)

For the above formula, ŷ is the conditional probability when the pixel label is a certain
category. Single-category information uses one-hot encoding as the label input, and the
input vector is normalized and exponentially transformed using the softmax function.
Then we obtain the predicted probability of each category. The probability values are all
non-negative and the sum to 1.

2.6. Training Settings

We experimentally verified CANet based on the PyTorch deep learning framework [46].
We used the ResNet-101 [47] pre-trained model to initialize the network encoder, the initial
learning rate was set to 0.001, and a warm-up strategy was used to optimize the learning
rate. AdamW [48] was used as the optimizer for training, the weight decay was set to
0.0001, and the momentum was set to 0.9. We used four NVIDIA TITAN Xp GPUs and set
the batch size to 32.

2.7. Evaluation Metrics

We used the F1 score to evaluate the extraction accuracy of cages, rafts, and the
background, and used the mean F1 score and mean intersection over union (IoU) values
to evaluate the overall accuracy. The F1 score can balance the missed and false detection
of extracted results with the accuracy of the image, and the IoU is a more intuitive and
universal metric.
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The formula for the F1 score is as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(8)

where

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

where TP is the number of pixels that are classified as breeding areas and are correct, FP is
the number of pixels that are classified as breeding areas but are incorrect, and FN is the
number of pixels that are not classified as breeding areas but are actually breeding areas.
It is known that TP + FP is the total number of pixels classified as breeding areas, and
TP + FN is the actual number of pixels that cover the breeding area.

The formula for the IoU is as follows:

IoU =
TP

TP + FP + FN
(11)

The mean F1 score and mean IoU represent the average F1 score and IoU for each
category, respectively.

3. Experimental Results
3.1. Ablation Study

To evaluate the performance of the negative sample technology, superpixel optimiza-
tion module, and CANet, we gradually added various modules and methods proposed
in this paper to the baseline network DeepLabV3+ and conducted experiments on the
coastline aquaculture dataset produced in this paper. First, we used the baseline network
DeepLabV3+ for training using it as a benchmark for comparison. Then the negative
sample technology was added based on the baseline to test the effect of the negative sample
technology on aquaculture extraction. Next, a superpixel optimization module was added
based on the baseline to check the module’s ability to extract aquaculture details. Finally,
based on the baseline, the negative sample technology and superpixel optimization module
were added to verify the aquaculture extraction performance of the proposed CANet.

It can be seen from Table 2 that when using the baseline network, the overall accu-
racy mean F1 is 91.98%. When adding confusing negative samples as target resistance in
the sample database, the overall accuracy rose to 93.22%. The single-category accuracy
of aquaculture cages and rafts also increased by over 1%. After adding the superpixel
optimization module to the baseline network, the overall accuracy reached 92.94%. The
superpixel optimization module optimizes the extraction result details, so the accuracy im-
provement is smaller than the negative sample technology. After adding negative samples
and superpixel optimization modules simultaneously, the overall accuracy reached 94.64%.
Additionally, the accuracy of breeding cages and raft identification further improved. The
quantitative accuracy comparison shows that the proposed CANet can significantly im-
prove the accuracy of aquaculture extraction with the assistance of thee negative sample
technology and superpixel optimization module.
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Table 2. Quantitative comparison of the accuracy of ablation learning in different modules of the
CANet. “Baseline” represents the baseline DeepLabV3+; “+ns” represents the negative sample
technology; “+sp” represents the superpixel optimization module; “+ns+sp” represents our proposed
CANet with the negative sample technology and superpixel optimization module. Bold values
indicate best precision.

Methods Background Cage Culture Raft Culture Mean F1 Mean IoU

baseline 92.71 90.72 92.51 91.98 88.66
+ns 93.91 91.91 93.85 93.22 89.86
+sp 93.39 91.76 93.66 92.94 89.78

+ns+sp 95.49 92.55 95.87 94.64 90.91

Figure 5 is the visualization result obtained using the above four methods to perform
model inference on the sample dataset, used to intuitively evaluate the performance of the
negative sample technology and superpixel optimization module. In the first row, due to
the significant colour difference and small distance between one breeding cage and the
other cages, the result of the baseline network connects the two cages together; thus, a false
detection occurs. After adding the negative sample technology, using negative samples
for adversarial learning effectively distinguished the background area. In the second row,
false detections occurred in the culture cages on the left, and were effectively resolved
by adding the negative sample technology. After introducing superpixel optimization,
the edge details of the contour of the culture raft on the right were more accurate and
richer. In the third row, small false detections are present for slender culture cages after
introducing the negative sample technique. However, using the superpixel optimization
module reduced false detection. In the fourth row, the boundary of the culture cage label
is relatively smooth, but in the remote sensing image the boundary is relatively rough. In
this complex situation, both the baseline network and negative sample technology have
a large number of missing detections. Combining the superpixel optimization module
and negative sample technology can effectively solve the problem of missed detection and
ensure that the boundary is more in line with the original image. In summary, CANet,
which integrates negative sample technology and the superpixel optimization module,
performs excellently in coastal aquaculture extraction tasks.

3.2. Comparing Methods

We selected some mainstream semantic segmentation networks for comparison to
verify whether our proposed CANet network can achieve state-of-the-art performance.
The following introduces the mainstream models used for comparison: UNet [23], a classic
encoder–decoder network using a symmetrical U-shape structure and skip-layer connec-
tions to fuse deep semantic information with shallow spatial information. DeepLabV3 [49],
a classic backbone network using different dilation convolution rates to solve multi-scale
information extraction problems. FPN [50] uses a feature pyramid structure to fuse the
semantic information of features of different scales. PAN [51] uses the attention mechanism
to accurately filter effective feature information. PSPNet [26] uses the spatial pooling
pyramid structure to solve multi-scale feature aggregation problems. Our proposed CANet
integrates the negative sample technique and superpixel optimization module.

It can be seen from Table 3 that PSPNet has the highest overall accuracy compared
with the other mainstream networks, and the mean F1 reaches 93.28%, while the proposed
CANet reaches 94.64%. The background category CANet exceeds PSPNet by about 1.2%,
the culture cage category exceeds PAN by about 0.4%, and the culture raft exceeds PSPNet
by about 1.4%. This shows that the proposed CANet surpasses the other mainstream
semantic segmentation networks from the perspective of quantitative comparison and
reaches state-of-the-art performance.
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Figure 5. Visual comparison of the results of ablation learning of the different modules of the CANet.
(a) Remote sensing image. (b) Label for coastal aquaculture. Results of (c) the baseline DeepLabV3+,
(d) baseline with the negative sample technology, (e) baseline with the superpixel optimization
module, and (f) baseline with the negative sample technology and superpixel optimization module
(proposed CANet).

Table 3. Quantitative comparison of the accuracy between our proposed CANet and other mainstream
networks. Bold values indicate best precision.

Methods Background Cage Culture Raft Culture Mean F1 Mean IoU

UNet 92.38 89.66 92.71 91.58 86.77
DeepLabV3 92.77 89.55 92.97 91.76 86.82

FPN 93.09 86.19 94.08 91.12 85.88
PAN 93.66 92.17 92.66 92.83 87.92

PSPNet 94.21 91.15 94.47 93.28 88.43
CANet 95.49 92.55 95.87 94.64 90.91

Figure 6 compares the visualization results of CANet and other mainstream semantic
segmentation networks for aquaculture extraction. In the first row, the FPN produces
many false detections, and the other mainstream networks possess false concatenations
and small false detections, while the CANet performs better. In the second row, almost all
the other mainstream networks have certain false detections, while the extraction results of
the proposed CANet are more accurate. In the third row, there are many missed detections
in the FPN. PSPNet mistakenly connects breeding cages into one piece, while the result
of proposed CANet is closest to the ground truth of the label. In the fourth row, the
aquaculture cages and background in the original image are very complicated. Other
mainstream networks struggle to effectively extract the aquaculture cages. PSPNet can
extract a few, but there are still many missed detections. However, CANet can effectively
extract all breeding cages, and the edge is more in line with the actual image. In summary,
our proposed CANet achieved the best performance.
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Figure 6. Visual comparison of the results between our proposed CANet and the other mainstream
networks. (a) Remote sensing images. (b) Labels for coastal aquaculture. The results of (c) UNet,
(d) DeepLabV3, (e) FPN, (f) PAN, (g) PSPNet, and (h) our proposed CANet.

3.3. Large-Scale Mapping and Statistics

We use the trained CANet model with the best performance to automatically extract
aquaculture from Gaofen-2 satellite data covering 640 coastal scenes of mainland China.
After this, we obtained a regional distribution map of the cage and raft cultures within
30 km of the coast, as shown in Figure 7. Based on the coastal aquaculture map, we
calculated statistics to obtain the area of breeding areas and the number of breeding targets
in each province, as shown in Table 4.

Table 4. The area of aquaculture areas and the number of aquaculture targets in each province.

Province
Aquaculture Area (km2) Number of Aquaculture Targets

Cage Raft Total Cage Raft Total

Liaoning 3.99 671.20 675.19 947 51,285 52,232
Hebei & Tianjin 0.07 0.01 0.08 92 37 129

Shandong 6.79 564.16 570.95 2906 59,643 62,549
Jiangsu 2.29 653.93 656.21 2018 88,045 90,063

Zhejiang & Shanghai 1.89 54.78 56.67 1708 9552 11,260
Fujian 54.46 462.28 516.74 21,990 79,348 101,338

Guangdong 42.41 189.43 231.84 46,301 115,965 162,266
Guangxi 24.61 18.21 42.82 21,992 15,466 37,458
Hainan 3.13 0.73 3.86 2590 577 3167

3.4. Discussion

In this study, samples were created based on the panchromatic-fused Gaofen-2 images,
and a rapid extraction method for two major marine aquaculture areas near the coast
was explored based on high-resolution images. Compared with the Sentinel image, the
Gaofen-2 images have a higher spatial resolution. The method improved the edge extrac-
tion and accuracy of the breeding area to varying degrees, providing a new benchmark
method for the fast and high-precision extraction of small areas. Zhangzidao island, lo-
cated in Liaoning Province, has been previously investigated for fraudulent aquaculture
operations. The investigation used the Beidou navigation system to analyse the fishing
operations of its fishing boats for several years. The actual production of aquaculture in
Zhangzidao island can be evaluated with the help of single-phase high-resolution images
using the method proposed in this work. Regarding data processing and interpretation
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efficiency, the advantages of using deep learning methods to extract aquaculture areas
rapidly are demonstrated.

Figure 7. The coastal aquaculture mapping of the coastline in mainland China.

However, optical remote sensing images still have limitations [9]. Due to the charac-
teristics of its sensors, the Gaofen-2 images have limited visibility to water bodies. The
temporal resolution also results in a large amount of cloud coverage. For areas of turbulent
sea, images may be jagged or contain disconnected phenomena in marine plant breeding
areas [33], which will cause errors in the extraction results. Our superpixel optimization
method can solve the impact of small-area disconnected problems. However, low-latitude
regions with abundant clouds and rain often face problems of cloud coverage, making it
difficult to obtain large-area images of the same time phase. Therefore, although the extrac-
tion of aquaculture areas by this method can maintain good accuracy, the actual extraction
results will somewhat differ from human field survey data. Human field survey data de-
pends on the date of data collection, whereas the automatic extraction algorithm depends
on the imaging date. Although aquaculture in different periods does not change based on
time or seasons, small changes cannot be avoided due to the influence of tides. Moreover,
the model’s accuracy could not reach 100%, so there are slight difference between the auto-
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matically extracted aquaculture area and human field surveys. The proposed CANet model
avoids the influence of location and time on the extraction results as much as possible
by labelling samples of different locations and dates, achieving strong and robust gener-
alization capabilities. Compared with other deep learning-based aquaculture extraction
research [30,31,33–37], our method adopts the negative sample technique and multi-scale
superpixel optimization method, which has a stronger generalization ability and robustness
across time and location. Therefore, using the proposed CANet achieves good extraction
results in large-scale aquaculture extraction, providing technical support for the automation
of fishery resource censuses and the sustainable development of marine resources.

4. Conclusions

In this work, we proposed a convolutional neural network for coastal aquatic ex-
traction from high-resolution remote sensing images. We constructed a sample database
balancing spatial distribution and solving the model generalization problem for large-scale
aquaculture extraction. We expanded the sample database by using confused land features
as negative samples, thus solving the interference of confusing land features on aquaculture
extraction. We designed a multi-scale-fusion superpixel segmentation optimization module
based on the baseline DeepLabV3+, and designed the CANet network architecture. CANet
effectively optimizes boundary identification and improves the overall accuracy of aquacul-
ture extraction. Based on CANet, we extracted cage and raft culture areas near the coastline
of mainland China with an overall accuracy of 94.64%, reaching state-of-the-art perfor-
mance. The results obtained in this work can provide scientific, technical, and data support
for the spatial planning and regulation of China’s coastal fisheries. In future research, we
will aim to introduce more intensive time-series images to explore the relationship and
laws between aquaculture and seawater flow, climate, economy, and other factors.

Author Contributions: Conceptualization, J.D. and Z.C.; methodology, J.D. and X.Y.; software,
X.Y.; validation, J.D. and Y.B.; formal analysis, J.D. and X.Y.; investigation, J.D.; resources, C.L.;
data curation, J.D. and Y.B.; writing—original draft preparation, J.D.; writing—review and editing,
X.Y.; visualization, J.D. and Y.B.; supervision, T.S.; project administration, Z.C. and Y.B.; funding
acquisition, Z.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Strategic Priority Research Program of the Chinese
Academy of Sciences under Grant No. XDA23100304.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the editors and anonymous reviewers for their valuable
comments, greatly improving the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CANet coastal aquaculture network
SLIC simple linear iterative clustering
F1 F1 score
TP true positive
FP false positive
FN false negative
IoU intersection over union
ns negative sample technology
sp superpixel optimization technology



Sustainability 2023, 15, 5332 17 of 18

References
1. Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2020: Sustainability in

Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020.
2. Hao, J.; Xu, G.; Luo, L.; Zhang, Z.; Yang, H.; Li, H. Quantifying the relative contribution of natural and human factors to

vegetation coverage variation in coastal wetlands in China. Catena 2020, 188, 104429. [CrossRef]
3. Rico, A.; Van den Brink, P.J. Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species

produced in Asia. Sci. Total. Environ. 2014, 468, 630–641. [CrossRef] [PubMed]
4. Zheng, Y.; Jin, R.; Zhang, X.; Wang, Q.; Wu, J. The considerable environmental benefits of seaweed aquaculture in China. Stoch.

Environ. Res. Risk Assess. 2019, 33, 1203–1221. [CrossRef]
5. Gao, Q.; Li, Y.; Qi, Z.; Yue, Y.; Min, M.; Peng, S.; Shi, Z.; Gao, Y. Diverse and abundant antibiotic resistance genes from mariculture

sites of China’s coastline. Sci. Total. Environ. 2018, 630, 117–125. [CrossRef] [PubMed]
6. Ottinger, M.; Clauss, K.; Kuenzer, C. Aquaculture: Relevance, distribution, impacts and spatial assessments—A review. Ocean.

Coast. Manag. 2016, 119, 244–266. [CrossRef]
7. Zhang, J.; Wu, W.; Ren, J.S.; Lin, F. A model for the growth of mariculture kelp Saccharina japonica in Sanggou Bay, China. Aquac.

Environ. Interact. 2016, 8, 273–283. [CrossRef]
8. Maiti, S.; Bhattacharya, A.K. Shoreline change analysis and its application to prediction: A remote sensing and statistics based

approach. Mar. Geol. 2009, 257, 11–23. [CrossRef]
9. Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 2011.
10. Karthik, M.; Suri, J.; Saharan, N.; Biradar, R. Brackish water aquaculture site selection in Palghar Taluk, Thane district of

Maharashtra, India, using the techniques of remote sensing and geographical information system. Aquac. Eng. 2005, 32, 285–302.
[CrossRef]

11. Kapetsky, J.M.; Aguilar-Manjarrez, J. Geographic Information Systems, Remote Sensing and Mapping for the Development and
Management of Marine Aquaculture; Number 458; Food & Agriculture Organization: Rome, Italy, 2007.

12. Seto, K.C.; Fragkias, M. Mangrove conversion and aquaculture development in Vietnam: A remote sensing-based approach for
evaluating the Ramsar Convention on Wetlands. Glob. Environ. Chang. 2007, 17, 486–500. [CrossRef]

13. Saitoh, S.I.; Mugo, R.; Radiarta, I.N.; Asaga, S.; Takahashi, F.; Hirawake, T.; Ishikawa, Y.; Awaji, T.; In, T.; Shima, S. Some
operational uses of satellite remote sensing and marine GIS for sustainable fisheries and aquaculture. ICES J. Mar. Sci. 2011,
68, 687–695. [CrossRef]

14. Zhang, T.; Yang, X.; Hu, S.; Su, F. Extraction of coastline in aquaculture coast from multispectral remote sensing images:
Object-based region growing integrating edge detection. Remote Sens. 2013, 5, 4470–4487. [CrossRef]

15. Zhang, X.; Ma, S.; Su, C.; Shang, Y.; Wang, T.; Yin, J. Coastal oyster aquaculture area extraction and nutrient loading estimation
using a GF-2 satellite image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4934–4946. [CrossRef]

16. Sun, Z.; Luo, J.; Yang, J.; Yu, Q.; Zhang, L.; Xue, K.; Lu, L. Nation-scale mapping of coastal aquaculture ponds with sentinel-1 SAR
data using google earth engine. Remote Sens. 2020, 12, 3086. [CrossRef]

17. Zhu, H.; Li, K.; Wang, L.; Chu, J.; Gao, N.; Chen, Y. spectral characteristic analysis and remote sensing classification of coastal
aquaculture areas based on GF-1 data. J. Coast. Res. 2019, 90, 49–57. [CrossRef]

18. Kang, J.; Sui, L.; Yang, X.; Liu, Y.; Wang, Z.; Wang, J.; Yang, F.; Liu, B.; Ma, Y. Sea surface-visible aquaculture spatial-temporal
distribution remote sensing: A case study in Liaoning province, China from 2000 to 2018. Sustainability 2019, 11, 7186. [CrossRef]

19. Du, Y.; Wu, D.; Liang, F.; Li, C. Integration of case-based reasoning and object-based image classification to classify SPOT
images: A case study of aquaculture land use mapping in coastal areas of Guangdong province, China. Gisci. Remote Sens. 2013,
50, 574–589. [CrossRef]

20. Wei, Z. Analysis on the Relationship between Mangrove and Aquaculture in Maowei Sea Based on Object-Oriented Method. E3S
Web Conf. 2020, 165, 03022. [CrossRef]

21. Zhang, B.; Chen, Z.; Peng, D.; Benediktsson, J.A.; Liu, B.; Zou, L.; Li, J.; Plaza, A. Remotely sensed big data: Evolution in model
development for information extraction [point of view]. Proc. IEEE 2019, 107, 2294–2301. [CrossRef]

22. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
23. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the In-

ternational Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

24. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

25. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

26. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 2881–2890.

27. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

http://doi.org/10.1016/j.catena.2019.104429
http://dx.doi.org/10.1016/j.scitotenv.2013.08.063
http://www.ncbi.nlm.nih.gov/pubmed/24061054
http://dx.doi.org/10.1007/s00477-019-01685-z
http://dx.doi.org/10.1016/j.scitotenv.2018.02.122
http://www.ncbi.nlm.nih.gov/pubmed/29477109
http://dx.doi.org/10.1016/j.ocecoaman.2015.10.015
http://dx.doi.org/10.3354/aei00171
http://dx.doi.org/10.1016/j.margeo.2008.10.006
http://dx.doi.org/10.1016/j.aquaeng.2004.05.009
http://dx.doi.org/10.1016/j.gloenvcha.2007.03.001
http://dx.doi.org/10.1093/icesjms/fsq190
http://dx.doi.org/10.3390/rs5094470
http://dx.doi.org/10.1109/JSTARS.2020.3016823
http://dx.doi.org/10.3390/rs12183086
http://dx.doi.org/10.2112/SI90-007.1
http://dx.doi.org/10.3390/su11247186
http://dx.doi.org/10.1080/15481603.2013.842292
http://dx.doi.org/10.1051/e3sconf/202016503022
http://dx.doi.org/10.1109/JPROC.2019.2948454
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186


Sustainability 2023, 15, 5332 18 of 18

28. Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders
for medical image segmentation. arXiv 2021, arXiv:2102.04306.

29. Liu, Y.; Wang, Z.; Yang, X.; Zhang, Y.; Yang, F.; Liu, B.; Cai, P. Satellite-based monitoring and statistics for raft and cage aquaculture
in China’s offshore waters. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102118. [CrossRef]

30. Cheng, B.; Liang, C.; Liu, X.; Liu, Y.; Ma, X.; Wang, G. Research on a novel extraction method using Deep Learning based on GF-2
images for aquaculture areas. Int. J. Remote Sens. 2020, 41, 3575–3591. [CrossRef]

31. Su, H.; Wei, S.; Qiu, J.; Wu, W. RaftNet: A New Deep Neural Network for Coastal Raft Aquaculture Extraction from Landsat 8
OLI Data. Remote Sens. 2022, 14, 4587. [CrossRef]

32. Ottinger, M.; Clauss, K.; Kuenzer, C. Large-scale assessment of coastal aquaculture ponds with Sentinel-1 time series data. Remote
Sens. 2017, 9, 440. [CrossRef]

33. Cui, B.; Fei, D.; Shao, G.; Lu, Y.; Chu, J. Extracting raft aquaculture areas from remote sensing images via an improved U-net with
a PSE structure. Remote Sens. 2019, 11, 2053. [CrossRef]

34. Fu, Y.; Ye, Z.; Deng, J.; Zheng, X.; Huang, Y.; Yang, W.; Wang, Y.; Wang, K. Finer resolution mapping of marine aquaculture areas
using worldView-2 imagery and a hierarchical cascade convolutional neural network. Remote Sens. 2019, 11, 1678. [CrossRef]

35. Cui, B.G.; Zhong, Y.; Fei, D.; Zhang, Y.H.; Liu, R.J.; Chu, J.L.; Zhao, J.H. Floating raft aquaculture area automatic extraction based
on fully convolutional network. J. Coast. Res. 2019, 90, 86–94. [CrossRef]

36. Lin, H.; Shi, Z.; Zou, Z. Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network.
Remote Sens. 2017, 9, 480. [CrossRef]

37. Feng, Q.; Yang, J.; Zhu, D.; Liu, J.; Guo, H.; Bayartungalag, B.; Li, B. Integrating multitemporal Sentinel-1/2 data for coastal land
cover classification using a multibranch convolutional neural network: A case of the Yellow River Delta. Remote Sens. 2019,
11, 1006. [CrossRef]

38. Ferriby, H.; Nejadhashemi, A.P.; Hernandez-Suarez, J.S.; Moore, N.; Kpodo, J.; Kropp, I.; Eeswaran, R.; Belton, B.; Haque, M.M.
Harnessing machine learning techniques for mapping aquaculture waterbodies in Bangladesh. Remote Sens. 2021, 13, 4890.
[CrossRef]

39. Zhang, Y.; Wang, C.; Ji, Y.; Chen, J.; Deng, Y.; Chen, J.; Jie, Y. Combining segmentation network and nonsubsampled contourlet
transform for automatic marine raft aquaculture area extraction from sentinel-1 images. Remote Sens. 2020, 12, 4182. [CrossRef]

40. Liu, S.; Gao, K.; Qin, J.; Gong, H.; Wang, H.; Zhang, L.; Gong, D. SE2Net: Semantic segmentation of remote sensing images based
on self-attention and edge enhancement modules. J. Appl. Remote Sens. 2021, 15, 026512.

41. Wang, Y.; Aubrey, D.G. The characteristics of the China coastline. Cont. Shelf Res. 1987, 7, 329–349. [CrossRef]
42. Agency, C.I. The World Factbook 2011; Central Intelligence Agency: McLean, VI, USA, 2011.
43. Li, W.; Zhao, S.; Chen, Y.; Wang, L.; Hou, W.; Jiang, Y.; Zou, X.; Shi, S. State of China’s climate in 2021. Atmos. Ocean. Sci. Lett.

2022, 15, 100211. [CrossRef]
44. Boulay, S.; Colin, C.; Trentesaux, A.; Pluquet, F.; Bertaux, J.; Blamart, D.; Buehring, C.; Wang, P. Mineralogy and sedimentology of

Pleistocene sediment in the South China Sea (ODP Site 1144). Proc. Ocean. Drill. Program Sci. Results 2003, 184, 1–21.
45. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel

methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]
46. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035.

47. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

48. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
49. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,

arXiv:1706.05587.
50. Kirillov, A.; Girshick, R.; He, K.; Dollár, P. Panoptic feature pyramid networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 6399–6408.
51. Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jag.2020.102118
http://dx.doi.org/10.1080/01431161.2019.1706009
http://dx.doi.org/10.3390/rs14184587
http://dx.doi.org/10.3390/rs9050440
http://dx.doi.org/10.3390/rs11172053
http://dx.doi.org/10.3390/rs11141678
http://dx.doi.org/10.2112/SI90-011.1
http://dx.doi.org/10.3390/rs9050480
http://dx.doi.org/10.3390/rs11091006
http://dx.doi.org/10.3390/rs13234890
http://dx.doi.org/10.3390/rs12244182
http://dx.doi.org/10.1016/0278-4343(87)90104-X
http://dx.doi.org/10.1016/j.aosl.2022.100211
http://dx.doi.org/10.1109/TPAMI.2012.120

	Introduction
	Materials and Methods
	Study Area
	Data Source
	Overall Framework
	Dataset
	Data Processing
	Samples

	Coastal Aquaculture Network
	Baseline
	Superpixel Optimization
	Network Architecture
	Loss Function

	Training Settings
	Evaluation Metrics

	Experimental Results
	Ablation Study
	Comparing Methods
	Large-Scale Mapping and Statistics
	Discussion

	Conclusions
	References

