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Abstract: Ecological agriculture projects have achieved a growing development in the context of low
carbon. However, because of the great difference in these issues from traditional types, there exist risks
in progression quality and sustainability. To better identify the risk, this paper proposes a novel hybrid
approach that integrates the analytic hierarchy process (AHP) with technique for order preference by
similarity to an ideal solution (TOPSIS), as well as an improved support vector machine (SVM) based
on the brainstorming algorithm (BSO). First, a risk evaluation index framework is developed and
elaborated in terms of the natural environment, society, market economy, management, technology,
and finance. Then the traditional assessment can be derived from AHP with TOPSIS. In addition, BSO
is applied to improve SVM for rapid computation. Finally, a case study is implemented to verify the
accuracy of the proposed technique. In this research, based on the low-carbon perspective, artificial
intelligence algorithm and risk assessment are introduced into the field of ecological agriculture
project management, which is conducive to the rapid and effective evaluation of ecological agriculture
project risk. It can improve managers’ risk awareness and risk management ability, reduce investment
blindness, and help ecological agriculture projects achieve healthy and sustainable development
under the background of low carbon, thus contributing to the development of a low-carbon economy.

Keywords: AHP; BSO; ecological agriculture project; low carbon; risk evaluation; SVM; TOPSIS

1. Introduction

In contrast to traditional agricultural modes, the ecological agriculture project is
a novel development pattern integrating eco-tourism, product processing, leisure and
entertainment, elderly care, and business service [1], which can achieve organic unity of
economic, social, and ecological benefits [2]. In other words, an ecological agriculture
project is a kind of “sustainable agriculture” project. It is an agricultural production system
that reduces the use of chemical agricultural products as much as possible and mainly relies
on crops and artificial technology to improve the quality of agricultural products, improve
the agricultural ecological environment, and improve production efficiency and benefit.
Nowadays, with the burgeoning development of a low-carbon economy, strong support
for modern agriculture mode concerning systems and policies has been given in China that
attracts many investors to set foot in this field and contributes to rapid growth [3]. However,
it cannot get rid of inherent characteristics of agriculture, such as a long construction cycle,
large capital investment, and slow investment return. Simultaneously, the low-carbon
economy has also brought new content to the risks [4]. As a result, it is of great necessity to
carry out systematic risk evaluation research on ecological agriculture projects.

As for assessment content, some scholars have begun to study risk estimation of
ecological or traditional agriculture projects [5–9]. Reference [5] came up with a risk as-
sessment method regarding ecological land in the black soil region of Northeast China.
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The geo-weighted regression model detected potential factors and took the natural envi-
ronment and urbanization process together with food production conditions into account.
The technical system of agricultural multi-disaster meteorological disaster risk evaluation
was discussed in reference [6]. Based on the regional historical disaster data from 1978
to 2020 in the first national comprehensive natural disaster risk survey, risk estimation
was implemented in 18 major grain-producing areas of Jilin Province. The literature [7]
developed a hybrid risk evaluation model that could capture the interdependence among
water, energy, and food shortage risk. In addition, a chance-constrained programming
approach was established in the paper based on Copula. This measure has been applied to
the agricultural WEF linkage system in northern China, where the shortage of water, energy,
or land affects the agricultural output. Reference [8] pointed out that the ex-ante research
on index-based insurance as a financial risk management tool for agricultural danger has
increased prominently. At the same time, some new study trends were highlighted to
guide future research, particularly the use of remote sensing data and hydrological as well
as crop models to address data scarcity, geo-based dangers, and climate change issues.
A comprehensive study was conducted in reference [9] directed towards environmental
risk assessment comprising frequent monitoring of water and soil parameters (24 in total).
The risk categories of three agricultural projects were determined following quality and
quantity. To sum up, it can be found that the importance of risk assessment on agriculture
projects is increasingly apparent, but few studies focus on ecological agriculture issues,
especially lacking quantitative risk estimation from the perspective of low carbon. By comb-
ing through existing studies, it can also be found that some scholars have started to study
the risk assessment of ecological agriculture projects or traditional agricultural projects,
and the evaluation contents mainly include: In terms of land ecological risk, agricultural
financial risk, geographical basis, climate change risk, environmental risk, etc. Although
the above studies have involved the risk assessment of ecological agriculture projects or
traditional agricultural projects, the evaluation content is relatively simple. Therefore, this
research evaluates the risk of ecological agriculture projects from six aspects: nature, society,
market economy, management, technology, and finance. It is expected to cover the whole
life cycle of the project from pre-planning fundraising to completion and later operation so
as to make a complete evaluation of the risk of the ecological agriculture project.

Concerning assessment approaches, there are chiefly two categories: traditional evalu-
ation models and intelligent techniques [10]. AHP, Delphi approach, and matter-element
extension means, along with ideal solution, belong to classical estimation measures [11],
while artificial neural network (ANN) together with support vector machine (SVM) pertains
to modern intelligent methods [12]. Despite extensive application and exact results, tradi-
tional methods have difficulty in dealing with a large amount of data. However, intelligent
algorithms embody the merits of rapid and accurate data processing. This study attempts
to integrate these two categories of means for risk evaluation research aiming at ecological
agriculture projects. The conventional TOPSIS method calculates the proximity between
the assessment target and the ideal solution by approximating the positive and negative
ideal solutions. It is supposed that the estimation target is optimal, which is the closest to
the positive ideal solution and farthest from the negative ideal solution [13]. However, the
reverse order problem in TOPSIS cannot be ignorable in towards evaluation of multiple
indicators and objects. Concretely, the ranking consequence of estimation targets, even the
future decision precision, may change owing to the alteration of positive and negative ideal
solutions as well as the weights. To settle this issue, a modified TOPSIS is introduced in the
paper. Considering the merits of flexibility and conciseness, AHP is selected here for weight
determination in combination with qualitative as well as quantitative decision-making [14].
Afterward, more and more researchers concentrated on SVM, which is grounded in sta-
tistical theory [15]. In line with VC dimension theory and structural risk minimization,
SVM makes efforts to find a perfect balance between learning capabilities and model com-
plicacy [16]. This technique looks for a hyperplane in high-dimensional feature space to
which the training set is nonlinearly mapped. The space can meet the maximization of the
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isolation edge between positive and negative examples [17]. Given the disadvantages of
ANN such as over-fitting, easily trapping into local optimization, and result selection, SVM
can validly solve the above problems. Additionally, it is proper for coping with nonlinear,
high-dimensional data, which is extensively applied in pattern recognition along with data
mining, etc. [18]. Nevertheless, appropriate parameter selection has a momentous impact
on computing performance [19]. Thereby, it is necessary to employ appropriate intelligent
methods to optimize the parameters. Brain Storm Optimization (BSO) applies clustering
ideas to local optimum and acquires global one via contrast. Moreover, this means adopting
mutation ideas to expand diversity and prevent trapping into local optimum. It is demon-
strated that BSO is suited for multi-modal and high-dimensional issues [20]. Therefore, this
study proposes a hybrid model combining BSO with SVM for risk assessment of ecological
agriculture projects.

In summary, this paper establishes a system directed at quantitative risk estimation
in ecological agriculture projects from the aspect of low carbon. The rest of the study is
arranged as follows: Section 2 separates the indicators into six groups, namely natural
environment, society, market economy, management, technology, and finance, and explains
the evaluation indexes and makes a detailed explanation. Section 3 develops a classical
evaluation model AHP-TOPSIS and intelligent assessment technique SVM integrated with
BSO, respectively. An example is employed here to validate the precision and validity of
the established method. Section 5 summarizes the research results.

2. Indicator System
2.1. Structure of Index System

Due to their large scale and time-consuming, risk identification of ecological agricul-
ture projects costs more human, financial, and material resources and even has a significant
impact on the balance between management benefits and revenue along with expendi-
ture [21–23]. Considering the perspective differences between low carbon and traditional
condition, this study collects and analyzes all kinds of references on project construction
risk [24–27]. Here, the dangers are separated into six fields from the aspect of low carbon:
natural environment, society, market economy, management, technology, and finance,
which covers the whole life cycle of the projects from early planning and fundraising to
completion and later operation. The specific risk indexes that are probable to result in
enterprise losses are screened for prevention and response in advance, see Table 1.

2.2. Interpretation of Evaluation Indicators
2.2.1. Natural Environment Risk

From the perspective of low carbon, natural environmental risk is the basic risk for
ecological agriculture, and ecological agriculture has harsher requirements on the natural
environment than traditional agriculture. The risks of water shortage, climate deterioration,
environmental pollution, and soil fertility degradation caused by the natural environmental
change have a serious impact on ecological agriculture projects. The change in natural
environment is not only affected by the local climate and other natural conditions but
also the traditional intensive agricultural technology used by human beings may lead to
the degradation of soil fertility resources and other risks. Natural environmental risks
mainly include natural disaster risk, natural condition risk, environmental pollution, and
ecological degradation risk.

(1) Natural disaster risk
The severe dependence of agriculture on the environment determines farming industry

directly faces the peril of natural disasters. Furthermore, other systemic risks are frequently
induced, such as meteorological damage (drought, flood, hail, frost, typhoon, lightning,
etc.), geological fatality (earthquake, volcano, landslide, etc.), and insect pests. Natural
disasters in large regions generally influence product supply and cause price fluctuations.

(2) Natural condition risk
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As a kind of pure danger, it refers to an objectively existing and irresistible envi-
ronmental situation. All construction activities cannot violate natural laws. Hence, the
development of ecological agriculture projects relies deeply on the environment. Natural
condition risk consists of meteorological conditions as well as geological conditions.

(3) Environmental pollution and ecological degradation risk
Environmental problems such as water pollution, soil pollution, air pollution, and soil

fertility resource degradation pose a major risk to the development of ecological agriculture.
They not only seriously affect the quality of agricultural products but also pose a serious
threat to people’s diet health and even threaten life safety. The impact of environmental
pollution and ecological degradation on ecological agriculture projects is fatal. Once
polluted, the value of the products will decrease greatly and even be destroyed in serious
cases. Environmental pollution is two-sided, not only from the external environment;
internal technology or improper operation may also cause environmental pollution and
ecological degradation.

Table 1. Risk evaluation index system of ecological agriculture project risk from the aspect of
low carbon.

First-Rank Second-Rank Third-Rank Label

Ecological agriculture
project risk from the

perspective of
low carbon

Natural environment risk
Natural disaster risk Z1

Natural condition risk Z2
Environmental pollution and ecological degradation risk Z3

Social risk
Risk of national policy change Z4

Risk of local policy change Z5
Public intervention risk Z6

Market economy risk

Risk of change in consumer demand Z7
Risk of change in intensified market competition Z8

Risk of material supply fluctuation Z9
Risk of rising labor wage Z10

Management risk

Personnel quality risk Z11
Production outsourcing risk Z12

System process risk Z13
Contract risk Z14

Land transfer risk Z15
Product quality risk Z16

Technical risk
Information asymmetry risk Z17
Transformation stability risk Z18
Technology disclosure risk Z19

Financial risk

Investment budget risk Z20
Financing risk Z21

Capital liquidity risk Z22
Cost control risk Z23

2.2.2. Social Risk

Social risk means the chance caused by social conditions and political circumstances
to ecological agriculture projects, which incorporates a change in national and local policy
as well as public intervention.

(1) Risk of national policy change
The adjustment of national policy on ecological agriculture projects, especially the

reduction of support, may lead to profit degradation, an extension of the payback period,
and a decline in revenue. Additionally, variation in carbon tax policy probably increases
risk because of low carbon.

(2) Risk of local policy change
Policy fluctuation involves local land use planning, regional program, business envi-

ronment, and tax incentives. Weak support for ecological agriculture projects may result in
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forced reconstruction since land use does not conform to municipal planning. The item
will suffer from financing difficulties and other economic losses.

(3) Public intervention risk
Implementation of farmers’ function replacement belongs to public intervention,

including relocation of local villagers along with rural land circulation. If some villagers do
not cooperate or even obstruct, projects will need long preparation time and high costs or
fall into abort.

2.2.3. Market Economy Risk

The risk emerges due to economic environment change and relation variation. It can
be divided into the risk of change in consumer demand, intensified market competition,
material supply fluctuation, and rising labor wages.

(1) Risk of change in consumer demand
There are many reasons for the hazard incorporating alteration of economic develop-

ment, income level as well as consumption habits. Moreover, public health emergencies
also convert consumer behavior.

(2) Risk of change in intensified market competition
Competition intensification gives rise to price slide. Too many competitors induce mar-

ket saturation and sale drop. Ecological agriculture adopts organic, green, and pollution-
free production techniques with high costs. Its price is much more expensive than ordinary
farm goods, but its output only accounts for a little part of the market. Thereby, ecological
agriculture is faced with serious market danger.

(3) Risk of material supply fluctuation
Price, quality, and quantity of raw materials commonly follow the market trend. The

supplier’s credit risk also influences staff provision. Ecological agriculture production put
forward strong demand for seeds, organic fertilizers, biological pesticides, etc. In light of its
high price, unstable product quality, and output, together with huge rate fluctuation, there
exists enormous risk in the procurement process, which is similar to agricultural equipment
with low applicability.

(4) Risk of rising labor wage
The need for labor in ecological agriculture is immense. However, the contradiction

between supply and demand of manpower is prominent owing to little quantity, aging
structure, and low diathesis. Additionally, in virtue of the strong seasonal nature, there
is a time conflict with local farmers’ production activities. Employment of foreign labor
may also discord with native economic and cultural interests. The superposition of various
factors has led to a sharp rise in earnings.

2.2.4. Management Risk

During project operation, the administration may not meet expected requirements in
the aspect of planning, organization, coordination, and control, which will cause manage-
ment risk. Quality and safety losses occur as a result of a long cycle and complex factors.
Moreover, direct or indirect economic wastage will be brought to the project. Management
risks involve danger in personnel quality, production outsourcing, system process, contract,
land transfer, and product quality.

(1) Personnel quality risk
This type of risk is the most common one in organization management. In the agricul-

tural industry, both low-carbon administration and technical personnel are extremely scarce.
Ecological agriculture pertains to the high-tech and high-risk industry with strict demand
for talent and difficult working conditions. Accordingly, it is very hard to recruit qualified
employees from the market. The quality risk of management personnel is presented in two
aspects: on the one hand, operation errors are shown based on weak awareness of quality,
safety, and law along with the sense of responsibility of management personnel; on the
other hand, lack of effective administration system and domination process make the work
out of control. Additionally, the bad moral quality of employees will also increase the risk.
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In particular, there are a large number of cash transactions in agricultural operations and
irregular bills, which provides the staff with bad conduct a chance to take advantage of.

(2) Production outsourcing risk
This danger not only relates to the core issues such as product quality but also has a

significant impact on production costs. As a high-tech industry, production outsourcing
is generally used in ecological agriculture; that is, tasks are outsourced to professional
manufacturing cooperatives, associated companies, or local farmers’ spontaneous organi-
zations. Nevertheless, products fail to meet the requirements because of poor contractor
ability. Some of them cannot operate advanced machines skillfully and carry out standards
and specifications strictly. In addition, limited by farming hours and a shortage of labor
resources, the cost soars to an astonishing level.

(3) System process risk
As a crucial part, a positive system procedure is an important support for efficient

operation in the company. A reasonable process can standardize employees’ behaviors,
clarify responsibilities and stimulate enthusiasm. In this way, the staff can form good habits
and improve efficiency simultaneously. If there exists a problem in the process, it will result
in working delay, mutual responsibility shifting, administration confusion, and frequent
operational errors. Thus, project quality cannot be guaranteed.

(4) Contract risk
Several people in agricultural production do not attach much importance to legal

documents. The lack of contract spirit may bring about unnecessary losses. The ecological
agriculture project is industrialized and market-oriented concerning material procurement,
production outsourcing, and product sales. Therefore, contracts must be strictly reviewed
and managed to protect legal rights and interests from infringement.

(5) Land transfer risk
Most of the land in ecological agriculture projects is transferred from farmers. Many

grass-roots departments exploit this situation to compete with them for benefits and
cause disputes, which involve the interests of the government, two rural committees, and
villagers. Furthermore, low transparency and fairness of collective land transfer also arouse
strong reactions from farmers. Although national laws and regulations have made many
provisions in this regard, the contents are not perfect and need dynamic changes. In follow-
up management, it is also easy to make conflicts with farmers due to poor communication.

(6) Product quality risk
This kind of risk runs through the whole process of the project. The product quality

should be measured from two aspects: rich in nutrients and low in harmful substances.
Control of quality safety relates to many links, such as the purchase of agricultural materials,
production operation, environmental protection, and monitoring of storage and transporta-
tion process, which increases the difficulty in management. As the guarantee of project
benefit, quality issues directly affect both people’s health and the ecological environment.

2.2.5. Technical Risk

It refers to the risk that ecological agriculture projects adopt advanced biotechnology
and production skills whose technical progressiveness, stability, adaptability, and safety
are greatly different from the predicted state, resulting in production efficiency not meet-
ing expectations, together with increased cost, substandard quality, and even possible
biotechnology variation. Considering complex problems and changeable environment,
risks exist in technology introduction, production operation, and administration, including
information asymmetry, transformation stability, and technical disclosure.

(1) Information asymmetry risk
Sometimes, the recommended techniques and technology do not match the actual

demand. It is common that the staff lack sufficient awareness of the novel skill or the
R&D unit deliberately conceals technical defects, that is, information asymmetry. For
example, the technology is unadvanced in effect, which leads to being quickly imitated and
surpassed, or the outcome is too exaggerated to realize.
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(2) Transformation stability risk
The environment of R&D is quite different from practical application. The relevant

technology is normal in the experimental stage, but the prospective effect is hard to achieve
or out of control, in reality, owing to great alternation in the natural environment. Most
production sites for eco-agriculture are in the field except for the greenhouse; the variable
surroundings increase the difficulty of extension.

(3) Technology disclosure risk
It can be seen that keeping a secret is difficult because of the open state. To ensure

eco-technology at the leading level, first, it is necessary to do a good job in intellectual
property protection to prevent leakage and loss of progressiveness. Second, strict technical
operation procedures and management specifications should be formulated.

2.2.6. Financial Risk

Ecological agriculture projects generally need long cycles and large initial investments.
Slow fund returns and many cash transactions expand financing risk. It principally incor-
porates investment budget risk, financing risk, capital liquidity risk, and cost control risk.

(1) Investment budget risk
An investment budget means a capital expenditure plan plays a guiding role in all

activities in the enterprise. It is necessary to take the life cycle of the project into account to
predict the comprehensive income. Even if a reasonable budget is made, it will be influenced
by various factors, such as changes in the price level, adjustments of bank interest rates,
financing costs as well an uncertain construction period. Thus, the investment payback
period of the project becomes erratic, allowing for the actual expenditure to deviate from
the budget. Accordingly, elaborate precautions should be enforced based on full fund
evaluation and practical situations.

(2) Financing risk
It implies the impact of uncertain factors on finance such as macroeconomic environ-

ment, capital supply and demand market, capital source structure, financing quantity, term
and method, financial leverage, exchange and interest rate and currency value change, etc.
The fluctuation of the financial market and unreasonable use of its capital structure and
financial leverage will aggravate the danger.

(3) Capital liquidity risk
Cash shortage affects the daily operation of the project and debt repayment in the

enterprise. For instance, improper debt proportion, reduced investment, and excessive
purchase and production costs lead to above-norm payment, while exorbitant inventory
conduces to irrational capital occupation. Abundant credit sales are probable to give rise to
increased recovery costs, delayed payback periods, poor liquidity, and bad debts.

(4) Cost control risk
It is critical to implement strict cost control in consideration of huge investments and

long construction periods in ecological agriculture projects. If there is a large discrepancy
in the budget, construction delays and financing hardships may occur. Therefore, all
expenditures must be grimly dominated in the whole process, especially aiming at costs of
labor, machinery, raw material, etc. In this way, the project can refrain from losses.

3. Methods

This study proposes a hybrid model combining BSO with SVM for risk assessment
of ecological agriculture projects to realize fast and effective risk evaluation of ecological
agriculture projects as well as promote healthy and sustainable development.

3.1. Application of AHP-MTOPSIS
3.1.1. AHP

In combination with qualitative and quantitative decision-making, AHP is particu-
larly suitable for dealing with big problems of multi-objective and multi-level complex
systematization and complex problems of system engineering that are difficult to complete
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quantitative analysis and decision-making. Moreover, the indexes selected for the research
topic in this paper are also difficult to be processed quantitatively. Therefore, AHP is chosen
here to determine the weight of each index of the risk assessment index system of ecological
agriculture projects.

The specific calculation is illustrated as follows [28–30]:
(1) Construct a hierarchy structure
Through in-depth risk analysis, the indexes are separated into three levels based on

logical relationships.
(2) Establish a comparison matrix
The matrix can be obtained via comparison in pairs in the third-level indicator layer

to identify the proportion of each index in this layer relative to the previous one, namely
the criterion class.

aij is utilized to represent the contrasting results. Table 2 lists a scale of 1 to 9, which is
proposed by Saaty and generally exploited.

aij =
1
aji

(1)

Table 2. Comparison scale and corresponding definition.

Scale Definition

1 The impact of i is the same as j
3 The impact of i is slightly greater than j
5 The impact of i is greater than j
7 The impact of i is evidently greater than j
9 The impact of i is completely greater than j

The pairwise comparison matrix A is established as presented in Equation (2)

A = (aij)n×n =

 a11 a11 . . . a1n
. . . . . . . . .
an1 an2 . . . ann

 (2)

(1) Calculate weight and implement consistency test
The hierarchical ranking is applied to test the impact degree of factors at the lower level

in contrast with the upper one. The sorting can be acquired founded on index weight. Here,
ωi acts as the weight of i. The maximum eigenvalue is derived, which meets AW = λmaxW
as well as the normalized eigenvector W = {ω1, ω2, . . . , ωn}, ∑n

i=1 ωi = 1, where W stands
for the weight of each index relative to the upper layer.

The momentous promise for the application of AHP is the consistency of the compar-
ison matrix, or else the judgment error will occur. The test standard is elaborated as: If
λ = n, A can be recognized as a uniform matrix, where λ equals the maximum eigenvalue
in n × n reciprocal matrix A. In comparison with judge consistency degree, CI, RI together,
with CR are cited in the paper.

CI =
λ− n
n− 1

(3)

The value of RI is displayed in Table 3.

Table 3. RI.

n 1 2 3 4 5 6

RI 0 0 0.58 0.90 1.12 1.24
n 7 8 9 10 11
RI 1.32 1.41 1.45 1.49
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Normally, if the consistency ratio CR = CI
RI < 0.1, it is assumed that the inconsistency

degree is credible. Moreover, the normalized eigenvector is taken as the weight vector of
the index system. Otherwise, A requires a tune-up.

3.1.2. MTOPSIS

The positive and negative ideal solutions are endowed with novel definitions in
MTOPSIS. It is reckoned that the aforementioned solutions pertain to an absolute condition,
and the assessment target is always between them; namely, the examined risk of ecological
agriculture project is not able to be lower than the absolute negative ideal solution, nor
higher than the absolute positive one [31]. The determination of the absolute solutions
rests with the actual situation or experienced experts. The improvement of the MTOPSIS
method can eliminate the possible reverse order problems in TOPSIS evaluation.

The synthetic evaluation procedures of MTOPSIS are illustrated here [32–35]:
(1) Equations (4) and (5) construct the weighted judgment matrix.

R =
(
rij
)

m×n (4)

rij = wj · x∗ij; i = 1, 2, · · · , m; j = 1, 2, · · · , n (5)

(2) The absolute positive along with negative ideal solutions are determined as follows:

X+ =
(
r+1 , r+2 , r+3 , · · · , r+m

)
(6)

X− =
(
r−1 , r−2 , r−3 , · · · , r−m

)
(7)

On account of the standardization of raw data, the absolute solutions are commonly
set based on Equations (8) and (9), partly.

X+ = (1, 1, · · · , 1)T (8)

X− = (0, 0, · · · , 0)T (9)

(3) The Euclidean distance can be measured as presented in Equations (10) and (11).

D+ =

√√√√ n

∑
j=1

wj

(
X+ − x∗ij

)2
(10)

D− =

√√√√ n

∑
j=1

wj

(
X− − x∗ij

)2
(11)

(4) The relative closeness degree can be computed according to Equation (12):

Ci =
D−

D+ + D−
(12)

(5) The assessment objects are sorted founded on the value of Ci, that is, the compre-
hensive appraisal score. The larger value signifies lower risk in the project.

3.2. Improved SVM

Considering the disadvantages of artificial neural network, such as overfitting and
easy falling into local optimal and result selection, SVM cannot only effectively solve the
above problems but also is suitable for dealing with nonlinear and high-dimensional data,
etc., and has been widely used in pattern recognition, data mining, and other fields. In
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this paper, SVM is selected as the basic model. However, when the SVM model is used in
practice, there will be some problems with whether the model parameters are reasonably
selected. Improper parameter selection will seriously affect the computational performance
of the model. Therefore, this paper uses the BSO algorithm to optimize the key parameters
of SVM. This model combines the respective advantages of the above two algorithms in
order to achieve accurate, self-learning, self-adjustment, strong adaptability, and highly
reliable ecological agriculture project risk assessment function.

3.2.1. SVM

{(xi, yi), i = 1, 2, . . .} is exploited as the training set in SVM, wherein {(xi, yi), i = 1, 2, . . .}
and yi ∈ R stands for the i-th input and its desired output, respectively, d equals the di-
mension of influencing elements [36].

First of all, the insensitive loss function is displayed in Equation (13), where ε represents
the corresponding parameter.

| f (x)− y|ε =
{
| f (x)− y| − ε | f (x)− y| ≥ ε

0 | f (x)− y| < ε
(13)

The kernel function is expressed as follows in which ϕ(x) is a nonlinear function
in effect:

k
(
xi, xj

)
= ϕ(xi) · ϕ

(
xj
)

(14)

Thus, the inner product operation in high-dimensional space can be realized via
functions in input one.

Then, establish the optimal decision-making function as shown in Equation (15):

f (x) = w · ϕ(x) + b (15)

where · indicates the inner product in the study. ω ∈ Rd along with b ∈ R means the weight
vector and bias, respectively.

In the end, the problem can be optimized through relaxation variables ξi together with ξ∗i .

min
1
2
‖w‖2 + C

l

∑
i=1

(ξi + ξ∗i ) (16)

S.t.


yi − w · ϕ

(
xj
)
− b ≤ ε + ξi

w · ϕ
(
xj
)
+ b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
(17)

This approach takes advantage of the Lagrange function for dual optimization solution
with penalty parameter C.

Max

[
−1

2

l

∑
i=1

l

∑
j=1

(ai − a∗i )
(

aj − a∗j
)

k
(
xi, xj

)
−

l

∑
i=1

ai(yi − ε) +
l

∑
i=1

a∗i (yi − ε)

]
(18)

S.t.


l

∑
i=1

(
ai − a∗i

)
= 0

0 ≤ ai, a∗i ≤ C
(19)

The decision function is derived from Equation (20)

f (x) =
l

∑
i=1

(ai − a∗i )k(xi, x) + b (20)
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Karush–Kuhn–Tucker’s condition provides a way for the calculation of the bias b.{
b = yi − ε− w · ϕ(xi) ai, a∗i ∈ [0, C]
b = yi + ε− w · ϕ(xi) ai, a∗i /∈ [0, C]

(21)

The performance of SVM depends on kernel function selection to a great extent. In
this paper, the Gaussian radial basis kernel function is adopted in light of fine separability
and locality that points to model learning as well as training [37]. The width of the kernel
parameter is set as σ.

K
(
xi, xj

)
= exp

(
−
∥∥xi − xj

∥∥2

2σ2

)
(22)

3.2.2. Parameter Determination of SVM Model

There are three chief parameters related to the algorithm performance [38] explained
as follows:

Penalty parameter C indicates the degree of punishment while the error >ε. The
error will be increased by over or under-learning, which corresponds to the deviation of C.
Hence, the appropriate value provides a guarantee for error minimization [39].

The parameter in insensitive loss function ε manifests the expected error. Too large
ε will reduce prediction accuracy while the too small value will increase the dimension.
Accordingly, proper ε makes assurance for forecasting accuracy and avoidance of dimension
disaster [40].

The width of kernel parameter σ is associated with the high-dimensional spatial
structure as well as optimal solution complication in the SVM model. Too large σ contributes
to the increase in both training and testing errors, in turn too small σ conduces to larger
testing errors and lower training ones. Consequently, the generalization capability of this
method hinges on a reasonable value of σ [41].

Rational parameter selection in SVM is a crucial step in practical application connected
with classification performance and generalization ability. This process can be deemed as
a search for a feasible solution that satisfies the minimum generalization error in essence.
Every spot in the search space is treated as the perspective solution and its generalization
performance is evaluated subsequently. As a result of the distinctive evolution mechanism
in BSO, diverse clustering groups can be availably exploited for the broad search for an
optimal solution that is conducive to preventing the algorithm from falling into the local
optimum [42]. Therefore, this study applies BSO to parameter optimization in SVM.

The imitation of brainstorming meetings provides the basis for the BSO algorithm.
Here each population denotes a group of ideas that stands for solutions. In the course of
the execution of each iteration, massive ideas will be replaced. The concrete calculation of
BSO is stated as follows, including grouping, substitution, and invention [43]:

(1) Implement initialization on the parameters.
(2) N individuals are stochastically created in the feasible region, and the corresponding

fitness values are computed.
(3) Divide N feasible solutions into M classes using the K-means clustering method in

line with parallelism.
(4) With regard to i = 1:M

1) The fitness of the individuals in the cluster is calculated, and the optimal one
is elected as the kernel of the cluster.

2) Generate a probability value r1 stochastically. If r1 is less than the randomly
set possibility Pone_center, substitute the center point with a novel individual.

(5) With regard to i = 1:N

1) r2 represents a random number in [0, 1]. If r2 is less than Pone_cluster, stochasti-
cally choose a class ma. On the contrary, two classes of mb and mc are randomly
selected. Then execute Step 3).
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2) r3 signifies a stochastic number in [0, 1]. If r3 is less than Pone_center, conduct
destabilization on ma for a novel individual. Conversely, make a random
choice in the selected class for an update.

3) r4 refers to a random number in [0, 1]. If r4 is less than Ptwo_center, integrate
the class center of mb along with mc and put turbulence into effect for the new
individual. Otherwise, combine the individuals partly selected from mb and
mc and then make a disturbance.

4) The fitness of the available optimal results is contrasted with the novel individ-
ual. The better one will be reserved in the comparison.

(6) Compare the individuals incorporated in all categories and treat the individual attach-
ing the best fitness value as the iterative optimal solution.

(7) Judge whether the algorithm cycle reaches the iteration limit. If it attains the ex-
tremum, stop the calculation; otherwise, keep on Step (3).

3.3. Framework of the Comprehensive Model

This study put forward a hybrid evaluation approach integrating AHP-MTOPSIS with
improved SVM based on the risk assessment indicator system of ecological agriculture
projects, wherein the classical estimation results are acquired through AHP-MTOPSIS, and
the BSO algorithm conduces to modification in SVM. Figure 1 displays the evaluation
framework, which is fulfilled as follows:

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 23 
 

 

Yes

Start

Samples

Training set Testing set

Input

Parameters in SVM optimized by 
BSO

Retraining and retesting

Optimal parameters in SVM

Derive SVM model with best 
performance

Intelligent assessment results

Establish hierarchy structure

Construct comparison matrix

Weight determination and 
consistency test

Establish weighted judgement 
matrix

Calculate absolute positive and 
negative ideal solutions 

(modified)

Estimate the Euclidean distance 

Obtain the relative closeness 
degree

 Acquire the ranking of 
evaluation objects

Calculate fitness value

Determine the class enter

Randomly update the class center

Generate an individual 
stochasticly

If terminal condition is satisfied 

Obtain optimized parameters

A
H
P

M
T
O
P
S
I
S

No

 

Figure 1. Hybrid evaluation process. 

4. Experiment Analysis and Discussion 

4.1. Weight Determination Using AHP 

This paper selected 36 ecological agriculture projects in China to carry out empirical 

analysis. According to the above risk assessment and prediction model of ecological agri-

culture projects from the perspective of low carbon, the corresponding index values were 

substituted for calculation, and then the risk assessment and prediction results of ecolog-

ical agriculture projects were obtained. 

First of all, based on the ecological agriculture project risk assessment index system 

established above, the index of the index layer is further analyzed. Through field investi-

gation and data collection, the relevant data of 36 ecological agriculture projects are col-

lected and sorted out. Meanwhile, 35 experts are invited to score the evaluation indicators 

of 36 ecological agriculture projects according to the interval score value. Then these scores 

are summarized and sorted out, and the average value is obtained to get the data value of 

each evaluation index of 36 ecological agriculture projects. 

The weights of 22 indexes are ascertained by experts according to their relative im-

portance and multiple comparisons. AHP is applied to weight calculation that satisfies the 

requirements of the consistency test. Table A1 lists the comparison matrix of second-rank 

indicators and their corresponding consequence. Additionally, the relevant information 

directed at third-rank indexes is illustrated from Table A2 to Table A7. Table 5 summarizes 

the comprehensive weights of third-rank indicators. 
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(1) In view of the index system on ecological agriculture projects, set the initial input vari-
able group X = {xi, i = 1, 2, · · · , n} and execute quantification and standardization
on the original data.
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(2) The weight of indicators is obtained via AHP, and the overall assessment results can
be derived from MTOPSIS.

(3) The parameters of the BSO model are set in Table 4.
(4) The crucial parameters in the SVM algorithm have respect to the evaluation accuracy.

In this regard, BSO is utilized in the paper for parameter search.
(5) According to the involved estimation methods, make a comparison with different

results and conduct further analysis.

Table 4. Parameters setting in the BSO method.

Parameters Value

Maximal generating iterations 50
Number of K-means clustering 5

Displacement possibility 0.5
Possibility of picking up a cluster 0.5

Possibility of picking up one cluster center 0.3
Possibility of picking up two cluster centers 0.2

4. Experiment Analysis and Discussion
4.1. Weight Determination Using AHP

This paper selected 36 ecological agriculture projects in China to carry out empirical
analysis. According to the above risk assessment and prediction model of ecological
agriculture projects from the perspective of low carbon, the corresponding index values
were substituted for calculation, and then the risk assessment and prediction results of
ecological agriculture projects were obtained.

First of all, based on the ecological agriculture project risk assessment index system
established above, the index of the index layer is further analyzed. Through field investiga-
tion and data collection, the relevant data of 36 ecological agriculture projects are collected
and sorted out. Meanwhile, 35 experts are invited to score the evaluation indicators of 36
ecological agriculture projects according to the interval score value. Then these scores are
summarized and sorted out, and the average value is obtained to get the data value of each
evaluation index of 36 ecological agriculture projects.

The weights of 22 indexes are ascertained by experts according to their relative impor-
tance and multiple comparisons. AHP is applied to weight calculation that satisfies the
requirements of the consistency test. Table A1 lists the comparison matrix of second-rank
indicators and their corresponding consequence. Additionally, the relevant information
directed at third-rank indexes is illustrated from Table A2 to Table A7. Table 5 summarizes
the comprehensive weights of third-rank indicators.

Table 5. Calculation results of synthetic weights.

Second-Rank Weight Third-Rank Relative Weight Ultimate Weight

Natural
environment risk

0.3520
Natural disaster risk 0.2500 0.0880

Natural condition risk 0.2500 0.0880
Environmental pollution risk 0.5000 0.1760

Social risk 0.0786
Risk of national policy change 0.6483 0.0510

Risk of local policy change 0.1220 0.0096
Public intervention risk 0.2297 0.0181

Market economy
risk

0.0786

Risk of change in consumer demand 0.1667 0.0131
Risk of change in intensified market competition 0.1667 0.0131

Risk of material supply fluctuation 0.1667 0.0131
Risk of rising labor wage 0.5000 0.0393
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Table 5. Cont.

Second-Rank Weight Third-Rank Relative Weight Ultimate Weight

Management risk 0.0718

Personnel quality risk 0.0866 0.0062
Production outsourcing risk 0.0479 0.0034

System process risk 0.0866 0.0062
Contract risk 0.0866 0.0062

Land transfer risk 0.4605 0.0331
Product quality risk 0.2317 0.0166

Technical risk 0.1575
Information asymmetry risk 0.5936 0.0935
Transformation stability risk 0.2493 0.0393
Technology disclosure risk 0.1571 0.0247

Financial risk 0.2615

Investment budget risk 0.0988 0.0258
Financing risk 0.1158 0.0303

Capital liquidity risk 0.2626 0.0687
Cost control risk 0.5229 0.1367

4.2. Assessment Analysis and Discussion through MTOPSIS

The usefulness and reasonableness of AHP combined with MTOPSIS that points to
risk estimation of ecological agriculture projects are validated based on 36 samples. First,
the original data need to be normalized, as exhibited in Table A8. Tables A9 and A10
indicate the weighted judgment matrix as well as Euclidean distance partly. Table 6 and
Figure 2 both describe the relative closeness of assessment projects.

Table 6. The relative closeness of estimation targets.

Estimation
Target

Relative
Closeness Ranking Estimation

Target
Relative

Closeness Ranking Estimation
Target

Relative
Closeness Ranking

Y1 0.0538 21 Y13 0.0718 6 Y25 0.0541 20
Y2 0.0646 11 Y14 0.0455 27 Y26 0.0358 31
Y3 0.0884 1 Y15 0.0656 10 Y27 0.0608 17
Y4 0.0289 36 Y16 0.0632 12 Y28 0.0631 13
Y5 0.0450 28 Y17 0.0614 15 Y29 0.0348 32
Y6 0.0772 4 Y18 0.0612 16 Y30 0.0687 7
Y7 0.0383 30 Y19 0.0680 8 Y31 0.0303 35
Y8 0.0863 2 Y20 0.0466 26 Y32 0.0502 25
Y9 0.0573 19 Y21 0.0431 29 Y33 0.0587 18
Y10 0.0520 23 Y22 0.0518 24 Y34 0.0319 34
Y11 0.0773 3 Y23 0.0678 9 Y35 0.0615 14
Y12 0.0340 33 Y24 0.0755 5 Y36 0.0536 22

It can be seen from Table 6 that the comprehensive risk evaluation of each ecological
agriculture project rank from first to third is Y3, Y8, and Y11, while the assessment of Y4 is
the worst. The estimation consequence substantially coincides with the fact. Thereby, the
administration branches can excavate causes and implement targeted approaches to lessen
the risks of ecological agriculture projects.

4.3. Analysis and Discussion

The samples are divided into two parts: the former 24 targets and the latter 12 objects
are selected as the training and test set, respectively. Simultaneously, the comparison
measures incorporate BPNN, SVM, along with GA-SVM. The training and testing results
are clearly shown in Figure 2, and the relative errors are manifested in Figure 3.

In addition, in order to assess the performance of the intelligent techniques, three crite-
ria are adopted here, that is, root means square error (RMSE), mean absolute error (MAE),
the sum of squared errors (SSE) as well as mean absolute percentage error (MAPE) [44–47],
as presented in Table 7.
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Figure 2. Training and testing results. Note: (a) shows the results from samples Y1 to Y9; (b) shows
the results from samples Y10 to Y18; (c) shows the results from samples Y19 to Y27; (d) shows the
results from samples Y28 to Y36.
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Table 7. Evaluation criteria of intelligent approaches.

Criteria BSO-SVM GA-SVM SVM BPNN

RMSE 0.0019 0.0032 0.0045 0.0052
MAE 0.0018 0.0030 0.0043 0.0050
SSE 0.00014 0.00037 0.00072 0.00098

MAPE 3.16% 5.38% 7.73% 8.85%

According to the above figures and tables, the discussion is made as follows: (1) Based
on the proximity of assessment results derived from intelligent techniques to AHP-MTOPSIS,
the top two are BSO-SVM and GA-SVM. On the one hand, it is demonstrated that the BSO-
SVM method is superior in estimation precision and model stability. On the other hand,
critical parameter selection of SVM strengthens the nonlinear fitting and learning ability.
(2) As shown in Figure 3, the relative error is minimum between the risk prediction results
of BSO-SVM and AHP-TOPSIS. The absolute values of relative errors that correspond to
BSO-SVM, GA-SVM, SVM, and SVM are [0.98%, 4.46%], [2.53%, 6.49%], [5.45%, 9.7%], and
[5.53%, 9.95%], respectively. Wherein most relative errors of the aforementioned techniques
are located in the range of [0, 5%], [3%, 6%], [5%, 9%], and [8%, 10%]. (3) BSO-SVM
outperforms other models in evaluation performance allowing for the three criteria.

5. Conclusions

Risk mitigation of ecological agriculture projects is conducive to sustainable growth
that can provide more sufficient power for a low-carbon economy. Thus, to promote risk
reduction, this study develops an indicator system and a new heuristic algorithm. Firstly,
the risk assessment index system of the ecological agriculture project was constructed from
six aspects, namely, nature, society, market economy, management, technology, and finance,
with a total of 23 indicators, which could systematically and comprehensively reflect the
factors affecting the risk of ecological agriculture project. Then, the modified TOPSIS is
applied to evaluation based on weight determination derived from AHP. Additionally,
the BSO algorithm is exploited to improve SVM for intelligent assessment. The case
study verified the accuracy and effectiveness of the proposed evaluation model. The
classical evaluation model can obtain accurate reference results, but it can be found that
its calculation process is more complex, while the modern intelligent evaluation model
can achieve rapid calculation and support related decisions. Compared with GA-SVM,
SVM, and BPNN models, RMSE, MAE, SSE, and MAPE of the proposed model are all
optimal values, indicating that the evaluation results are more accurate and stable, which
fully indicates that the proposed model proposed can be used in the risk assessment of
ecological agriculture projects. At the same time, the evaluation model constructed in this
paper can not only reduce the risks faced by the project to a minimum degree and reduce
losses but also fully expand the favorable part of the risks, actively utilize the risks, enhance
the project benefits, and further promote the realization of the goal of “carbon neutrality”.
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Appendix A

Table A1. Comparison matrix together with computing consequence of second-rank indexes.

Natural
Environment

Risk

Social
Risk

Market
Economy

Risk

Management
Risk

Technical
Risk

Financial
Risk Weight CI CR

Consistency
Test

Results

Natural
environment risk 1 2 2 5 3 3 0.3520

0.0967 0.0780 Pass
Social risk 1/2 1 1 1 1/3 1/5 0.0786

Market economy
risk 1/2 1 1 1 1/3 1/5 0.0786

Management risk 1/5 1 1 1 1/2 1/3 0.0718
Technical risk 1/3 3 3 2 1 1/2 0.1575
Financial risk 1/3 5 5 3 2 1 0.2615

Table A2. Comparison matrix together with computing consequence of third-rank indexes for natural
environment risk.

Z1 Z2 Z3 Weight CI CR Consistency Test Results

Z1 1 1 1/2 0.2500
−4.4409 × 10−16 −7.6567 × 10−16 PassZ2 1 1 1/2 0.2500

Z3 2 2 1 0.5000

Table A3. Comparison matrix together with computing consequence of third-rank indexes for
social risk.

Z4 Z5 Z6 Weight CI CR Consistency Test Results

Z4 1 5 3 0.6483
0.0018 0.0032 PassZ5 1/5 1 1/2 0.1220

Z6 1/3 2 1 0.2297

Table A4. Comparison matrix together with computing consequence of third-rank indexes for market
economy risk.

Z7 Z8 Z9 Z10 Weight CI CR Consistency Test Results

Z7 1 1 1 1/3 0.1667

−2.9606 × 10−16 −3.2895 × 10−16 Pass
Z8 1 1 1 1/3 0.1667
Z9 1 1 1 1/3 0.1667
Z10 3 3 3 1 0.5000

Table A5. Comparison matrix together with computing consequence of third-rank indexes for
management risk.

Z11 Z12 Z13 Z14 Z15 Z16 Weight CI CR Consistency Test Results

Z11 1 2 1 1 1/5 1/3 0.0866

0.0119 0.0096 Pass

Z12 1/2 1 1/2 1/2 1/7 1/5 0.0786
Z13 1 2 1 1 1/5 1/3 0.0866
Z14 1 2 1 1 1/5 1/3 0.0866
Z15 5 7 5 5 1 3 0.4605
Z16 3 5 3 3 1/3 1 0.2317
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Table A6. Comparison matrix together with computing consequence of third-rank indexes for
technical risk.

Z17 Z18 Z19 Weight CI CR Consistency Test Results

Z17 1 3 3 0.5936
0.0268 0.0462 PassZ18 1/3 1 2 0.2493

Z19 1/3 1/2 1 0.1571

Table A7. Comparison matrix together with computing consequence of third-rank indexes for
financial risk.

Z20 Z21 Z22 Z23 Weight CI CR Consistency Test Results

Z20 1 1 1/3 1/5 0.0988

0.0385 0.0428 Pass
Z21 1 1 1/3 1/3 0.1158
Z22 3 3 1 1/3 0.2626
Z23 5 3 3 1 0.5229

Table A8. Display of sample normalization results.

Indicator Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18

Z1 0.300 0.000 0.680 0.760 0.740 0.940 0.240 0.340 0.280 0.860 0.860 0.620 0.800 0.900 0.820 0.460 0.440 0.320
Z2 0.660 0.220 0.420 0.580 0.740 0.140 0.400 0.480 0.060 0.560 0.800 0.000 0.340 0.860 0.120 0.040 0.580 0.280
Z3 0.438 0.396 1.000 0.063 0.000 0.771 0.417 0.958 0.604 0.438 0.917 0.000 0.854 0.021 0.667 0.729 0.438 0.750
Z4 1.000 0.043 0.043 0.000 0.065 0.739 0.000 0.109 0.978 0.065 0.848 0.435 0.217 0.543 0.913 0.674 0.587 0.652
Z5 1.000 0.766 0.553 0.681 0.170 0.277 0.447 0.021 0.723 0.660 0.915 0.872 0.851 0.319 0.319 0.000 0.894 0.851
Z6 0.529 0.431 0.000 0.392 0.824 0.627 0.784 0.333 0.510 0.627 1.000 0.118 0.392 0.784 0.059 0.098 0.843 0.000
Z7 0.896 0.792 0.021 1.000 1.000 0.750 0.750 0.938 0.375 0.229 0.354 0.375 0.333 0.438 0.917 1.000 0.125 0.167
Z8 0.882 0.569 0.314 0.314 0.529 0.412 0.431 0.490 0.961 0.961 0.000 0.000 0.333 0.137 0.961 0.118 0.000 0.000
Z9 0.957 0.196 0.500 0.804 0.674 0.261 0.783 0.565 0.043 0.478 0.478 0.348 0.804 0.826 0.174 0.109 0.609 0.283
Z10 0.583 0.354 0.146 0.188 0.250 0.854 0.917 0.667 0.979 0.875 0.688 0.917 0.146 0.583 0.063 0.979 0.750 0.208
Z11 0.080 0.420 0.100 0.260 0.680 0.900 0.140 0.040 0.280 0.960 0.840 0.600 0.400 0.660 0.440 0.900 0.220 0.000
Z12 0.941 0.275 0.549 0.059 0.137 0.451 0.353 0.882 0.706 0.824 0.529 1.000 0.059 0.961 0.686 0.431 0.412 0.941
Z13 0.300 0.220 0.620 0.300 0.420 0.000 0.240 0.760 0.980 0.840 0.620 0.280 0.000 0.100 0.540 1.000 0.720 0.640
Z14 0.235 0.059 0.275 0.745 0.922 0.000 0.118 0.843 0.294 1.000 0.667 1.000 0.275 0.588 0.824 0.157 0.059 0.745
Z15 0.740 0.980 0.340 0.720 0.660 0.980 0.980 0.060 0.280 1.000 0.360 0.260 0.560 0.020 0.980 0.900 0.960 0.300
Z16 0.260 0.220 0.680 0.160 0.960 0.340 0.900 0.240 0.000 0.100 0.760 0.320 0.620 0.880 0.520 0.500 0.340 1.000
Z17 0.980 0.920 0.600 0.140 0.600 0.480 0.120 0.920 0.820 0.000 0.480 0.720 0.060 0.720 0.160 0.720 0.020 0.300
Z18 0.922 0.196 0.941 0.510 0.353 0.294 0.333 1.000 0.078 0.275 0.255 0.137 0.137 0.784 0.863 0.176 0.353 0.020
Z19 0.500 0.720 0.820 0.860 0.460 0.560 0.300 0.100 0.040 0.460 0.500 0.860 0.020 0.940 0.580 0.700 0.420 0.000
Z20 0.184 0.122 1.000 0.224 0.490 0.265 0.612 0.816 0.633 0.163 0.878 0.061 0.653 0.306 0.490 0.980 0.000 0.816
Z21 0.265 0.694 0.694 0.469 0.245 0.857 0.735 0.878 0.959 0.980 1.000 0.286 0.469 0.224 0.265 0.980 0.102 0.816
Z22 0.286 0.653 0.592 0.367 0.163 0.837 0.898 1.000 0.245 0.633 0.592 0.449 0.449 0.816 0.673 0.612 0.571 0.000
Z23 0.440 1.000 0.840 0.180 0.620 0.820 0.040 0.740 0.460 0.540 0.280 0.360 0.560 0.340 0.680 0.360 0.940 0.460

Table A9. Weighting matrix.

Indicator Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18

Z1 0.026 0.000 0.060 0.067 0.065 0.083 0.021 0.030 0.025 0.076 0.076 0.055 0.070 0.079 0.072 0.040 0.039 0.028
Z2 0.058 0.019 0.037 0.051 0.065 0.012 0.035 0.042 0.005 0.049 0.070 0.000 0.030 0.076 0.011 0.004 0.051 0.025
Z3 0.077 0.070 0.176 0.011 0.000 0.136 0.073 0.169 0.106 0.077 0.161 0.000 0.150 0.004 0.117 0.128 0.077 0.132
Z4 0.051 0.002 0.002 0.000 0.003 0.038 0.000 0.006 0.050 0.003 0.043 0.022 0.011 0.028 0.047 0.034 0.030 0.033
Z5 0.010 0.007 0.005 0.007 0.002 0.003 0.004 0.000 0.007 0.006 0.009 0.008 0.008 0.003 0.003 0.000 0.009 0.008
Z6 0.010 0.008 0.000 0.007 0.015 0.011 0.014 0.006 0.009 0.011 0.018 0.002 0.007 0.014 0.001 0.002 0.015 0.000
Z7 0.012 0.010 0.000 0.013 0.013 0.010 0.010 0.012 0.005 0.003 0.005 0.005 0.004 0.006 0.012 0.013 0.002 0.002
Z8 0.012 0.007 0.004 0.004 0.007 0.005 0.006 0.006 0.013 0.013 0.000 0.000 0.004 0.002 0.013 0.002 0.000 0.000
Z9 0.013 0.003 0.007 0.011 0.009 0.003 0.010 0.007 0.001 0.006 0.006 0.005 0.011 0.011 0.002 0.001 0.008 0.004
Z10 0.023 0.014 0.006 0.007 0.010 0.034 0.036 0.026 0.038 0.034 0.027 0.036 0.006 0.023 0.002 0.038 0.029 0.008
Z11 0.000 0.003 0.001 0.002 0.004 0.006 0.001 0.000 0.002 0.006 0.005 0.004 0.002 0.004 0.003 0.006 0.001 0.000
Z12 0.003 0.001 0.002 0.000 0.000 0.002 0.001 0.003 0.002 0.003 0.002 0.003 0.000 0.003 0.002 0.001 0.001 0.003
Z13 0.002 0.001 0.004 0.002 0.003 0.000 0.001 0.005 0.006 0.005 0.004 0.002 0.000 0.001 0.003 0.006 0.004 0.004
Z14 0.001 0.000 0.002 0.005 0.006 0.000 0.001 0.005 0.002 0.006 0.004 0.006 0.002 0.004 0.005 0.001 0.000 0.005
Z15 0.024 0.032 0.011 0.024 0.022 0.032 0.032 0.002 0.009 0.033 0.012 0.009 0.019 0.001 0.032 0.030 0.032 0.010
Z16 0.004 0.004 0.011 0.003 0.016 0.006 0.015 0.004 0.000 0.002 0.013 0.005 0.010 0.015 0.009 0.008 0.006 0.017
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Table A9. Cont.

Indicator Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18

Z17 0.092 0.086 0.056 0.013 0.056 0.045 0.011 0.086 0.077 0.000 0.045 0.067 0.006 0.067 0.015 0.067 0.002 0.028
Z18 0.036 0.008 0.037 0.020 0.014 0.012 0.013 0.039 0.003 0.011 0.010 0.005 0.005 0.031 0.034 0.007 0.014 0.001
Z19 0.012 0.018 0.020 0.021 0.011 0.014 0.007 0.002 0.001 0.011 0.012 0.021 0.000 0.023 0.014 0.017 0.010 0.000
Z20 0.005 0.003 0.026 0.006 0.013 0.007 0.016 0.021 0.016 0.004 0.023 0.002 0.017 0.008 0.013 0.025 0.000 0.021
Z21 0.008 0.021 0.021 0.014 0.007 0.026 0.022 0.027 0.029 0.030 0.030 0.009 0.014 0.007 0.008 0.030 0.003 0.025
Z22 0.020 0.045 0.041 0.025 0.011 0.057 0.062 0.069 0.017 0.043 0.041 0.031 0.031 0.056 0.046 0.042 0.039 0.000
Z23 0.060 0.137 0.115 0.025 0.085 0.112 0.005 0.101 0.063 0.074 0.038 0.049 0.077 0.046 0.093 0.049 0.128 0.063

Table A10. Euclidean distance.

Estimation Target D+ D− Estimation Target D+ D− Estimation Target D+ D−

Y1 0.9540 0.0543 Y13 0.9499 0.0735 Y25 0.9567 0.0548
Y2 0.9536 0.0659 Y14 0.9643 0.0460 Y26 0.9699 0.0360
Y3 0.9343 0.0906 Y15 0.9493 0.0667 Y27 0.9505 0.0615
Y4 0.9779 0.0291 Y16 0.9516 0.0642 Y28 0.9467 0.0637
Y5 0.9678 0.0456 Y17 0.9537 0.0624 Y29 0.9718 0.0351
Y6 0.9388 0.0786 Y18 0.9578 0.0625 Y30 0.9527 0.0703
Y7 0.9713 0.0387 Y19 0.9516 0.0694 Y31 0.9793 0.0306
Y8 0.9342 0.0882 Y20 0.9618 0.0470 Y32 0.9594 0.0507
Y9 0.9561 0.0581 Y21 0.9686 0.0436 Y33 0.9555 0.0596
Y10 0.9578 0.0525 Y22 0.9587 0.0524 Y34 0.9767 0.0322
Y11 0.9412 0.0788 Y23 0.9487 0.0690 Y35 0.9471 0.0620
Y12 0.9761 0.0343 Y24 0.9449 0.0771 Y36 0.9575 0.0542
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