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Abstract: As climate change continues to impact the planet, the importance of forests is becoming
increasingly emphasized. The International Co-operative Program on the Assessment and Moni-
toring of Air Pollution Effects on Forests (ICP Forests) has been monitoring and assessing forests
in 40 countries since 1985. In Republic of Korea, the first Forest Health Management (FHM) survey
was a nationwide sample point assessment conducted between 2011 and 2015. However, there
are limitations in representing the health of forests that occupy 63.7% of Korea’s land area due to
the nature of sample point surveys, which survey a relatively small area. Accordingly, a species
richness map was created to promote species diversity in forest health evaluations in Republic of
Korea. The map was created using data from the first FHM survey, which examined 28 factors with
12 survey indicators in four categories: tree health, vegetation health, soil health, and atmospheric
health. We conducted an ensemble modeling of species distribution for woody plant species that are
major habitats in Republic of Korea. To select the species, we used the first FHM survey data and
chose those with more than 100 sample points, resulting in a total of 11 species. We then created the
species richness map of Republic of Korea by overlaying their distributions. To verify the accuracy
of the derived map, an independent verification was conducted using statistical verification and
external data from the National Natural Environment Survey. To support forest management that
accounts for climate change adaptation, the derived species richness map was validated based on
the vegetation climate distribution map of the Korean Peninsula, which was published by the Korea
National Arboretum. The map confirmed that species richness is highest around the boundary of
the deciduous forest in the central temperate zone and lowest around the evergreen and deciduous
mixed forest in the southern temperate zone. By establishing this map, it was possible to confirm the
spatial distribution of species by addressing the limitations of direct surveys, which are unable to
represent all forests. However, it is important to note that not all factors of the first FHM survey were
considered during the spatialization process, and the target area only includes Republic of Korea.
Thus, further research is necessary to expand the target area and include additional items.

Keywords: forest health management; species diversity; species distribution model; multi-model ensemble

1. Introduction

Forests offer numerous benefits to humans, including recreation, air purification, and
water conservation [1]. However, the health of forest ecosystems is increasingly threatened
by factors such as global warming caused by climate change, and efforts are being made
to identify and manage changes in these ecosystems [2]. The International Co-operative
Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) has
evaluating and monitoring forest health in 40 countries since 1985. The Montreal Process [3]
has established seven standards for systematic forest ecosystem management and health
identification, with the third criterion, which focuses on “Maintaining the health and
vitality of the forest ecosystem”, being applied to establish survey indicators and conducts
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forest surveys to evaluate forest health [4]. The Food and Agriculture Organization (FAO)
has defined forest health by examining changes in forests based on theories that combine
abiotic and biotic stressors. In addition, assessments of the yield and quality of timber and
non-timber forest products and forest health have been conducted, focusing on recreational,
scenic, and cultural values [5]. Furthermore, they defined healthy forests as those that
exhibit resilience, and evaluated forest health based on these conditions [6].

On a global level, research is being conducted to understand the health of forests, and
the collection of the current status of forests and basic data is necessary for systematic
management of forest ecosystems. Domestically and internationally, research is being
conducted through monitoring surveys of the forest ecosystem to evaluate its health.
In Republic of Korea, the Korea Forest Service conducted the 5th National Inventory
(2006–2010) with 4000 plots as fixed sample points based on the 5th Basic Forest Plan
(2008–2017), of which 967 sample points were used. The first Forest Health Management
(FHM) survey and analysis consisted of a total of 28 items with 12 survey indicators in
4 categories: tree health, vegetation health, soil health, and atmospheric health. The survey
concluded that about 81.2% of the forests were healthy (National Institute of Forest Science,
2015). Overseas, between June and September every year, around 8400 plants across the
UK are investigated in 350 monitoring plots to evaluate the health of five major tree species
inhabiting the region (Norway spruce, Sitka spruce, spruce, Scots pine, oak, and beech);
this is conducted using a tree-oriented survey data approach [7]. Similarly, in the USA,
forest health was evaluated by dividing a 764-acre area into 10 natural populations in
New Hampshire [8].

Most of the methods used in the field of forest environment are monitoring survey
methods, which can be challenging to use when aiming to represent the environment as a
continuous space [9]. For example, the first FHM surveys, as well as domestic and foreign
forest ecosystem surveys, used sample point monitoring survey methods that are centered
on stand surveys at specific sample points. However, this method represents only the
health of the stand and is subject to investigator bias, making it less objective.

A forest is a complex assemblage of various species that coexist in a state of harmony
with each other. Given that the concept of a forest is developed based on vegetation,
species richness assumes a critical role in the description and analysis of forest health.
In this study, we deemed it advantageous to express species richness using data from
the first FHM survey. We conducted a study aimed at mapping the species richness of
national forests featuring complex terrain characteristics and various species by establishing
a connection between species richness and forest management policy, we addressed an
important research topic.

2. Materials and Methods
2.1. Study Areas

This study focuses on Republic of Korea, which experiences four distinct seasons and
is located between 33◦ N and 38◦ N and between 126◦ E and 132◦ E. The central region has
a cold and wet climate in winter and a cold humid climate otherwise, whereas the southern
region has a temperate rain climate and a warm and humid climate otherwise (Figure 1).
Forests in Republic of Korea mainly consist of coniferous, deciduous, and mixed forests,
which account for approximately 37%, 32%, and 26% of the total forest area, respectively, as
of 2018. The FAO selected Republic of Korea as the only country that achieved successful
forest reclamation and effective economic growth after World War II, making it an ideal
subject for this study.



Sustainability 2023, 15, 5718 3 of 14Sustainability 2023, 15, x FOR PEER REVIEW 3 of 15 
 

 

Figure 1. Study area and the First Forest Health Management Survey Points. 

2.2. First Forest Health Management Survey and Target Species 

The first FHM survey consisted of 28 items and 12 survey indicators in four catego-

ries: tree health, vegetation health, soil health, and atmospheric health. The first FHM sur-

vey was conducted by the Korea Forest Service based on the fifth National Inventory 

(2006–2010). For the fifth Basic Forest Plan (2008–2017), 4000 plots of fixed sample points 

were surveyed, with about 1/4 of them sampled, resulting in 967 sample points and 44,440 

surveyed trees. The health and vitality of forests was also investigated [10]. Among the 28 

items investigated, the National Institute of Forest Science selected 7 important indicators 

for forest health. In this study, the species diversity index, which can best express vegeta-

tion health among the seven indicators, was calculated based on species composition data 

[10] (Figure 2). 

We selected the most abundant species in Korea as the target species by referring to 

a previous study [7] that had evaluated forest health for the most abundant species in the 

UK (Table 1). The selection process for the target species in the current study involved 

choosing those that were present in the first FHM basic survey zone and trees with large 

trunks in the survey zone (Figure 2). 

Figure 1. Study area and the First Forest Health Management Survey Points.

2.2. First Forest Health Management Survey and Target Species

The first FHM survey consisted of 28 items and 12 survey indicators in four cate-
gories: tree health, vegetation health, soil health, and atmospheric health. The first FHM
survey was conducted by the Korea Forest Service based on the fifth National Inven-
tory (2006–2010). For the fifth Basic Forest Plan (2008–2017), 4000 plots of fixed sample
points were surveyed, with about 1/4 of them sampled, resulting in 967 sample points
and 44,440 surveyed trees. The health and vitality of forests was also investigated [10].
Among the 28 items investigated, the National Institute of Forest Science selected 7 im-
portant indicators for forest health. In this study, the species diversity index, which can
best express vegetation health among the seven indicators, was calculated based on species
composition data [10] (Figure 2).

We selected the most abundant species in Korea as the target species by referring to a
previous study [7] that had evaluated forest health for the most abundant species in the UK
(Table 1). The selection process for the target species in the current study involved choosing
those that were present in the first FHM basic survey zone and trees with large trunks in
the survey zone (Figure 2).
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Figure 2. The First Forest Health Management Survey Items and Point Structure.

Table 1. Target Species.

Species Name Scientific Name Number of Survey Point

Korean red pine Pinus densiflora 589
Mongolian oak Quercus mongolica 445

Konara Oak Quercus serrata 405
Cork oak Quercus variabilis 397
Chestnut Castanea crenata 232

Mountain oriental cherry Prunus serrulata 208
Sawtooth oak Quercus acutissima 191

Oriental white oak Quercus aliena 162
Hua qu liu Fraxinus rhynchophylla 162
Pitch pine Pinus rigida 136

Oriental cherry Prunus verecunda 129

3. Methods
3.1. Species Distribution Modeling

Given the complexity and diversity of plant distribution and the various environmen-
tal factors involved, a species distribution model that accounts for multiple factors was
used [11]. However, determining the optimal model to represents species distribution
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based on sample points can be challenging. To reduce uncertainty that may occur when
using a single model and provide consistent and realistic results, an ensemble model was
used [12–14]. The ensemble methodology is commonly used in policy decision making to
improve distribution prediction and species richness patterns [15]. In this study, we used
BIOMOD2, widely recognized as a prominent tool for Ensemble Modeling, in conjunction
with the R program to select a model capable of predicting distributions accurately even
with a limited number of occurrence points [13]. There are 10 single models that can be run
in BIOMOD2. They are primarily categorized into two groups: statistical-based models
and machine learning-based models. Statistical-based models include the generalized
linear model (GLM), generalized additive model (GAM), and multiple adaptive regression
splines (MARS). Machine learning-based models include classification tree analysis (CTA),
artificial neural network (ANN), generalized boosting model (GBM), flexible discrimi-
nant analysis (FDA), random forest (RF), surface range envelope (SRE), and maximum
entropy (MaxEnt) [16].

GLM is a linear regression model, whereas GBM is a machine learning model that aims
to approach the actual value, beginning from the mean value, and can be applied to both
qualitative and quantitative response variables, similarly to a linear model [17]. In contrast,
MARS is a linear regression technique that can model nonlinearity by identifying significant
patterns and correlations in the data [18]. FDA, also referred to as linear discriminant
analysis, is a classification model that combines linear regression models and uses optimal
scores to transform response variables, thus allowing linear separation of data. CTA is a
predictive model that connects observations of items and objects using decision trees [19].
RF is a machine learning-based ensemble model that uses decision trees, whereas ANN
is a machine learning technique that produces outcomes based on the strength of the
connections between variables [20].

In this study, we estimated the species distribution using seven models: GLM, GBM,
MARS, FDA, CTA, RF, and ANN. These models were all operated using presence/absence
data. GAM is an extension of multiple linear regression; the difference between GAM
and GLM, which is a linear regression model, is that the k value representing degrees of
freedom is vital, but GAM was excluded because it is ambiguous to set the standard for the
k value. We also excluded SRE because continuous numerical analysis was difficult due to
the result value not being provided as a continuous numerical value, instead appearing as
0, 0.5, or 1. Furthermore, MaxEnt was excluded because it exhibited vulnerability when
the entire range of species was not sampled or when there was variability in the range
of species. We deemed MaxEnt inappropriate for the first FHM, which only surveyed
forests [21,22]. The modeling process was repeated 30 times for each model, and the
ensemble was performed by selecting a value with a receiver operating characteristic (ROC)
value of 0.5 or higher [23] (Figure 3).

3.2. Environmental Variables

Vegetation distribution is highly sensitive to climatic factors, such as temperature.
Therefore, in this study, we incorporated the relevant climate data to investigate this re-
lationship. We obtained data on climatic variables from climate information portal of the
Korea Meteorological Administration. The Korea Meteorological Administration provides a
raster dataset of approximately 1 km that was generated through a statistical method by ap-
plying the MK-PRISM (Modified Korean Parameter-elevation Regressions on Independent
Slopes Model) technique. Bioclimatic variables were derived from the MK-PRISM raster
dataset using the R Biovar function. These variables were derived from the three climate
variables: maximum temperature, minimum temperature, and precipitation. We utilized
a total of six variables: Bio1 (annual mean temperature), Bio2 (mean diurnal range), Bio5
(max temperature of warmest month), Bio12 (annual precipitation), Bio13 (precipitation of
wettest month), and Bio14 (precipitation of driest month), which were selected based on
correlation analysis [13]. We try to avoid multicollinearity by using correlation analysis, we
removed Pearson correlation coefficients greater than 0.7 (see Appendix A) [24].
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To select variables other than climate variables, we referred to previous [9,25] and
related studies conducted in Republic of Korea [26–28]. Distance from the forest boundary
and distance from the valley were selected as topographical factors, soil and soil organic
matter were selected as soil factors, and forest type was selected as the forest factor (Table 2).

Table 2. Environmental Variables.

Category Variable Explanation Reference

Meteorological
Factors

Bio1 Annual Mean Temperature Korea Meteorological
Administration

- Max temperature
- Min temperature

- Precipitation

Bio2 Mean Diurnal Range
Bio4 Temperature Seasonality

Bio12 Annual Precipitation
Bio13 Precipitation of Wettest Month
Bio14 Precipitation of Driest Month

Soil
Factors

Soil humid Soil humid Korea Forest Service
- Forest type map

(Soilgrids)
Soil organic matter Soil organic matter

Topographic
Factors

D_forest Distance from forest edge Ministry of Environment
- Land cover map

D_valley Distance from Valley

Water Resources
Management

Information System
- Stream order map

Forest
Factor F_type Forest Type Korea Forest Service

- Forest type map
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3.3. Accuracy Verification
3.3.1. Internal Accuracy Verification through Statistical Analysis

The area under the curve (AUC) value of ROC analysis, which is a method used for
ensemble verification of the species distribution model, was selected to verify the statistical
accuracy of this study [23,29]. ROC is a graph that shows the model performance for all
critical values and is mainly used to evaluate the value of AUC. The advantage of using
AUC to measure model accuracy is that it is independent of the reference value, hence it
is widely used to compare individual models [30–32]. AUC values range from 0.5 to 1,
where values of 0.5–0.7 indicate low accuracy, values of 0.7–0.9 are considered normal, and
values close to 0.9 or greater than 0.9 indicate an excellent ability to distinguish between
the distribution and non-distribution of species. [16,33]. In the development of the species
distribution model, the appearance data in the form of points were divided into training
and test data (80:20) and repeated five times.

3.3.2. Independent Verification Using External Data

The species richness map created using the ensemble methodology was judged to
have limitations in terms of accuracy and statistical verification, and thus required inde-
pendent verification using other data sources [34,35]; therefore, independent verification
was conducted using the National Ecosystem Survey. Since there are no independent
data sources for species richness in Korea, the National Natural Environment Survey was
selected as it provides data on the appearance of species. The National Ecosystem Survey
(NES) (2006–2018) was conducted by the National Institute of Ecology. It began in 1986 and
covers the entire Republic of Korea, providing data on the occurrence of endemic, alien,
and invasive species. The survey has been conducted every five years since its inception
in 1986. This study used the most recent data from the 4th National Natural Environment
Survey to conduct independent verification.

To analyze the accuracy of the appearance of each species and compare it with the
National Natural Environment Survey, we converted the results of the species distribution
model for each species into a binomial distribution of appearance and non-appearance. As
the critical point was set differently for each result, we derived the presence/absence map
by using a median value of 500 (ranging from 0 to 1000) as the critical point [23].

4. Results
4.1. Species Distribution Model Operating Result

In this study, we used 7 single models to predict 11 potential habitats in Republic
of Korea. To determine the statistical significance of each model, we compared the AUC
values of the ROC. The AUC value of the derived ensemble model for each species was
higher than 0.8, indicating a high discriminatory ability for presence/pseudo-absence data
and that the modeling results were statistically reliable (Figure ??).
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Figure 4. Model Operating Result: (a) Pinus Densiflora (AUC: 0.804), (b) Quercus mongolica (AUC: 0.840),
(c) Quercus serrata (AUC: 0.813), (d) Quercus variabilis (AUC:0.807), (e) Castanea crenata (AUC: 0.809),
(f) Prunus serrulata (AUC: 0.804), (g) Quercus acutissima (AUC: 0.828), (h) Quercus aliena (AUC: 0.829),
(i) Fraxinus rhynchophylla (AUC: 0.857), (j) Pinus rigida (AUC: 0.864), (k) Prunus verecunda (AUC: 0.852).
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The contribution of each variable to the prediction of species distribution was deter-
mined by analyzing the importance of each variable based on the constructed ensemble
model. Since the final result was an ensemble calculated using the simple average method
based on the results of each model, the variable importance was also expressed as a simple
average (Table 3). The contributions of variables varied for each target species, but in
general, the variables with the highest contributions were Bio1 (annual mean temperature)
6 species, organic matter content for 4 species, and distance from forest boundary for one
species. Temperature and organic matter content were the most crucial factors for the
habitat environment of major tree species in Republic of Korea.

Table 3. Variable importance table derived from BIOMOD2 modeling results. Bold values show the
highest importance.

C.
crenata

Q.
aliena

Q.
serrata

Q. mon-
golica

P. vere-
cunda

Q. vari-
abilis

F. rhyn-
chophylla

P. den-
siflora

Q. acutis-
sima

P. vere-
cunda

P.
rigida

bio01 0.0530 0.3433 0.0947 0.3528 0.1132 0.0583 0.5587 0.0745 0.3453 0.3428 0.5171
bio02 0.0696 0.0289 0.0418 0.0450 0.0284 0.0713 0.0182 0.0613 0.0300 0.0348 0.0413
bio04 0.0896 0.0943 0.0781 0.0639 0.0483 0.0872 0.0406 0.0794 0.0918 0.1320 0.0682
bio12 0.1357 0.0899 0.0424 0.0574 0.0669 0.1318 0.0689 0.0882 0.0850 0.1727 0.0724
bio13 0.1419 0.0769 0.0767 0.0710 0.0596 0.1528 0.0689 0.1236 0.0882 0.1114 0.1235
bio14 0.0486 0.0605 0.0653 0.0577 0.0351 0.0545 0.0109 0.0323 0.0578 0.1007 0.0508

Distance from
forest edge 0.1594 0.0875 0.0527 0.1853 0.2200 0.1634 0.1985 0.0602 0.0792 0.2048 0.0255

Soil Organic
matter 0.1938 0.0689 0.2044 0.0529 0.0859 0.2125 0.0220 0.3885 0.0694 0.0647 0.0354

Soil Humid 0.0437 0.0885 0.0281 0.0396 0.1019 0.0491 0.0088 0.0248 0.0904 0.1350 0.0944

Forest Type 0.1765 0.1620 0.1220 0.0978 0.2004 0.1624 0.0097 0.0408 0.1595 0.1149 0.0994

Distance From
Valley 0.1123 0.0879 0.0345 0.0475 0.0784 0.1085 0.0461 0.0415 0.0918 0.0211 0.0458

4.2. Binomial Data Result

To verify the prediction accuracy of the species distribution model, the model was
converted to binomial data based on the median value. The resulting map was then
reclassified as binomial data and overlapped with NES data, which allowed us to confirm
whether the model accurately predicted the actual distribution of species. The confirmation
of tree species distribution showed an accuracy rate of more than 70% in most species,
except for Quercus mongolica, which showed the accuracy rate below 70%. This discrepancy
is due to the differences in the distribution of Quercus mongolica in urban forests in NES,
which surveyed all terrains across the country, unlike the data from the first FHM, which
only surveyed mountain forests (Table 4).

Table 4. Binomial Data Accuracy Rate.

Species Name Scientific Name Accuracy Percent

Korean red pine Pinus densiflora 77%
Mongolian oak Quercus mongolica 76%

Konara Oak Quercus serrata 79%
Cork oak Quercus variabilis 79%
Chestnut Castanea crenata 70%

Mountain oriental cherry Prunus serrulata 79%
Sawtooth oak Quercus acutissima 74%

Oriental white oak Quercus aliena 66%
Hua qu liu Fraxinus rhynchophylla 73%
Pitch pine Pinus rigida 74%

Oriental cherry Prunus verecunda 70%
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4.3. Production and Utilization of Species Richness Map

A map was created to represent the richness of 11 tree species, indicated by a scale
of 0–11. This was accomplished by overlapping the distribution maps of the 11 species
into a binomial map (Figure 5a). To validate the accuracy of the map, the vegetation cli-
mate distribution map prepared by the Korea National Arboretum was used (Figure 5b).
We concluded that species richness was high around the boundary between the north-
ern temperate region and deciduous broad-leaved forest in the central temperate region.
This was due to the distribution of three deciduous broad-leaved tree species, Quercus
mongolica, Quercus serrata, and Quercus aliena, as well as Pinus densiflora, a representative
evergreen coniferous species, and the results of the Pinus rigida afforestation policy in the
Chungcheong-do region [36], including the temperate and southern regions. Furthermore,
the distribution of Fraxinus rhynchophylla in the temperate northern region appears to have
contributed to the observed high species richness.

Based on the analysis of the land cover map, we found low values primarily in urban
areas and farmlands, where forests are absent. As species richness was derived mainly
in the urban boundary area, it seems that the results of the second urban forest master
plan are visible [37], a forest policy in which forest management and monitoring were
actively carried out mainly in urban forests in the urban boundary area. The high value
of species richness mainly focused on the urban boundary area, which aligns with the
implementation of the second urban forest master plan (Figure 6).
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5. Discussions

In this study, we conducted an ensemble modeling of species distribution for eleven
woody plant species that are major habitats in Republic of Korea. Based on the ensemble
modeling result, it was converted into a binomial map and then overlapped to create the
species richness map. The statistical verification using BIOMOD revealed an AUC value as
high as 0.8, and independent verification using the NES confirmed that all but one species
had an accuracy rate of 70% or higher. These results demonstrate the high accuracy of the
modeling approach, indicating that the results are valid. Based on the results, the species
richness map created using this methodology was judged to be suitable for use as spatial
data for forest management.

As a result of variable contribution analysis, the results were different for each target
species, but the Bio1 (annual average temperature) variable appeared the highest, followed
by soil organic matter.

The warming trend announced by the IPCC is 0.1 ◦C/10 years, whereas the warming
trend in the Korean Peninsula is 0.15 ◦C/10 years, indicating that the warming trend
in the Korean Peninsula is steeper [38]. Since the tree species with the highest average
annual temperature showed a high contribution, it was confirmed that climate change is an
essential factor to be considered for forest management in the future.

Soil organic matter content is highly related to precipitation, and as precipitation
increases, there is a risk of soil organic matter being lowered [39]. Because Korea will
change to a subtropical climate in the future and have a characteristic of increasing annual
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precipitation [40], a forest policy based on climate change will be needed in terms of forest
soil organic matter that affects tree species richness.

To find a way to utilize the tree species richness map, the distribution was compared
using the vegetation distribution climate map and the land cover map as comparative data.
The vegetation climate distribution map was selected as comparative data to link climate
change policy in the future, and the land cover map was selected to confirm how land
cover characteristics affected species richness.

Based on the analysis of the vegetation climate distribution map, evergreen broad-
leaved mixed forests in the temperate southern region were derived at a low level. We
found that southern temperate evergreen and deciduous mixed forests zone had low species
richness, which might be due to the fact that these forests belong to a warm climate zone.
Because the first FHM survey did not include warm zone plants in its target species, low
species richness was observed. Therefore, it is suggested that it is necessary to check the
distribution of temperate plants in this region when implementing forest policy.

Based on the analysis of the land cover map, we found low values primarily in urban
areas and farmlands. Forests in the urban center or farmland in Republic of Korea were
found to have low species richness, suggesting that the area requires closer investigation
and management.

6. Conclusions

This study investigated a method that can contribute to the species richness of forests
in Republic of Korea by estimating the species richness of trees in Republic of Korean forests
where field survey data are unavailable. To achieve this, we used data from the first FHM
survey, which is a field survey that provides information on species diversity or species
richness at the sampling point level, but with no spatial reference. Due to the complex
topography and different forest types in Republic of Korea, model prediction using only
one indicator is difficult because no verification data are available. Unlike previous studies,
which could only evaluate information within a sample point, this study is meaningful in
that it visually extends to a spatial range.

This study employed the species distribution ensemble model to model species rich-
ness in Republic of Korean forests. Due to the complex topography of the region and
varying forest characteristics, it was difficult to spatially represent the species richness of
forests accurately. Therefore, a modeling method was applied to take this into account.
Eleven species commonly found in Republic of Korea were selected, following the example
of a forest health analysis conducted in the UK [7]. A species richness map of Republic of
Korean forests was created by applying a species distribution ensemble model (BIOMOD)
to the selected species.

The results of this study have significant implications for the prediction of species
richness in areas where survey data are unavailable, using species survey data from the
first FHM dataset. This dataset is particularly noteworthy for its diverse range of survey
items among existing forest resource survey data. Because data from the first FHM survey
were used, we believe that there is a future opportunity to analyze the health of Republic
of Korean forests through linkage with other survey indicators.
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Appendix A

Table A1. Pearson’s correlation coefficient matrix of bioclimatic variables. The values which have a
correlation (p > 0.7) have been changed into red.

1 Bio1 Bio2 Bio3 Bio4 Bio5 Bio6 Bio7 Bio8 Bio9 Bio10 Bio11 Bio12 Bio13 Bio14 Bio15 Bio16 Bio17 Bio18 Bio19

Bio1 1.000

Bio2 −0.510 1.000

Bio3 −0.251 0.879 1.000

Bio4 −0.599 0.451 −0.015 1.000

Bio5 0.821 0.118 0.062 0.156 1.000

Bio6 0.878 −0.708 −0.334 −0.838 0.224 1.000

Bio7 −0.656 0.762 0.362 0.909 0.150 −0.930 1.000

Bio8 0.824 −0.333 −0.315 −0.083 0.867 0.539 −0.220 1.000

Bio9 0.888 −0.472 −0.106 −0.830 0.329 0.899 −0.788 0.550 1.000

Bio10 0.768 −0.215 −0.250 0.043 0.928 0.422 −0.077 0.963 0.449 1.000

Bio11 0.917 −0.525 −0.129 −0.864 0.325 0.962 −0.853 0.561 0.963 0.462 1.000

Bio12 −0.073 0.104 0.291 −0.298 −0.255 0.082 −0.180 −0.245 0.210 −0.328 0.115 1.000

Bio13 −0.395 0.101 −0.100 0.432 −0.164 −0.408 0.352 −0.193 −0.361 −0.190 −0.460 0.609 1.000

Bio14 0.041 −0.135 0.091 −0.387 −0.247 0.287 −0.385 −0.140 0.206 −0.231 0.240 0.526 0.076 1.000

Bio15 −0.432 0.136 −0.292 0.848 0.082 −0.636 0.676 −0.018 −0.673 0.087 −0.703 −0.220 0.608 −0.491 1.000

Bio16 −0.293 0.205 0.213 0.067 −0.252 −0.222 0.130 −0.307 −0.112 −0.331 −0.210 0.898 0.851 0.344 0.208 1.000

Bio17 0.137 −0.128 0.176 −0.533 −0.219 0.396 −0.484 −0.110 0.365 −0.226 0.378 0.710 0.124 0.931 −0.591 0.466 1.000

Bio18 −0.299 0.200 0.184 0.123 −0.208 −0.233 0.158 −0.251 −0.136 −0.289 −0.237 0.888 0.875 0.334 0.229 0.978 0.458 1.000

Bio19 0.152 −0.129 0.177 −0.544 −0.210 0.403 −0.489 −0.099 0.390 −0.217 0.392 0.726 0.130 0.924 −0.597 0.477 0.998 0.468 1.000
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