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Abstract: In this paper, a methodology for the estimation of fuel consumption using backward-facing
analysis is presented. The method for the determination of fuel consumption was based on the
evaluation of the total work required to drive the vehicle along a specific drive cycle. At the same
time, the potential fuel economy was estimated using the energy that can be harvested from the wheel.
The results obtained using this model were compared with complex MATLAB/Simulink models
developed using the forward-facing strategy. The MATLAB Simulink model details conventional and
hybrid vehicle models capable of estimating fuel consumption. The components of the longitudinal
forces opposing the vehicle during driving were investigated and analyzed using the results of the
analytical and simulation models. The procedure can be successfully applied to provide a quick
estimate of the fuel consumption performance before detailing complex simulation models.

Keywords: backward-facing analysis; fuel consumption; longitudinal wheel force; model validation

1. Introduction

Fuel consumption is a performance indicator of vehicles. During the design stages, it is
necessary to perform analyses capable of determining the output of the future vehicle. Simu-
lation models range from simple to complex, depending on the available information about
the components (systems and sub-systems) used for the specific vehicle. When it comes to
performing fuel consumption exhaust gases analysis, the common practice is to evaluate
the performance using a drive cycle [1]. The specialist worked to construct a Worldwide
harmonized Light duty Test Cycle (WLTC) and the corresponding Test Procedure.

The development of the WLTC test cycle was based on real-life traffic data collected
from various regions of the world. The data were analyzed, and a series of weighting
factors were applied to provide a representative solution for each region investigated [2].

The European Commission replaced the NEDC drive cycle with the WLTP cycle to
improve vehicle pollutant emissions or the vehicles’ fuel economy [3]. Consequently, the
new cycle aims to close the gap between real-life and type-approval CO2 emissions. This is
an important issue when fuel consumption is evaluated, as the acceleration phases may
have significant importance. Past research revealed that the factors of acceleration vs. speed
may require some attention [4,5]. The vehicle emissions were investigated in the case of
gasoline, biogas, and biogas plus hydrogen fuels, and both NEDC and WLTP show similar
performances [6]. The differences between the implementation of the current drive cycle
(WLTP) and the previous version (NEDC) were investigated, including the evaluation of
the road loads [7]. It should be noted that research activities involve evaluating the fuel
consumption for conventional and plug-in hybrid vehicles that use the NEDC cycle [8].

Procedures have been developed to investigate the entire vehicle or its sub-systems.
Starting from the engine, a general-purpose model was proposed [9]. It should be noted
that the efforts are aimed towards simplifying the simulation models. The transmission,
especially the speed and gear ratio, are an important set of parameters capable of improving
fuel consumption performance, especially for hybrid vehicles [10]. The overall output of the
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power sources should correlate with the required tractive force. The road load was also used
as an input parameter for the development of the control strategy for a P2 Hybrid Electric
Vehicle [11]. The multiple power sources or multiple driving axles can only be correlated
when the capable driving torque agrees with the existing road loads [12]. Rapid assessment
of performance is a tool that specialists focus on during preliminary design stages [13].
The hybrid vehicle [14] provides a solution for fuel economy, considering the regeneration
sequences available during deceleration phases and downhill driving [15]. The simulation
techniques [16] and tools are in continuous expansion, considering the advancements in
numerical analysis. The existing simulation technologies can be further enhanced using
deep learning strategies for improved accuracy of the results [17]. Convolutional Neural
Networks can be used to model the transient regime for a more realistic analysis of the
quality of exhaust gases.

The existing simulation procedures available for light vehicles are tested to be ex-
tended [14] for commercial vehicles to evaluate performances. A solution for a hybrid
commercial vehicle was investigated using the use of an electric engine over an internal
combustion engine as a first approach, while the second approach followed a conventional
hybrid functioning scheme [18]. The delivered torque was investigated and compared to
the required driving conditions. It was found that the existing hybrid solution is valid
and provides satisfactory results. The challenge of developing an accurate driving cycle
is still ongoing, and new solutions have been proposed using data-on-board [19]. The
conventional driving cycles are also applied to fully electric vehicles [20] as a validation
procedure for component performance. The acceleration regime and the modeling solution
are essential for estimating vehicle performance [21]. The energy savings are closely related
to the braking regimes, and based on these conditions, energy management algorithms
can be improved [22,23]. The required torque gives the engine efficiency and affects the
performance of the battery charging process [24]. The potential of other regenerative power
sources (e.g., solar energy) [25] is evaluated, and the impact of implementing these so-
lutions on vehicle performances can be investigated using simulation models. The solar
energy and the work provided by this energy source can be injected into the main power
stream [26]. Route planning for maximum efficiency of solar energy is a solution for future
transportation technology [27].

Based on the current finding in the field, there are two technical approaches to solving
the numerical problem [28]. The first solution is defined as “backward” (or “backward-
facing”) in which the input is provided by the driving cycle [29]. The required force to
drive the cycle is determined based on the vehicle definition. The second solution, using
a forward-facing method, is more complex and requires a logical element representing
the driver. The “driver” controls the commands of the vehicle accelerator, brake, and gear
selector. This logical component should always evaluate the difference between the output,
representing the kinematic and dynamic state of the vehicle, and the input, represented
by the prescribed speed of the vehicle. Thus, besides the complexity of modeling the
mechanical system, developing a correct model for the “driver” is necessary.

Although apparently simplistic, the backward-facing modeling solution is currently
implemented to provide an evaluation of CO2 emissions and fuel consumption for light-
duty [30] and heavy-duty vehicles [31]. Advanced simulation tools can be designed in
open-architecture solutions, allowing the user to add various components according to the
desired configuration of the vehicle.

The investigated literature reveals that an accurate estimation of the road loads is
required. This way, either torque or power can be determined, and thus, fuel consumption
can be estimated. No matter the complexity of the model or the simulation strategy, fuel
consumption is related to the tractive force. Therefore, it is possible to have a simple model
capable of producing reliable results without considering a complex vehicle construction
analysis. The model can be applied to alternative power sources (e.g., solar energy), and
can be used to balance the cargo load and the vehicle mass for optimal commercial output.
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This paper’s backward-facing modeling determines the longitudinal wheel force
required to drive the vehicle along a prescribed cycle. Some parameters (e.g., coefficient of
rolling resistance, factor accounting for rotational masses) required to estimate the road
loads are investigated. Fuel consumption is the key parameter investigated in this paper in
terms of the necessary to complete the driving cycle and potential savings considering the
deceleration sequences.

Complex MATLAB/Simulink models were used to validate the results. The first
model models a conventional vehicle, while the second aims to evaluate a hybrid (mild)
vehicle.

A series of parameters were extracted from these models (e.g., drag force, inertia force,
rolling resistance) and compared with the results of the analytical model.

This can be seen as an open-architecture solution. The wheel torque can be easily
estimated and, by adding transmission efficiency maps for sets of gear ratios, can be
transferred to the power source(s).

The longitudinal wheel force is, thus, a given parameter that should be achieved no
matter how the drivetrain and logic of the vehicle are constructed.

2. Dynamics of the Vehicle in Longitudinal Motion

The vehicle’s modeling process begins with defining the basic dynamics. The drive
cycle defines a driving scenario that considers the vehicle in longitudinal motion. Thus, the
dynamics of the vehicle are substantially simplified. The following equation expresses the
equation of motion in the longitudinal direction:

FW,X = Rr + Ra + Rg +
W
g
·γ·a (1)

The terms listed in Equation (1) [32] represent the total longitudinal wheel force (FW,X),
total rolling resistance of the vehicle (Rr), the aerodynamic resistance (Ra), grade resistance(

Rg
)
, and the acceleration term (a), gravitational acceleration (g), vehicle weight (W), and

a coefficient (γ) which accounts for the rotational masses’ influence on the inertia force’s
translational effect.

The term total longitudinal force is preferred in the paper over the term tractive force.
It is considered that the tractive force [32] is the resultant force at the wheel hub. In this
case, a minimum force equal to the rolling resistance is required to produce longitudinal
displacement of the vehicle.

The rolling resistance force accounts for the effects of the interaction between the
pneumatic tire and the surface of the road. It is generally expressed in terms of the
vehicle’s weight (W), and a non-dimensional parameter called the coefficient of rolling
resistance ( fr).

Rr = fr·W· cos α (2)

The coefficient of rolling resistance can be expressed as a constant value or as a function
of the speed of the vehicle [32]:

fr = 0.01·
(

1 +
V

160

)
(3)

or:

fr =

(
µs + µk·

V
3.6

)
(4)

where µs and µk represent the static and kinetic coefficients of rolling resistance (µs = 1.2·10−2

and µk = 8.8·10−5 [33]), respectively. For all the functions mentioned above, the speed of
the vehicle (V) is expressed in km/h.
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The aerodynamic resistance (Ra) is usually expressed in the form:

Ra =
1
2
·ρair·CD·A f ·v2 (5)

where ρ is the air density
(
ρair = 1.225 kg/m3), CD is the coefficient for the aerodynamic

resistance, A f is the frontal projected area of the vehicle, and v is the speed of the vehicle
relative to wind.

The grade resistance represents the longitudinal component of the vehicle and, in this
case, is expressed as:

Rg = W· sin α (6)

Parameter α represents the longitudinal inclination of the road and is normally ex-
pressed as p% representing the road grade. For a value of grade up to 15% it can be
considered that tan α ∼= p% (sin α ∼= p%; cos α ∼= 1).

The coefficient (γ) used for the inertia force can be expressed as a function of the
transmission’s ratios (ξ0) of the final drive and

(
ξgb

)
of the gearbox [32]:

γ = 1.04 + 0.0025·
(

ξ0·ξgb

)2
(7)

This solution requires the definition of the transmission of the vehicle. Peng et al. [33]
provide a variant method to determine this parameter as a function of the vehicle speed:

γ =
1

1.02 − 5.22
V

(8)

Equation (1) can be written as:

FW,X = fr·W +
1
2
·ρ·CD·A f ·v2 + p%·W +

W
g
·γ·dv

dt
(9)

The following layout is preferred to reflect the performance of the vehicle:

G − p% =
γ

g
·dv

dt
(10)

and includes the measure of the gradeability (G):

G =
FT − Ra − Rr

W
(11)

3. Backward-Facing Simulation of Vehicle Dynamics

In the backward-facing simulation, the dataset defining the specific drive cycle is used
to compute, by a set of empirical equations, the necessary wheel longitudinal force (FW,X).
The analysis model is simplified, as there is no need for a driver model or a reactive loop to
control the drivetrain parameters (Figure 1).
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The cycle data are generally defined as a collection of points defining the vehicle’s
time and required speed (in some cases, the gradient can be defined). Figure 2 presents the
speed and acceleration versus time for a specific drive cycle (e.g., Worldwide Harmonized
Light-Duty Vehicles Test Procedure (WLTP)).
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Figure 2. Drive cycle (WLTP, Class 3). Speed and acceleration vs. time.

The space traveled during the drive cycle is presented in Figure 3.
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Figure 3. Drive cycle (WLTP, Class 3). Speed and traveled space vs. time.

The work of the rolling resistance (Wri ) is estimated using the following Equation:

Wri = Rr,i·∆di,i−1·sgn(vi) (12)

The sign operator (sgn) was introduced to account for the intermediate phases
(Vi = 0 km/h) that are identified in the drive cycle. Otherwise, a positive value of the
rolling resistance is computed, even if the vehicle is stationary. The distance travelled
during the reference time interval from time ti−1 to time ti is denoted by ∆di,i−1.

The work of the aerodynamic drag (Wai ) is estimated by the formula:

Wai = Ra,i·∆di,i−1 (13)

while the work consumed to accelerate (restored during deceleration phases) the vehicle(
Wii
)

is estimated by:

Wii =
W
g
·γ·dv

dt
·∆di,i−1 (14)

Figure 4 presents the results obtained for the current driving cycle. The results are
cumulated for each reference time interval to report the instantaneous energy required to
drive the vehicle. The reference time interval represents the time between two entries in
the driving cycle dataset.
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Figure 4. The work of the road loads (reference time interval values).

The results can be conveniently manipulated to provide a representation of the energy
that can be recovered

(
Wii
)

[34] during the deceleration phases of the vehicle (Figure 5). It
should be noted that the effect of the permanent road loads (Wri + Wai ) was subtracted
from the available (recovered) work.
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The values can be cumulated for each reference time interval to display the total energy
required to drive the vehicle. The energy that might be potentially recovered during the
deceleration phases is thus determined (Figure 6).
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4. Forward-Facing Simulation of Vehicle Dynamics

Forward-facing simulation is more complex and is designed to encapsulate the logic
necessary to control the powerplant and driveline of the vehicle, providing the longitudinal
wheel force necessary to overcome the resistance forces as defined by the drive cycle. For
the current analysis, a MATLAB/Simulink model was used. This model is pre-defined as a
“Conventional Vehicle Reference Application”. Figure 7 presents the general configuration
of the simulation model.
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The simulation model is complex, and allows a number of variants to be defined. The
SimpleEngine sub-system was selected using the Variant Manager to define a compatible
model with the one defined by the set of analytical equations. A view of the sub-systems is
presented in Figure 8.
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Figure 8. Variant Manager application showing the configuration of the Conventional Vehicle.

The Conventional Vehicle can be extended to allow the use of an electric propulsion
system using the motor, generator units, and an energy storage unit (batteries pack).

Figure 9 presents a generic configuration of the vehicle used for the forward-facing
simulation. The symbol 	 colored in red defines the power flow for the Conventional
Vehicle, while the green arrow adds the electrical components to the driveline.

The parameters used for the simulation models (forward-facing simulation) and the
theoretical analysis (backward-facing model) are listed in Table 1.

The current analytical model uses the engine and transmission’s global efficiency pa-
rameters (constants). The efficiency parameters were extracted from the MATLAB/Simulink
models after performing the power and energy analysis. The engine and transmission
efficiency values can be determined from the experimental data, complex simulation model,
or evaluated as averaged data.
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Figure 9. Forward-facing simulation model. The virtual driver follows the drive cycle by controlling
the acceleration, brake, and gear selector input commands. The vehicle’s response is monitored and
constantly adapted to the requirements of the drive cycle. The vehicle’s conventional (autoblkCon-
VehStart) and hybrid (autoblkHevStart) configurations are presented.

Table 1. Parameters for the theoretical and simulation models.

Parameter(s) Symbol(s) and Unit(s) Value

Theoretical Models
Vehicle mass m [kg] 1200

Drag coefficient CD [−] 0.3
Frontal area A f

[
m2] 2.0

Engine efficiency ηICE [−] 0.24
Driveline efficiency ηDL [−] 0.92

Energy conversion efficiency ηME [−] 0.65
Fuel density (E10) ρE10

[
kg/m3] 754

Fuel (gross) calorific value (GCV) GCVE10[MJ/kg] 46.4
MATLAB Models

Brake-specific fuel consumption BSFC [g/kWh] 275
Battery rated capacity [Ah] 5.2

Battery State of Charge [−] 80%
Generator–max. torque [Nm] 100

The brake-specific fuel consumption is a performance parameter of the internal com-
bustion engine (BSFC), and is highly dependent on the functioning regime of the engine.

For the MATLAB/Simulink model, the BSFC was constrained to a constant value to
match the hypothesis of constant efficiency parameters used for the analytical solution.
This constant can be seen as a target value to be achieved using detailed analyses of the
driveline parameters (final drive ratio, gear ratios, efficiency).

The first iteration was performed using the conventional vehicle model. Figure 10
presents the longitudinal wheel force computed using both the analytical model and as a
result of the MATLAB/Simulink analysis.
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Figure 10. Longitudinal wheel force (FW,X): backward- vs. forward-facing analysis.

Results presented in Figure 8 are in good agreement, showing that the analytical
solution can be successfully used to identify the wheel force necessary to overcome the
road loads.

5. Fuel Consumption Analysis

The most important parameter related to vehicle performance is fuel consumption.
This parameter can be directly related to the quantity of pollutant emissions, although these
issues should be particularly addressed considering the technical solutions used for the
treatment of exhaust gases.

A convenient approach to evaluate a vehicle’s fuel consumption is to convert the work
required to drive the vehicle into heat.

The proposed solution is very flexible and can be applied to various fuels once the
density and calorific value are determined. It can also be used to perform economic
analyses, considering the price of the fuel for increased efficiency.

Thus, the following equation is obtained to determine the fuel consumed during the
reference time interval:

Qi =
Wi·1000

ρ f uel ·GCV·ηICE·ηDL
(15)

The total work (Wi) is defined as:

Wi = Wri + Wai + Wii (16)

The reference fuel consumption Ql/100km is evaluated from the drive cycle as:

Ql/100km = Qi·
100 [km]

dcycle [km]
(17)

Figure 11 presents the fuel consumption results obtained using the analytical solution
and the simulation model.
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Figure 11. Fuel consumption analysis for the conventional vehicle model ((left): detailed view of the
low-speed sequence; (right): complete driving cycle).
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The analytical model estimates a fuel consumption (Qa) of 6.18 L/100 km, while the
simulation model (Qs) predicts a value of 6.13 L/100 km. The difference can be expressed
using the formula:

di f f % =
Qs − Qa

Qs
·100% (18)

Using the above-mentioned results, the difference between the results is −0.69 %, thus
showing a slight increase in the value reported using the analytical model. Additional
results obtained for different driving cycles are presented in Appendix A.

Further improvement of the reported fuel consumption can be achieved by considering
the simulation models using steady-state engine maps [11].

Figure 4 reports some work that can be potentially harvested and converted into wheel
force if electrical equipment is fitted on the vehicle. The electric equipment must have the
capability to provide generative braking, store energy, and drive the vehicle. Although this
additional equipment must be fitted on the vehicle, it was assumed that the vehicle mass of
the hybrid vehicle is identical to the mass of the conventional vehicle. The battery capacity
was limited to 5.2 Ah to agree with the above-mentioned hypothesis.

The work (Wi,s) that can be potentially recovered from the wheel is defined as:

Wi,s = Wii − (Wri + Wai ) (19)

Figure 12 presents the fuel consumption results obtained using the analytical solution
and the simulation model, in the case of the hybrid vehicle.
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Figure 12. Fuel consumption analysis for the conventional vehicle model ((left): detailed view of the
low-speed sequence; (right): complete driving cycle). The electrical component of the propulsion
system results in a decrease in fuel consumption, which can be observed at the beginning of the
driving cycle when the battery is charged at the nominal capacity (80%).

The analytical model estimates a fuel consumption of 5.25 L/100 km, while the sim-
ulation model predicts a value of 5.55 L/100 km. The difference is 5.45 %, in favor of
the analytical solution, probably due to the logic of the controller of the electrical system.
Further enhancements in the logic of the control module can improve the results [35,36].

In this case, for the analytical solution, the quantity of saved fuel (Qi,s) was estimated
using Equation (19) and considering that the energy is generated during braking, stored,
and converted into mechanical energy. Thus, the fuel saved can be estimated using the
following Equation:

Qi,s =
Wi·1000

ρ f uel ·GCV·ηICE·ηDL
·ηME·ηDL (20)

The results of the current model can be further calibrated using advanced analyti-
cal models developed primarily to work with publicly available data [37]. The models
are defined as Power-Based Fuel Consumption and can be integrated into the current
analytical solution.
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6. Discussion

There are advantages to each of the two methods presented in this paper. The
backward-facing simulation can be conveniently implemented in various programming
languages and spreadsheet applications. However, each additional parameter that is
implemented in the application should be defined and related to the currently imple-
mented solution.

The forward-facing model is complex and capable of providing multiple points of
information related to the performance of systems integrated into the vehicle model, but it
requires some effort to develop and validate before using the outputs. Figure 13 presents a
drivetrain sub-system of the vehicle model, showing a series of additional outputs.
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Figure 13. The drivetrain sub-system. Additional outputs were selected from the Info Bus of the
vehicle model (body, aerodynamic, and tire forces).

The supplemental outputs were subsequently defined in the data flow path to be
finally displayed and saved for further analyses. Figure 14 presents the definition of the
outputs of the additional data.
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This work demonstrates that a combination of the two can be a successful solution for
the development of a vehicle simulation model.

When fuel consumption is the focus of the analysis, the backward-facing model, as
demonstrated, is capable of providing accurate results. Furthermore, as demonstrated by
other technical solutions, e.g., embedding details maps of the parameters, even exhaust
gases can be analyzed to determine the quality and quantity of pollutants.

To complete the present work, a comparison of the components involved in the
evaluation of the total longitudinal force is included.

In the case of the backward-facing model, the rolling resistance was evaluated using
Equation (2), with the rolling resistance coefficient defined by Equation (3). The Simulink
model uses a more advanced solution involving an Equation, namely “Magic Formula”,
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determined by Pacejka [38]. The equation involves the vertical wheel load (Fz) that is not a
constant value, and it is constantly affected by the dynamic regime of the vehicle.

Figure 15 presents a comparison of the results obtained for the rolling resistance. The
results reported in the figure were extracted from available MATLAB/Simulink datasets:

Rr,s =
TransTrq

rr
− FwX (21)

where TransTrq parameter is determined from the drivetrain block, FwX is the longitudinal
wheel force, and rr is the wheel rolling radius (rr = 0.30 [m]).
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Figure 15. Results for the rolling resistance (rolling resistance coefficient is defined by Equation (3)).

It can be noticed that there are some differences between the values, although con-
sidering the overall longitudinal wheel force, these differences do not significantly alter
the results. The difference is about 50 N, about 5% of the longitudinal wheel force (see
Figure 10, time 1600 s).

A different selection for the estimate of the rolling resistance coefficient, namely
Equation (4), slightly underestimates the rolling resistance (Figure 16).
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Figure 16. Results for the rolling resistance (rolling resistance coefficient is defined by Equation (4)).

The aerodynamic drag is rather straightforward to evaluate [39]. Equation (5) reveals
that it can be computed using a series of parameters and the velocity of the vehicle.

Figure 17 presents a comparison of the results obtained for the aerodynamic drag.
In the case of the backward simulation, the inertia is estimated using the translational

mass of the vehicle and the acceleration. The translational mass of the vehicle is a specific
term, including the effect of rotating masses. The conversion can be performed using the
technique of equivalent mass.
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Figure 17. Results for the aerodynamic drag (results are identical as the same mathematical model is
used for the evaluation of the aerodynamic drag).

This paper defines the longitudinal mass by multiplying the vehicle mass with a factor
defined by Equation (8). To avoid high dynamic effects during acceleration and braking in
the vicinity of zero value, the speed parameter was defined as:

V = max(Vi, 20) (22)

The reference speed (e.g., 20 [km/h]) can be adapted considering various transmission
configurations and shifting performances.

The results were filtered (dataout = filter(p1, p2, datain); p1 = (1/10)·ones(1, 10); p2 = 2)
to clearly outline the variation of the inertia during the driving cycle. The MATLAB/Simulink
output is BodyFX. Figure 18 presents the results obtained from the analyses.
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Figure 18. Results for the inertia force.

There are some differences between the exact values; however, the paths of the curves
are identical. This provides good input for the analysis of the acceleration strategy for the
vehicle to minimize fuel consumption [40].

The parameter defined by Equation (8) can be adapted to better capture the influence of
the rotating masses. Table 2 presents the values of the parameter for a number of reference
speeds (see Equation (22)).

Table 2. Parametric analysis of γ.

Reference Speed V [km/h] γ Equation (8)
(

ξ0·ξgb

)
Equation (7)

5.5 14.102 72.28
10 2.008 19.677
20 1.317 10.536
30 1.182 7.537
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The result of the parameter was subsequently used to determine the product between
the final drive ratio and (maximum) gear ratio, using Equation (23).

(
ξ0·ξgb

)
=

√
γ − 1.04
0.0025

(23)

This can be useful to define a reference speed of Equation (8) considering the ini-
tial value of the product

(
ξ0·ξgb

)
between 10 and 14, corresponding to a conventional

vehicle configuration. Figure 19 presents the results obtained for different values of the
reference speed.
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Figure 19. The influence of the parameter γ on the fuel consumption performance. The esti-
mated and computed fuel consumption numbers were extracted from the analytical and simu-
lation dataset when the engine was idling. Results show that when increasing the reference speed
in Equations (8) and (22), the differences are within 5%. Numbers in red report the analytical re-
sults, numbers in blue report simulation results, and the differences are computed using Equation
(18). A negative number gives a better smaller value for the fuel consumption determined from
the MATLAB/Simulink model. (a) V = 5.5 [km/h]; (b) V = 10 [km/h]; (c) V = 20 [km/h];
(d) V = 30 [km/h].
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The error bar is upward when the analytical model results exceed the simulation data.
A simple application of the backward-facing simulation is proposed. The application

points to fuel consumption considering a conventional vehicle and a vehicle capable of
exploiting the deceleration phases.

The problem is finding the maximum mass of a vehicle that can be constructed as a
hybrid with similar fuel consumption to the vehicle analyzed in this paper (mass, drag
coefficient, frontal area, transmission configuration, and wheels).

A series of iterations was performed considering the mass of the vehicle ranging from
1200 kg to 1800 kg. Using the results from the backward-facing analysis (Figure 20), the
solution was identified as m = 1650 kg.
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Figure 20. Solution for the vehicle mass.

The value was adapted into the forward-facing simulation model of the hybrid vehicle
to evaluate fuel consumption. A comparison of the results is presented in Figure 15.

The data presented in Figure 21 indicate the fuel consumption for the reference ve-
hicle with a mass of 1200 kg, the fuel consumption for a hybridized reference vehicle,
and the potential mass of a vehicle that will display a fuel consumption similar to the
reference vehicle.
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Figure 21. Fuel consumption results.

The benefit of this analysis is that it can provide a quick estimate of the influence of the
mass increase in fuel consumption, especially when the preliminary design of the vehicle
is addressed.

7. Conclusions

The paper addresses the longitudinal wheel force and the processes that can be applied
to analyze fuel consumption. According to the input dataset, the longitudinal wheel
force required to drive along a specific cycle is evaluated at the reference time interval.
Furthermore, the work required is evaluated and converted to fuel consumption using
some use-defined parameters. At the same time, the longitudinal wheel force analysis
can provide information about potential fuel savings. The method is direct and uses the
efficiency parameters extracted from the simulation models.



Sustainability 2023, 15, 5344 16 of 19

MATLAB/Simulink models were used and investigated to prove the above-mentioned
method. It was found that the results are in good agreement, proving the potential of the
proposed method as a first step in development.

Furthermore, the individual components of the road loads were investigated. The
analysis includes some details related to the selection of the parameters and the influence
over the reported fuel consumption. The process of data extraction from the complex
simulation models was demonstrated, showing the parameters and manipulation methods.
The differences between forward- and backward-facing simulation models were evaluated.

An application related to the vehicle mass is presented. This can be a useful solution
when the implementation of different safety systems should be implemented on existing
vehicle models.

Results for other driving cycles are presented, reporting intermediate and final values
of the fuel consumption. This analysis can be useful for calibrating the parameters used for
the analytical model.

These demonstrate the applicability of a simple calculation method capable of sup-
porting additional extensions to simulate internal combustion engines, electric motors, or a
combination of the two. It can be easily used to identify some limits (e.g., mass) that are
affecting fuel performance.

Author Contributions: Conceptualization, S.T. and D.P.; methodology, S.T. and D.P.; software, S.T.;
validation, S.T. and D.P.; formal analysis, S.T. and D.P.; writing—original draft preparation, S.T. and
D.P.; writing—review and editing, S.T. and D.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Supplemental Fuel Consumption Analyses

The results presented in this Appendix A were determined using the MATLAB/Simulink
Convetional Vehicle model. For the analytical solution; the inertia force was estimated
using a reference speed of 20 [km/h]. The reported values of the fuel consumption show a
good agreement between the analytical and simulation datasets (average difference < 5%,
while the maximum is reported for NEDC cycle during star phase ≈ 40%).
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Figure A1. Analytical and simulation results for the New European Driving Cycle (NEDC). The
NEDC driving cycle (updated 1997) was designed to assess fuel economy in passenger cars. This
driving cycle is composed of two sections: the ECE, an urban driving cycle, and EUDC (Extra Urban
Driving Cycle) to account for the more aggressive, high-speed driving modes [1].
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Figure A2. Analytical and simulation results for the US06 Supplemental Federal Test Procedure. This
driving cycle is designed to represent aggressive, high-speed, high-acceleration driving behavior and
rapid speed fluctuations [5].
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Figure A3. Analytical and simulation results for the EPA Urban Dynamometer Driving Schedule.
This driving cycle is designed for city driving conditions [1].
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Figure A4. Analytical and simulation results for the ARTEMIS urban driving cycle. This driving
cycle is part of a project to define a set of harmonized driving cycles using a large database describing
actual driving conditions in Europe [41].
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