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Abstract: In Brazil, with the ban on the production, sale, and use of chrysotile asbestos, the sector’s
industry opted to replace asbestos with CRFS Technology—Cement Reinforced with Synthetic Wire
(fiber cement); that is, another product to be disposed of in landfills. This work aimed to determine a
composite based on clay, fiber cement powder, and cement that meets the technical specifications
of Brazilian soil–cement application standards to contribute to a more sustainable treatment of the
future disposal of fiber cement products. With the characterization analysis of the materials, we
identified that the clay granulometry is heterogeneous and distributed from 0.1 µm to 25 µm. In
comparison, 75% of the fiber cement powder has grains greater than 10 µm. For clay, the liquidity
limit is 39.67%, the plasticity limit is 25.01%, and the plasticity index is 14.66%. In the semiquantitative
chemical analysis, silicon oxide (SiO2) and calcium oxide (CaO) stood out as the main oxides found,
reflected in the mineralogy as quartz and calcium silicate. Therefore, we identified the percentage of
organic matter in clay at 2%, using the result of the thermogravimetric analysis. The results described
met the normative parameters foreseen for soil–cement applications. That said, the technological
characterization was carried out by tests of linear retraction, water absorption, and simple mechanical
compression on the specimens made under an axial pressure of 31.2 Mpa in the formulations defined
in this work. The formulations with 10% cement and 20% and 30% fiber cement powder are suitable
for use in soil–cement bricks, as they have volumetric shrinkage percentages from 2% to 2.5%, water
absorption ranging from 18.66% to 19.39%, and simple compressions from 4.25 Mpa to 6.88 Mpa,
meeting the requirements of Brazilian standards for soil–cement applications. It is concluded that the
results showed that it is possible to produce soil–cement bricks with passive fiber cement products
converted into powder, avoiding improper disposal and unwanted environmental impacts.

Keywords: soil-cement; clay; CRFS technology; fiber cement; environmental liability

1. Introduction

With the Brazilian Constitution of 1988, the environment became a fundamental
human right, with the State and society responsible for its defense and preservation. This
constitutional text produced several interpretations in the legal field, as several products
on the market conflicted with this constitutional premise, and asbestos was at the center of
these discussions. To resolve this legal conflict over the production and sale of asbestos in
Brazil, in November 2017, the Federal Supreme Court (STF) prohibited the sale and use of
chrysotile asbestos throughout the national territory [1–3].

Therefore, due to the long course of these legal disputes, the asbestos industry had time
to prepare an industrial substitute. The Reuters news agency published on 28 November
2017, the information that one of the largest industries in the sector would no longer use
asbestos in its products by December 2018, as it would start using synthetic fibers in the
manufacture of fiber cement products [4]. Taking into consideration that fiber cement is a
mixture of cement and fibers, these fibers can be of natural origin (asbestos) or synthetic
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(polypropylene) [5]. Furthermore, the fiber cement industry already uses almost equal
proportions of natural and synthetic fibers [4].

However, the replacement of asbestos is not conducted with a single type of fiber. The
most appropriate indication is evaluated according to the type of product; for example, the
appropriate substitute for raw asbestos in bulk would be glass mineral wool and ceramic
fibers; for powdered asbestos, the replacement would be given by non-fibrous minerals such
as carbonates; liquid asbestos or pastes can be replaced by calcareous masses or clay additives;
woven asbestos is exchanged for glass and rock fibers or plastics; the asbestos cement used in
reservoirs or roofs can be changed to glass fibers or synthetic polypropylene fibers [6].

Since ancient times, using fibers for soil stabilization in old buildings was very com-
mon; it was known as frame stabilization. However, for Gowthaman et al. [7], the study of
soil reinforcement using fibers dates from the late 1960s. With the historical reasoning of the
studies carried out on the behavior of soils reinforced with fibers made by Botero et al. [8],
it is possible to observe a convergence toward improving the mechanical behavior of the
soils, particularly regarding the shear resistance.

In the literature, we identified several types of fibers being tested and used for the
most diverse purposes, such as crushed glass fibers to improve the mechanical properties of
ceramic concrete made with phosphate cement [9]; polymeric strips made from recyclable
PET bottles, which are polyethylene terephthalate and polypropylene, being studied to
improve the shear strength of sandy and clayey soils [10]; investigation of the use of
synthetic capillary fibers (hair) and cement for building roads in lateritic soil, as well as
their possible use in masonry bricks for civil construction [11,12]; application of synthetic
microfibers associated with alkali-activated binders to improve the mechanical performance
of sandy soil [13]; evaluation of the effects of the type and amount of synthetic fibers
associated with soil–cement composites regarding flexural strength and behavior in the
post-critical state [14]; a method for reinforcing soil contaminated by heavy metals using
wheat fibers and cement as a stabilizer [15]; research on the thermal and physical–mechanical
characteristics of adobe masonry reinforced with pseudostems of banana trees with the aim of
applying them in civil construction [16]; length and percentages of coconut fibers and cement
dosage were studied in rammed earth blocks regarding strength, density, and durability
for possible constructive applications [17]; Residual fibers from chicken feathers and sugarcane
bagasse were studied as alternative materials for soil reinforcement used in the production
of bricks [18]; study of the impact of different dosages and length of pig hair fibers on
the mechanical properties of adobe mixtures, in particular on fractures in bricks made of
clayey soil, water, and fibers [19]. Furthermore, in each case study published, there may
be considerations about the distributive availability of the fibers, which may be used in a
linear or random arrangement.

We know that regardless of what material the product is made of, whether with
asbestos or with any of the suggested substitutes, they will have to be discarded at some
point, and incorrect disposal can result in environmental damage and harm to human
health. Nevertheless, unlike asbestos, which brings irreparable damage to living organisms
with its ingestion or inhalation, as its physicochemical characteristics prevent defense
systems from removing or destroying it [6,20], the premise of reuse or use of future discards
of these substitute materials becomes viable, taking into account the safety processes
inherent in each material involved, as they are less hazardous to human health.

Given this situation, we have the scenario of our study focused on the disposal of the
current fiber cement tiles reinforced with synthetic threads (CRFS technology), which are
coming to the Brazilian market. Although conjecturing a durability of 30 to 70 years, the
manufacturers only provide a 5 year warranty, exclusively for manufacturing defects [21].
In this context, with the acquisition of a tile built with CRFS technology in the local market,
we propose to explore the product acquired as an environmental liability of fiber cement to
evaluate its reuse in the red ceramic industry, specifically with the soil–cement technology.

Andreola [22] points out that the traditional ceramic industry based on clay–silica–
feldspar is an excellent candidate to provide solid waste reuse flow as it consumes a
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large amount of natural raw materials, as well as because of its raw materials’ diversified
composition, allowing fluctuations in its composites and the addition of different types
of waste.

The red ceramic industry can resort to two stabilization techniques for its products:
calcination stabilization and chemical stabilization [23]. In calcination stabilization, materi-
als are subjected to high temperatures, and undergo sintering, affecting the final product’s
dimensionality and strength. Chemical stabilization is generally carried out by mixing
the materials with cement, which chemically reacts with water, promoting changes in
the resistance of the products. However, other stabilizers, such as lime or ash, can be
used [12]. As the tile’s fiber cement fibers cannot withstand high temperatures, soil–cement
technology is the best option.

Unlike the works that have directly studied the fibers for improvements in the prop-
erties of the materials, this work investigated the reuse of products built with synthetic
fibers (fiber cement) as an environmental liability in the context of the existing norms for
soil–cement bricks in Brazil. Therefore, we sought the most straightforward and practical
alternative for these fibrous products. The best solution was to crush and grind the entire
fiber cement product to reuse the whole product, not just the fibers. From this perspective,
with fiber cement transformed into powder, there were no guarantees that the characteris-
tics reported on using fibers would be maintained with this form of use. The investigation
has been developed, and this work brings the findings of this research. Macroscopically, the
asbestos cement powder shows a slight roughness and lacks plasticity, so it was necessary
to use a clayey material to enable the conformation of the ground-cement pieces. This orien-
tation towards reusing fiber cement in soil–cement technology is an ecologically desirable
and economically viable vision, simple to implement, and less risky to the ecosystem.

Because of the above, this work aims to determine a composite based on clay, fiber
cement powder, and cement that meets the technical specifications in Brazilian standards
(Brazilian Association of Norms and Techniques—ABNT) for soil–cement applications.
The relevance of this work lies in the fact that we are proposing a technological alternative
in advance for the use of materials that, in their future disposal, can have an unwanted
environmental impact.

2. Materials and Methods
2.1. Materials Involved

This study used clay, fiber cement powder, Portland cement, and water. Clay, an
essential component in the production of ceramic products, with a plastic characteristic
allowed the molding of the specimens. The fiber cement powder, an environmental liability
of which we are proposing adequate disposal, was obtained from a 5 mm tropical tile of the
Ethernit brand, acquired in the local market, and produced according to the manufacturer’s
instructions with cement reinforced with synthetic threads [24]. Moreover, as informed by
the manufacturer, Portland CP II-E-32 cement from the Poty brand contains 51% Clinker,
94% Gypsum, 6 to 34% Blast Furnace Slag, and 0 to 15% Material Carbonate. The clay
was collected at “Fazenda Escondido” (042◦00′05.8′′ W and 05◦01′16.7′′ S) on the banks
of the Jenipapo River, located 36 km from Campo Maior in the State of Piauí (Brazil), in
an excavation around 1.5 m to 2 m deep, using a soil drill (VULCAN-VPS-520), as shown
in Figure 1a. We emphasize that this clay is not used industrially. However, on the banks
of this river, some deposits supply the red ceramic industry in the city of Campo Maior,
one of the poles of ceramic production in the State [25]. The clayey material was submitted
to the procedures of the Brazilian Association of Norms and Techniques (ABNT), NBR
6457 [26], with the previous drying until hygroscopic humidity and the removal of the
clods. Figure 1b is a clayey sample in the drying process.
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Figure 1. Clay collection process (a), followed by a portion of the material in the drying process (b).

To obtain the fiber cement powder, it was necessary to cut part of the tile into small
pieces and place them in a blade crusher, popularly known as a forage crusher. Although
this procedure speeded up the powder acquisition, the fibers resisted the crusher, requiring
a cake mill for 6 h to produce the fiber cement powder. Figure 2 helps to understand the
description above. We emphasize that the blade crusher was also used in the clay, reducing
the granulometry of the material. After these procedures, the samples were stored in a
laboratory oven at 110 ± 10 ◦C.
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2.2. Particle Analysis

The study of the granulometry of the materials was conducted through the particle
size distribution test. In this case, after grinding the clay using a mortar with a porcelain
pestle and the fiber cement powder passed through the cake mill, the materials were passed
through an ABNT No. 20 sieve (840 µm). Then, we carried out the particle distribution
test with the SediGraph III Plus V1.00 equipment, using the methodology of gravity
sedimentation monitored by X-rays and calculations made based on the law of Stokes
and Beer.

2.3. Atterberg Limits

Determining consistency limits was only conducted with clay, given that fiber cement
powder does not have plasticity. A clay sample was passed through an ABNT No. 80 sieve
(177 µm), and little by little, we mixed distilled water into the sample up to the presumed
moisture point of the liquidity limit. The moistened mass was placed in a plastic bag and
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left to rest for 24 h. Then, with the gradual increase of the humidity with distilled water,
the points of the relation humidity/number of blows were determined using a Casagrande
apparatus. The liquid limit (LL) was obtained by the humidity at 25 blows, while portions
of 10 g were used to determine the plasticity limit (LP). The results of LL and LP allowed
the calculation of the plasticity index (PI) given by the expression: IP = LL − LP [27,28].

2.4. Chemical, Mineralogical, and Thermal Analysis

Shimadzu EDX-720 equipment was used, while the PANalytical equipment, model
Epsilson3-XL, was used for the fiber cement. In the clay, an evaluation of the loss on ignition
of the samples was carried out, in which they were first dried in an oven for 24 h at 110 ◦C
and subsequently heated to 1000 ◦C for 60 min.

X’Pert system database was used. HighScore Plus was used for comparison with
the results from the X-ray diffraction (XRD) test performed on the Shimadzu XRD-6000
diffractometer. It is noteworthy that for the characterization by FRX and DRX, the materials
were passed through an ABNT No. 200 sieve (75 µm).

As for the thermogravimetric analysis (TGA) of clay, the equipment used was the
SDT Q600 from TA Instrument in a nitrogen atmosphere, using a platinum crucible with
approximately 10 mg of sample. This thermal test’s heating rate was 10 ◦C min−1 from
room temperature to 1000 ◦C.

2.5. Specimens and Technological Tests

A portion of the atomized materials was used to form the specimens by uniaxial
pressing with a load of 31.2 Mpa, with laboratory hydraulic press, in a cylindrical die
60 mm high and 20 mm radius. Based on the data collected in the technological tests, the
dimensional analysis of drying, the water absorption rate (AA), and the compressions
supported by the specimens in the curing times of 7, 14, 21, and 28 days, using the EMIC
brand deflectometer, model DL 20000, and with a 200 kN load cell, were calibrated. During
the curing periods, the specimens were dried in the shade (in the laboratory), and water was
sprayed on them twice daily. For the dimensional analysis of drying, a 150 mm Carbografite
digital caliper was used, with a measurement capacity of 0–150 mm and a precision of
0.03 mm. For the dimensional determination of shrinkage, the measurements were carried
out after making the specimen (still wet) and then in the predefined curing times above,
after 24 h in an oven between 105 ◦C and 110 ◦C. Equation (1) determines the percentage of
volumetric drying shrinkage.

S(%) =
Vi −Vf

Vf
× 100 (1)

S(%)—drying volumetric shrinkage percentage; Vi—initial volume (after making the speci-
mens); Vf —final volume (in curing times).

As for the AA test, standardized by the ABNT NBR 8492 [29] and NBR 10836 [30]
standards, measurements were made of the mass of the test specimens dried in an oven
during the aforementioned curing times. Then, new mass measurements were performed
on the test specimens after immersion in water for 24 h, carried out with the bodies in
thermal equilibrium at room temperature. Mass measurements after immersion were made
after drying the bodies and before 3 min had elapsed. Equation (2) is used to calculate the
percentage of water absorption.

A(%) =
mi −ms

ms
× 100 (2)

A(%)—water absorption percentage; mi—immersed mass (mass of bodies immersed in
water for 24 h); ms—dry mass (mass of bodies dried for 24 h in an oven at 110 ◦C.

The specimens were prepared with previously defined formulations under the fol-
lowing nomenclature: S represents the soil, C symbolizes the cement, and F identifies the



Sustainability 2023, 15, 5562 6 of 16

fiber cement, all followed by a number that indicates the percentage of material in the
formulation. Test bodies were made with percentages of 8%, 10%, and 12% of cement,
while the percentages of fiber cement were set at 20% and 30%. The clay completes the
formulations, as shown in Table 1. We emphasize that the procedures adopted for the
technological tests of the work had the theoretical contributions of the norm NBR 8492 [29]
and the literature on ceramic tests [31].

Table 1. Materials percentages in the studied formulations.

Subtitle Clay (S) Cement (C) Fiber Cement
Powder (F)

S92C8 92%
8%

–
S72C8F20 72% 20%
S62C8F30 62% 30%

S90C10 90%
10%

–
S70C10F20 70% 20%
S60C10F30 60% 30%

S88C12 88%
12%

–
S68C12F20 68% 20%
S58C12F30 58% 30%

This work was carried out with very high percentages of fiber cement. The central
idea is to treat fiber cement as an environmental liability, so the higher the percentage used,
the better. In other words, we would be using discarded fiber cement products more.

3. Results and Discussion
3.1. Characterization of Materials: Clay and Fiber Cement

The results of the semiquantitative chemical analysis of the clay and fiber cement
powder are organized in Table 2, as well as the percentage of fire loss suffered by the clay,
which was determined by the oven method. The fire loss test for the fiber cement powder
was not carried out because this material has synthetic fibers in its composition that are
sensitive to high temperatures, which can be destroyed without much significance for
our object.

Table 2. FRX result of clay and fiber cement powder.

Samples
% Weight

SiO2 Al2O3 Fe2O3 K2O TiO2 MgO CaO SO3 Others PF

Clay 49.39 20.88 12.72 2.19 2.13 1.73 1.11 - 0.52 9.30
Fibrocement 13.17 2.87 4.00 0.72 0.40 1.61 74.28 2.40 0.44 -

A set of oxides were identified for both materials, with greater emphasis on silicon
oxide (SiO2), aluminum oxide (Al2O3), and iron oxide (Fe2O3) for clay. In fiber cement
powder, the highlight was calcium oxide (CaO) and SiO2. The considerable silica content in
the clay indicates the presence of mica, feldspar, or free silica in the material [27]. Silica is a
component that reduces the plasticity of the sample but helps in the drying process. The
presence of alumina is attributed to the plastic character of the clay, which contributes to
water retention, favoring the ability to mold the pieces and directly influencing the clay’s
plasticity [32]. As for the iron oxide found, which is present in clay minerals as impurities
or combined forms, it negatively interferes with plasticity and mechanical strength, so
the lower its occurrence, the better [33,34]. Therefore, the clay showed a high content of
iron oxide, with a percentage of 12.72%, which may be indicative of compromising the
strength of the specimens. The loss of fire performed in clay is generally attributed to
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water evaporation, organic matter burning, and the loss of hydroxyls of clay minerals that
compose the sample [35].

Specifically, on fiber cement, according to ABNT standards NBR 7175 [36], when the
calcium oxide content is greater than 65% and magnesium oxide less than 3%, lime is
classified as calcium lime, a typical material in the production of cement and mortar, and
it is also used as a binder in civil construction. Thus, the percentage of calcium, 74.28%,
was identified. This value corroborates the expected high calcium content; fiber cement
powder originates from a cemented roof tile. It is worth mentioning that saltpeter, an
unwanted chemical compound in materials for civil construction, was not identified in the
two materials analyzed [37].

Figure 3 presents the result of the mineralogical analysis of clay in natura. When com-
paring the compatibility peaks with the diffraction pattern database, we were able to iden-
tify the mineral Quartz (SiO2—PDF 01-083-0539; 2θ = 20.8◦ (011), 26.6◦ (101), 36.6◦ (110),
39.3◦ (012), 42.2◦ (200), 45.6◦ (021), 50.0◦ (112), 54.6◦ (202), 59.9◦ (211), 68.2◦ (301), 735◦ (014)),
the clay mineral Microcline (KAlSi3O8—PDF 00-001-0705; 2θ = 19.6◦ (011), 35.1◦ (101)),
and Magnetite (Fe3O4 = Fe2O3.FeO—PDF 01-076-0956; 2θ = 23.2◦ (011)) or a mixture of
Magnetite/Maghemite, but it was not possible to identify only the Maghemite. Quartz
is a crystalline form of silica traditionally found in clayey materials, which is a desir-
able clay mineral in the composition of clays, despite being a plasticity-reducing agent.
However, it favors the drying of the pieces [38]. Microcline is an aluminosilicate of the
feldspar family, a melting component in clays, and contributes to the plastic characteristic
of clay [39]. In the XRD test, it was not possible to differentiate the Magnetite phase (Fe3O4)
from the Maghemite phase (γ-Fe2O3), since they have the same crystallographic structure,
which is why the diffractogram brings Magnetite as a result, as it took into account the
sheet that eliminated the diffraction peaks during the analysis [40]. The diffractogram
in Figure 3, the result of the mineralogical analysis of the fiber cement powder, identifies
the phases Calcium Silicate Oxide (Ca3(SiO4)O—PDF 01-070-1846; 2θ = 15.8◦ (011), 17.9◦

(101), 22.9◦ (110), 29.5◦ (012), 32.3◦ (200), 34.0◦ (021), 36.1◦ (112), 39.5◦ (202), 43.3◦ (211),
47.1◦ (301))), Calcium Silicate (Ca2(SiO4)—PDF 01-083-0464; 2θ = 47.7 (212), 48.7◦ (201),
50.8◦ (312), 54.3◦ (213), 60.6◦ (200)) and iron sulfite (FeS—PDF 01-080-1026; 2θ = 43.2◦ (311),
47.7◦ (213), 57.9◦ (231)). Portland cement has its manufacturing base in calcium silicates, in
which sulfides of the same substance are added during the process. Therefore, the phases
identified in the diffractogram of fiber cement originate in the essential component of its
production, the cement [41]. Calcium silicates are widely used in the ceramics industry, as
they add mechanical strength and thermal insulation to products [42].
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It is recommended by the ABNT NBR 10833 standard [43] that all soil particles to
be used in soil–cement bricks have sizes smaller than 4750 µm and that 10% to 50% of
the material has a size smaller than 75 µm. Assuming that the materials were crushed or
grounded (as with fiber cement powder) and passed through an ABNT No. 20 sieve, both
immediately meet the first requirement, as they have particulates smaller than 840 µm.
Figure 4 shows that only 6% of soil particles and 13% of fiber cement dust have particle
sizes greater than 75 µm, demonstrating that most samples comprise smaller particles.
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In the same figure (Figure 4), we can observe a contrast between the two materials,
as the soil concentrates a higher percentage of particles smaller than 2 µm, a characteristic
that defines it as clay. In comparison, the fiber cement powder has a higher percentage of
particles larger than 20 µm, which characterizes it as a sandy material [44]. This segmenta-
tion by the range of particle sizes, based on the classification proposed by the International
Society of Soil Science, allows us to state that this antagonistic behavior favors the packing
process at the time of compression in manufacturing the soil–cement body.

When observing the frequency distribution as a function of particle size (Figure 5),
taking into account the total of the materials tested, the clay sample turns out to be quite
heterogeneous, as a frequency distribution is identified in practically the entire spectrum
of sizes. In contrast, the frequency distribution of the fiber cement powder sample has a
higher concentration of particles with sizes greater than 10 µm, totaling approximately 75%
of the material.

Other aspects that are required in the ABNT NBR 10833 standard [43] for the manu-
facture of soil–cement bricks are that the liquidity limit (LL) must be less than or equal to
45%, the plasticity index (IP) must present values less than or equal to 18%, and it must not
contain a percentage of organic matter that impairs the hydration of the cement. The results
obtained for the clay consistency limits, shown in Table 3, demonstrate that the normative
requirements are met regarding the plasticity test. As it indicates the amount of water used
in manufacturing the test specimens or even the final product, it is relevant to carry out the
plasticity test [39]. Based on the percentage of plasticity limit (PL) of 25.01% as the smallest
amount of water necessary to guarantee the molding of the parts, and considering that
fiber cement powder is added to the mixture, empirically, the value of 20% of water was set
as an optimal condition to manufacture the pieces. If a higher value were used, part of the
water would be expelled during the pressing process, making it challenging to work with
the test specimens.
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Table 3. Result of the consistency limits test.

Sample
Liquid Limit (LL) Plastic Limit (LP) Plasticity Index (PI)

% % %

Clay 39.67 25.01 14.66

As previously mentioned, the percentage of organic matter in the composite should
be as low as possible so as not to interfere with cement hydration. Three thermal events
are identified with the result of the thermogravimetric analysis, shown in Figure 6. From
room temperature to 150 ◦C, we observed a sharp drop in the mass close to 4%, attributed
to the release of free water. It is estimated that mass losses due to the burning of organic
matter must occur from 150 ◦C to 350 ◦C [45]. In this interval, a smooth decay in the
curve is observed. Thus, a small loss is estimated at 2%. Temperatures above 350 ◦C
are generally associated with the release of hydroxyls from the decomposition of existing
clay minerals [45]. In this context, the forecast of 2% of organic matter in the clay is a
minimal value, conjectured through the analysis of the TG that adds up to approximately
8.47% of mass loss in the three thermal events. Therefore, it is presumed that the existing
matter did not interfere with cement hydration because, despite the norms not defining
the exact percentage of permitted organic matter, Murmu [46] informs us that the loss on
ignition cannot exceed 12%, and the total mass loss of 8.47% found is lower than the quoted
value. By the weight loss during dehydroxylation obtained by TGA (Figure 6), the kaolinite
content in WTPS (wt.%) was calculated using Equation (3). According to Riviaro et al. [47],
the kaolinite content of the raw sludge (i.e., before calcination) stimated was 21.3 wt.%.

kaolinite = MLkaolinite ×
mkaolinite
2mH2O

(3)

where kaolinite is the content of kaolinite (wt.%); WLkaolinite is the weight loss between
400 and 600 ◦C in TGA (wt.%); mkaolinite is the kaolinite molar mass (258.16 g/mol); and
mH2O is the water molar mass (18 g/mol).
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3.2. Technological Tests

In the literature on clayey materials, there is the assertion that clays mixed in adequate
proportions with water become plastic, variably allowing the molding of parts, but that
during the drying process, they undergo contractions, which do not follow a standard
behavior; that is, each clay material or clay-based composite has its particularities and
must be studied for each formulation [48]. In this context, Figure 7 displays the results
of the dimensional percentages of the retractions suffered by the specimens. Among the
formulations of this work, the test specimens of the three control formulations that involve
only clay with cement, it is proven that the increase in the stabilizer produces smaller and
smaller shrinkages with the curing time, especially for the case of 12% of cement (S88C12),
in which the percentages of contractions decrease until the 28-day cure.

Observing, in Figure 7, the additions of fiber cement powder for each percentage of
cement—that is, comparing the formulation S72C8F20 with S62C8F30 (with 8% cement
and 20% and 30% fiber cement, respectively) and others—it is clear that the shrinkage
is reduced by adding fiber cement to the mixes. Botero et al. [8], Akinwande et al. [12],
and Chindaprasirt et al. [49] report that several studies suggest using fibers to combat
cracks that arise when stabilizing materials with cement, as the fibers restrict the potential
planes of weakness that give rise to these cracks. This restrictive behavior impacted the
specimens regarding the shrinkage phenomenon, which is perceptible when comparing
the performance of the formulations with and without fiber cement. Although there is no
normative parameter for the percentage of contraction, it is desired to be as low as possible,
as this keeps the consolidation of the material more stable. Thus, the formulations with
10% and 12% cement, regardless of the percentage of fiber cement powder used, showed
better shrinkage performance.
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The analysis of water absorption is based on the parameters provided for in the ABNT
NBR 8491 standard [50], which provides that the sample cannot have an average percentage
value of water absorption more significant than 20%, and individual values must be less
than 22% for the seven-day curing time. Figure 8 shows the results of the water absorption
tests on the specimens.
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It should be noted that none of the individual results exceeded the limit of 22% pre-
dicted by the norm for the 7 days of healing. It is evident in Figure 8 that the S62C8F30 for-
mulation failed for all curing times, and most of the results are in the range of 17.5% to 19.5%,
with an intense concentration of percentages close to 19%. For Chindaprasirt et al. [49], the
fibers limit cement connections with the clay material. As the S62C8F30 formulation has
a low cement concentration and a high fiber cement dust content, the concentration ratio
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of these materials in this formulation must have favored greater porosity, therefore, more
excellent water absorption. However, the results show high rates of water assimilation,
which mostly meet the regulatory requirement, except for formulations S62C8F30 and
S58C12F30, in 21 days, which showed values higher than desired. Specifically, regarding
the 7-day cure for the control specimens (clay-cement), a reduction in water absorption
is identified with the increase in the stabilizer, a behavior not observed in the other times
studied; however, the percentages reached are lower when compared to bodies aged 7 days.
Considering only the results that contain the fiber cement powder with cement, disre-
garding the control bodies and the formulations that did not meet the standard, the water
absorption in the other test bodies has a reasonably typical behavior, or rather, one can
even consider uniform. From the perspective of using as little resources as possible, and
with the formulation C8F30 and C12F30 for 21 days not meeting the specifications, the
formulations with 10% cement added to 20% or 30% fiber cement powder are presented as
the most appropriate solution for these applications.

Similar to the water absorption variable, the compressive strength test has its pa-
rameters supported by ABNT NBR 8491 [50], which specifies a minimum compression
average of 2.0 MPa (20 kgf/cm2) and that individual values cannot be less than 1.7 MPa
(17 kgf/cm2) for a 7-day cure. The results of the simple compression test presented in
Figure 9 promote the analyses inherent to the study of simple compression. First, it is
essential to clarify the nomenclature that was used to understand Figure 9: black squares
for samples with 8% cement; red balls for samples with 10% cement; blue triangles for
samples with 12% cement; the compression performance curves of the standard samples is
conducted in black; the compression curves of the samples with 20% fiber cement powder
are in blue; and the curves of the samples with 30% fiber cement powder are in red.
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The results of Figure 9 corroborate those of published works involving soil, stabilizer,
and fibers, since they affirm that the use of stabilizers and/or fibers improves the mechanical
properties of the materials [9,10,12,51,52]; observe the behavior in the bodies of evidence of
this work when fiber cement powder is incorporated into these materials. Only the control
formulation with 8% cement does not meet the standard in the 7-day cure. Without apparent
reasons, the formulations that present compression values of 4 to 5.5 MPa within 7 days
of curing, in general, show decreases in the compression values for 14 and 21 days but
practically stabilize for 28 days of curing, except the control formulation with 12% cement,
which drops below the specified minimum. Despite this behavior, based on the high iron
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oxide content identified in the clay XRF, we can only speculate that the indication of reduced
strength has been confirmed in the control formulations. The S60C10F30 formulations and
those with 12% cement offered the best responses to the simple compression tests since they
showed approximate values of 6.5 MPa to 7.5 MPa of compression between 7 to 28 days.
Given the above, the analyses demonstrated that the formulations with 10% and 12% of
cement, for the percentages of fiber cement powder tested, exhibit the best solutions for the
compression test. However, regarding the use of material to be purchased, which involves
cost, the options with 10% cement seem to be the most adequate, as they use less cement in
production, maintaining compression values more than twice higher than the minimum
required limit.

4. Conclusions

This work presents the analysis of the investigation results on the technical feasibility
of producing soil–cement brick with a clay-based composite of fiber cement powder from
CRFS tiles and cement, given the Brazilian standards for soil–cement applications. Based
on these results, we can conclude the following.

The soil granulometry is quite heterogeneous, distributed between 0.1 µm to 25 µm,
while 75% of the fiber cement dust is more significant than 10 µm. The soil predominantly
comprises clay (59.4%), and the fiber cement powder is sandy (62.2%), favoring packing
in soil–cement applications. We confirmed that the results meet the Brazilian standards
for soil cement, which require that the material particles do not exceed 4750 µm and that
10% to 50% of the material have a size smaller than 75 µm. For the clayey soil, we found a
liquidity limit of 39.67%, a plasticity limit of 25.01%, and the plasticity index was calculated
at 14.66%. These results satisfy the normative parameters of plasticity, which define that
the liquidity limit is less than 45% and the plasticity index is less than 18%. Therefore, it is
a material that can be used in soil–cement applications. As for the chemical composition,
most clay is composed of silicon oxide (49.39%), aluminium oxide (20.88%), and iron
oxide (12.72%), while fiber cement powder has a higher concentration of oxide calcium
(74.28%) and silicon oxide (13.17%). The results do not show undesirable compounds
for soil–cement applications, except for the high content of iron oxide, which contributes
negatively to resistance, offset by the quality of the fiber cement powder, which increases
the resistance of ceramic products. In the mineralogy, we identified quartz, which reduces
the plasticity but helps dry the pieces. However, it has a microcline that contributes to
the plastic characteristic of the clay. No clay mineral associated with plasticity was found
for fiber cement powder, but it has calcium silicate which adds resistance improvements.
The total mass loss was 8.47%, and the percentage of organic matter identified was around
2%. The norm defines that the clayey material must have a low percentage of organic
matter in order not to interfere with the hydration of the cement. However, it does not
specify the allowed value. Given the low percentage of organic material identified, the clay
complies with the normative recommendation. With the materials approved under the
standards, specimens made with the formulations defined for this work were tested. The
suitable formulations for soil–cement applications with these materials are those with 10%
cement. They may have from 20% to 30% fiber cement powder and clay completing the
formulations, the blocks being made with axial compression of 31.2 MPa.

Given the above conclusions, we have demonstrated that producing soil–cement bricks
with passive fiber cement products converted into powder is a viable and ecologically
sustainable solution, providing a product that meets Brazilian standards and avoiding
improper disposal, negative disposal impacts, and unwanted environmental effects.
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