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Abstract: Detecting and locating faults in electrical cables has been a permanent concern regarding
electrical power distribution systems. Over time, several techniques have been developed aiming
to manage these faulty situations in an efficient way. These techniques must be fast, accurate, but,
above all, efficient. This paper develops a new approach for detecting, locating, classifying, and
predicting faults, particularly in different types of short-circuits in electrical cables, based on a robust
artificial neural network technique. The novelty of this approach lies in the ability of the method
to predict fault’s location and type. The proposed method uses the Matlab and Simulink platform
and comprises four consecutive stages. The first one is devoted to the development of the Simulink
model. The second one implies a large number of simulations in order to generate the necessary
dataset for training and testing the artificial neural network model (ANN). The following stage uses
the ANN to classify the location and the type of potential faults. Finally, the fourth stage consists of
predicting the location and the type of future faults. In order to reduce the time and the resources of
the simulation process, a virtual machine is used. The study reveals the efficiency of the method, and
its ability to successfully predict faults in real-world electrical power systems.

Keywords: electrical cables; detecting, locating and predicting faults; artificial neural network;
Classification Learner app

1. Introduction

Today, people’s lives are entirely dependent on the sustainability of electrical power
systems. This supposes that the continuity of the supply of the electrical power distribution
systems is mandatory. In this respect, electrical cables have the important role of linking all
components of a power system.

The presented method depicted in the following sections aims to contribute to a higher
degree of sustainability of the distribution power systems, accelerating the maintenance
process in fault cases, due to its accuracy in predicting the location and the type of faults in
the energy cables.

A fault in a cable directly affects the sustainability of the system, and the duration of
a power outage, being crucial to ensure the cables’ integrity during their entire operation
time [1–3]. However, if any defect occurs in a cable, the reaction must be as fast as possible
to reduce to a minimum the duration of its clearing time [4,5].

Methodologies of detecting faults in electrical cables have evolved with the advance-
ments in technology, with several methods being implemented: time domain reflectometry
technique, impedance-based method, knowledge-based method, traveling wave methods
or hybrid methods [6]. Each of them has its benefits and its limitations [7,8]. For instance,
time domain reflectometry can be successfully used in the case of a single cable, being
useless for systems that have more than two branches [7,9,10].

Algorithms based on artificial intelligence (AI) propose solutions that are able to
manage these more complex systems [11–13]. The artificial neural network technique
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(ANN) provides efficient pattern recognition algorithms that can be applied in predicting,
locating and classifying faults [14,15]. The ANN technique is able to solve nonlinear
problems, based on learned experiences, which implies different possible configurations of
the electrical distribution systems [16–20]. At the same time, the main ANN algorithms
features are robustness, generalizability, and noise immunity [21–23].

A complex method of detecting and locating faults in electrical cables should return
their exact type and location [24–26]. For a three-phase electrical power system, the fault
types are interruptions or short-circuits, with the last ones being: single line to ground
fault, line to line fault, double line to ground fault, three-line fault and three line to ground
fault [27–29].

This paper presents an efficient method of detecting, locating, and predicting the
different types of short-circuits in electrical cables. In order to develop this method, a model
of distribution electrical system has been modeled in Simulink, followed by the use of the
ANN technique of the Classification Learner app available in Matlab.

The model selected for analysis contains a three-phase source block of 20 kV and
several distributed parameters line blocks with a total of 22 km of cables. The ANN
technique is based on data generated by the Simulink model of the electrical distribution
system. The method aims to reach a high rate of validation accuracy of the trained model
delivered by the Classification Learner app. After running a large number of simulations,
more precisely 6150 simulations, a 98% rate of validation accuracy was obtained.

The generated data represent the training dataset for the ANN algorithm which has
an important impact over the accuracy of the method, since the performance of the method
increases with the complexity of the dataset. The case presented below highlights the
complexity and advantages of using ANNs methods in predicting, detecting, locating, and
classifying short-circuits in complex distribution electrical power systems.

The article is structured in five sections. The present section is the introductory one,
highlighting the importance of detecting faults in electrical power distributions systems. In the
second one, entitled Materials and Methods, the working principle of the method is presented.
Then, the Results section comprises four consecutive stages. The first stage is devoted to the
development of the Simulink model. The second stage presents a large number of simulations
in order to generate the necessary dataset for training and testing the ANN model. The
third one uses the ANN to classify the location and the type of potential faults. Finally, the
fourth stage consists of predicting the location and the type of future faults. The fourth and
fifth sections are devoted to the discussion, conclusions and further work.

2. Materials and Methods

The need to detect and locate faults in electrical systems has generated different
methods in the attempt to solve these problems. In the present section, a new approach
involving a simulated model of a distribution electrical power system, combined with the
benefits of ANN applications, will be presented.

As mentioned above, the method comprises four consecutive stages. The first one is
devoted to the development of the model, and the second one presents a large number
of simulations in order to generate a dataset necessary for training and testing the ANN
model, while the third stage uses ANN to classify the location and the type of faults. Finally,
the fourth stage consists of predicting the location and the type of potential future faults.

After modeling the distribution electrical system in Simulink (R2022a), several sim-
ulations were performed for different types of short-circuits in different locations of the
cables. The results of all simulations have been saved in a database which became the
training dataset for the Classification Learner app from Matlab (R2022a). The input data
for the Classification Learner app are the measured values of the voltage and current, the
responses being either the location of the faults or both their location and type. Based on
the trained neural network, the location and the type of a further fault can be predicted.

The model was created using the blocks contained in the Simscape (R2022a) electrical
library, a library dedicated to electrical power systems. The developed simulation model
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contains a three-phase source block, distributed parameters line blocks, three-phase voltage-
intensity (VI) measurement blocks, three-phase load blocks and a three-phase fault block
able to induce faults in different locations of the cables. The model and these blocks will be
detailed in the next section.

Since the process of simulating the model which provides the training set for the
neural network is a time-consuming one, it had to be automated. The automation consisted
in writing a Matlab code which ran these simulations, and at each simulation, modifying
the parameters and saving the data delivered by the measurement blocks.

Once the database is accessible, the whole set of simulation results is introduced in the
Classification Learner app from Matlab. At this point, the training process may start. In
this last Matlab application, different types of algorithms based on artificial intelligence
are available, such as decision trees, discriminant analysis, naive bayes classifiers, support
vector machines, nearest neighbor classifiers, ensemble and neural network classifiers [30].
The Classification Learner app allows the training of all these algorithms based on the
accuracy of validation, enabling the possibility of choosing the most efficient one. For the
present case, the most accurate algorithm turned out to be the medium neural network
model. This model can be exported into Matlab workspace, being later used in the predic-
tion of the trained model response for another set of measurements, corresponding to a
further fault due to the versatility and complexity of the Matlab and Simulink platform.

The presented method is synthesized in the process diagram in Figure 1.
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Figure 1. The process diagram of the method presented.

3. Results

As stated above, the case under analysis proposes a method of detecting and locating
faults in electrical systems based on the medium neural network algorithm, which can be
successfully used in solving faults detection, location, and prediction.

3.1. Simulink Model

This first stage of the presented method is devoted to the development of the Simulink
model of a distribution electrical system. The development of the model concept consists of
inserting different types of short-circuits in different locations of the system and observing
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their influence on the measured voltage–current pairs. Based on it, the training dataset
necessary in the third stage will be used.

As mentioned in Section 2, in order to develop the simulation model, the Simscape
electrical library was used. The selected model of the distribution electrical system pre-
sented in Figure 2 contains: a three-phase source block, depicted in green; six subsystems
for the six lines L1 to L6, depicted in dark green, which contains the distributed parameters
line blocks; eight three-phase voltage-intensity VI measurement blocks B1 to B8, depicted
in blue; three-phase load blocks, noncolored; a three-phase fault block, bordered in red;
and powergui, the environment block for Simscape electrical specialized power system
models, set to discrete simulation type with the sample time of 2 × 10−6 s.
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To introduce the fault block in different locations, each line is divided into three or four
sectors of 1 km length, totaling 22 sectors (see Figure 3 and Table 1). From Figure 4, one can
see that the sectors are modeled using three phase distributed parameter line blocks.

Sustainability 2023, 15, x FOR PEER REVIEW 5 of 20 
 

 
Figure 3. Fault block connected to L1—Sector 4. 

Table 1. Subsystems of Lines. 

Line 1 2 3 4 5 6 
Number of Sectors 4 4 4 4 3 3 

 
Figure 4. Distributed parameter line block. 

The three-phase fault block can be set for twelve types of faults, the fault resistance, 
the ground resistances, and the no-fault situation included (see Table 2). The letters a, b, 
and c indicate the three power lines, while g indicates the ground plane. 

Figure 3. Fault block connected to L1—Sector 4.

Table 1. Subsystems of Lines.

Line 1 2 3 4 5 6

Number of Sectors 4 4 4 4 3 3
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Figure 4. Distributed parameter line block.

The three-phase fault block can be set for twelve types of faults, the fault resistance,
the ground resistances, and the no-fault situation included (see Table 2). The letters a, b,
and c indicate the three power lines, while g indicates the ground plane.

Table 2. Types of faults.

Fault no ag bg cg ab bc ac abg bcg acg abc abcg

The three-phase voltage-intensity VI measurement blocks are mandatory to collect the
values of the voltage–current pairs. As an example, Figure 5 presents the three-phase VI
measurement block B1.
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All measurements collected from the Simulink model are exported into the Matlab data
acquisition workspace. Its workflow is described in the structure depicted in Figure 6a,b.
For the sake of clarity, a cropped detail is presented in Figure 7.
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The voltage and current values are passed from the three-phase VI measurement
blocks to the sequence analyzer, and then are exported to the Matlab variables. At each
simulation, data are saved in a table which in the end will become the training dataset for
the artificial intelligence algorithm.

3.2. Simulation Process

After implementing the model of the distribution electrical system, the simulation
process of different types of short-circuits may start for different values of fault and ground
resistances in different locations of the system.

The fault block is moved along the system and is positioned at the end of each sector
of all the six lines, which totals 22 positions. For each of these positions and for 25 situations
of different chosen values for the fault and ground resistances, all the twelve types of
faults are simulated. Performing all these simulations requires that for each simulation the
location of the fault block, the type of fault, the values of fault or ground resistances be
changed. The time needed for running a simulation is approximately two minutes, not
considering the process of changing the parameters. This means that over the course of
an hour, less than 30 simulations can be performed. Due to the large number of necessary
simulations, and the time required to perform them, automation was almost mandatory.

The automation process has been achieved by implementing a Matlab program, which
runs the Simulink model. Consequently, at each run, either the faults block position or the
faults block parameters are automatically changed. Thus, the automation reduces the time
of each simulation to 1.5 min./simulation, having benefits over the duration of the entire
simulation process. Data from the measurement blocks are saved, and used later for the
training algorithm of ANN.

The code of the program is presented in Appendix A.
Once the running process is completed, the 6150 simulations performed led to a

dataset, which represents the input of the Classification Learner app. Examples of these
data can be seen in Tables 3 and 4, which contain examples of the voltage–current values,
provided by the eight measurement blocks along with the faults’ location and type.
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Table 3. Data from simulations—voltage measurements.

V_B1 F_B1 V_B2 F_B2 V_B3 F_B3 V_B4 F_B4 V_B5 F_B5 V_B6 F_B6 V_B7 F_B7 V_B8 F_B8 Fault

27,055.78 21.49 15,580.69 −10.52 15,569.99 −11.19 15,561.13 −11.86 15,571.83 −11.19 15,580.69 −10.52 15,574.22 −11.02 15,580.69 −10.52 normal

18,171.13 16.65 10,185.01 −16.34 10,175.79 −17.06 10,168.00 −17.78 10,177.02 −17.06 10,185.01 −16.34 10,179.12 −16.88 10,185.01 −16.34 L1/S1/ab

21,772.26 17.81 11,901.15 −16.32 11,884.51 −17.03 11,869.45 −17.74 11,885.95 −17.03 11,901.15 −16.32 11,889.87 −16.85 11,901.15 −16.32 L1/S4/abg

18,535.94 17.04 10,107.14 −16.74 10,071.28 −17.43 10,036.67 −18.12 10,072.50 −17.43 10,107.14 −16.74 10,081.27 −17.26 10,107.14 −16.74 L1/S2/abc

18,049.38 17.43 9543.07 −17.40 9507.63 −18.09 9473.39 −18.78 9508.79 −18.09 9543.07 −17.40 9517.47 −17.92 9543.07 −17.40 L1/S3/abcg

26,086.87 19.90 14,907.98 −12.67 14,817.87 −13.79 14,809.03 −14.45 14,899.10 −13.34 14,907.98 −12.67 14,901.49 −13.17 14,907.98 −12.67 L2/S3/ag

22,056.05 22.85 12,037.82 −9.73 11,419.66 −11.16 11,385.26 −11.86 12,007.42 −10.43 12,037.82 −9.73 12,015.14 −10.25 12,037.82 −9.73 L2/S4/bc

24,523.68 20.02 13,801.96 −12.93 13,711.52 −13.84 13,690.30 −14.46 13,781.46 −13.55 13,801.96 −12.93 13,786.77 −13.39 13,801.96 −12.93 L2/S1/ac

23,704.60 19.76 13,229.93 −13.43 13,025.51 −14.78 13,000.68 −15.41 13,206.50 −14.06 13,229.93 −13.43 13,212.52 −13.91 13,229.93 −13.43 L2/S2/acg

24,365.01 21.04 13,688.99 −11.52 13,357.55 −12.78 13,186.54 −13.79 13,674.71 −12.22 13,688.99 −11.52 13,678.42 −12.04 13,688.99 −11.52 L3/S2/bg

25,762.93 21.45 14,670.19 −10.81 14,515.01 −11.80 14,363.95 −12.80 14,653.02 −11.47 14,670.19 −10.81 14,657.48 −11.31 14,670.19 −10.81 L3/S4/cg

21,336.88 22.09 11,538.24 −10.91 10,839.79 −12.85 10,642.02 −13.90 11,509.08 −11.60 11,538.24 −10.91 11,516.48 −11.43 11,538.24 −10.91 L3/S1/bcg

19,859.98 19.21 10,529.43 −15.11 10,520.14 −15.83 10,512.29 −16.54 10,087.15 −17.18 10,529.43 −15.11 10,523.51 −15.65 10,529.43 −15.11 L4/S2/ab

20,159.75 19.86 10,725.32 −14.26 10,693.38 −14.93 10,662.72 −15.61 9922.10 −17.64 10,725.32 −14.26 10,702.41 −14.77 10,725.32 −14.26 L4/S4/abc

23,886.24 20.15 13,352.04 −12.90 13,176.45 −13.44 13,151.85 −14.07 13,328.82 −13.52 13,352.04 −12.90 13,229.38 −14.42 13,352.04 −12.90 L5/S3/ac

19,908.07 18.69 10,574.29 −15.89 10,382.83 −17.06 10,352.96 −17.75 10,545.93 −16.58 10,574.29 −15.89 10,267.29 −17.60 10,574.29 −15.89 L5/S2/abg

18,752.83 18.50 9767.32 −16.67 9722.06 −17.48 9688.60 −18.17 9734.01 −17.36 9767.32 −16.67 9518.96 −18.10 9767.32 −16.67 L5/S1/abcg

25,953.14 19.64 14,816.10 −13.01 14,805.45 −13.68 14,796.51 −14.34 14,807.22 −13.68 14,816.10 −13.01 14,809.61 −13.51 14,816.10 −13.01 L6/S1/ag

26,087.22 18.75 14,955.34 −14.04 14,943.03 −14.74 14,932.66 −15.44 14,944.86 −14.74 14,955.34 −14.04 14,947.64 −14.56 14,955.34 −14.04 L6/S3/ab

20,906.62 21.96 11,237.47 −11.20 11,205.23 −11.89 11,174.43 −12.59 11,206.53 −11.89 11,237.47 −11.20 11,214.37 −11.72 11,237.47 −11.20 L6/S3/bcg

Table 4. Data from simulations—current measurements.

I_B1 FI_B1 I_B2 FI_B2 I_B3 FI_B3 I_B4 FI_B4 I_B5 FI_B5 I_B6 FI_B6 I_B7 FI_B7 I_B8 FI_B8 Fault

467.06 −11.19 467.06 −11.22 155.61 −11.77 155.61 −11.86 155.72 −11.19 155.74 −10.88 155.74 −11.02 0.19 79.48 normal

986.80 −71.99 306.09 −17.09 101.96 −17.68 101.96 −17.77 102.05 −17.05 102.08 −16.72 102.07 −16.87 0.13 72.64 L1/S1/ab

683.43 −63.32 357.35 −17.05 118.99 −17.63 118.98 −17.72 119.15 −17.02 119.20 −16.69 119.19 −16.84 0.15 70.38 L1/S4/abg

1130.02 −77.99 303.45 −17.46 100.87 −18.02 100.83 −18.11 101.19 −17.43 101.33 −17.11 101.27 −17.25 0.13 59.89 L1/S2/abc

1174.33 −78.30 286.58 −18.11 95.25 −18.68 95.21 −18.77 95.56 −18.08 95.71 −17.77 95.65 −17.91 0.12 58.55 L1/S3/abcg

434.18 −31.17 434.26 −31.20 148.20 −14.36 148.20 −14.45 149.09 −13.33 149.11 −13.03 149.11 −13.17 0.18 77.20 L2/S3/ag

755.49 −56.98 755.62 −56.99 114.14 −11.77 114.10 −11.87 120.29 −10.44 120.41 −10.13 120.36 −10.27 0.15 71.03 L2/S4/bc

635.90 −62.07 636.05 −62.08 137.14 −14.38 137.13 −14.46 138.03 −13.55 138.10 −13.27 138.08 −13.40 0.15 72.26 L2/S1/ac

686.53 −64.04 686.68 −64.05 130.30 −15.32 130.28 −15.41 132.32 −14.07 132.41 −13.78 132.38 −13.91 0.15 70.37 L2/S2/acg

552.69 −36.89 552.79 −36.91 325.72 −57.67 131.99 −13.79 136.85 −12.22 136.90 −11.90 136.89 −12.04 0.17 76.22 L3/S2/bg

529.59 −33.87 529.67 −33.89 282.59 −57.47 143.75 −12.80 146.61 −11.47 146.67 −11.17 146.66 −11.31 0.17 76.21 L3/S4/cg

816.81 −61.74 816.95 −61.75 692.95 −76.62 106.72 −13.90 115.34 −11.62 115.46 −11.30 115.41 −11.44 0.14 69.85 L3/S1/bcg

827.00 −69.65 827.15 −69.65 105.38 −16.44 105.38 −16.54 101.14 −17.17 105.49 −15.50 105.49 −15.65 0.13 73.96 L4/S2/ab

920.05 −75.40 920.19 −75.40 107.05 −15.53 107.02 −15.62 99.68 −17.63 107.46 −14.64 107.41 −14.78 0.13 64.71 L4/S4/abc

673.96 −63.11 674.11 −63.13 131.79 −13.99 131.76 −14.08 133.52 −13.53 393.81 −76.21 132.55 −14.41 0.15 71.04 L5/S3/ac

934.87 −73.82 935.01 −73.83 103.97 −17.65 103.94 −17.75 105.85 −16.58 524.97 −82.92 103.09 −17.60 0.13 64.11 L5/S2/abg

1086.03 −77.37 1086.16 −77.38 97.38 −18.07 97.34 −18.17 97.79 −17.36 964.12 −87.53 95.66 −18.08 0.12 59.99 L5/S1/abcg

434.45 −34.11 434.54 −34.13 148.07 −14.25 148.07 −14.34 148.18 −13.68 187.24 −67.36 148.20 −13.51 156.01 −117.51 L6/S1/ag

614.49 −18.20 614.51 −18.22 149.37 −15.32 149.37 −15.42 149.49 −14.72 316.61 −21.34 149.52 −14.54 169.11 −27.41 L6/S3/ab

862.27 −63.42 862.41 −63.43 112.05 −12.51 112.01 −12.60 112.34 −11.91 743.09 −77.07 112.41 −11.73 703.76 −85.42 L6/S3/bcg

Through the sequence analyzer from the data acquisition of the Simulink model, the
magnitude and phase angle of the three-phase signals are obtained. For instance, measure-
ment block B1 provides values of the voltage magnitude V_B1, the voltage phase angle
F_B1, the current magnitude I_B1 and the current phase angle FI_B1 (see also Figure 6a,b).

3.3. Classification Learner App

Once the simulation process is completed, the large amount of obtained data is used in
the Classification Learner App from Matlab to train the artificial intelligence (AI) algorithms.
This application can classify data based on the training dataset and return a single response
for a further situation [30].

To start the training session, it is necessary to set the parameters observed in Figure 8.
The table named “DataTable”, containing the results of 6150 simulations, becomes the dataset
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variable in the Classification Learner App. Data from this table are divided into two types of
data, namely predictors and response. Predictors are represented by the values of voltage–
current pairs measured at each simulation and the response represents the fault location of the
exposed situation. The validation scheme was set as a cross-validation with five folds. After
setting these parameters, the session starts by clicking the Start Session button.
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Simulations have been also performed for the cases in which the response is both the
location and the type of the fault.

In the Classification Learner app, the model of the training algorithm can be set. To
obtain the best accuracy validation values, the option of training all models algorithm may
also be chosen.

After the analysis of several training models, Figure 9 reveals that the most efficient
model sorted in terms of accuracy is the medium neural network algorithm. One can see
that the accuracy validation in the case of fault location was 98% and 94.7% in the case of
both location and type of the fault.

If the response is only the fault location (example L1/S1 for line 1/sector 1), which
implied 23 unique answers, the validation accuracy will be better than in the case where the
response is both the location and the type of the fault (example L1/S1/ab for line1/sector
1/type of fault ab) which implied 243 unique answers. These two cases will be presented
comparatively in the next stage, where the fault location and the fault location and type
based on the trained model are predicted.

In evaluating and observing the performance of a trained model, the analysis of the
confusion matrix and of the receiver operating characteristic (ROC) curve are two useful tools.
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The confusion matrix contains the predicted classes in its columns and the true classes
in its rows; therefore, a 100% validation accuracy assumes a perfect principal diagonal
confusion matrix. Values situated outside the principal diagonal of the matrix indicate
situations that are not well-predicted and need supplementary data training set [30].

In Figures 10 and 11, the validation confusion matrices for the two studied cases
are presented. From Figure 10, which presents the case of 23 unique responses, one can
observed that the only situation with 100% accuracy is the no-fault (normal) situation. In
Figure 11, one can also observe the shape of the principal diagonal in the case of 243 unique
responses. Due to the complexity of the simulation, the values situated outside the principal
diagonal are not visible in the resolution of Figure 11. The 243 classes containing the location
and type of faults are presented in Table 5.

From the confusion matrix depicted in Figure 10, it can be observed that for lines 5
and 6 of the Simulink model, the prediction response is poorer, which is noticeable from
the larger number of values that deviate from the principal diagonal. For the other lines,
the situation is better, with fewer cases where the predicted class does not coincide with
the true class.

Even though some values are far from the principal diagonal, their low values indicate
that the probability of a wrong prediction is unlikely. For instance, for the predicted class
L4/S4, there is a single situation in which the true class is in fact L1/S2.

Unfortunately, the confusion matrix for the case with 243 unique responses is not
useful to indicate the classes that were not well-predicted. This difficulty can be alleviate
using other tools provided by the Classification Learner app, one of them being the ROC
curve, an efficient way of comparing trained models.
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Table 5. Location and type of faults.

Location and Type of Faults

L1/S1/ab L1/S3/ab L2/S1/ab L2/S3/ab L3/S1/ab L3/S3/ab L4/S1/ab L4/S3/ab L5/S1/ab L5/S3/ab L6/S2/ab

L1/S1/abc L1/S3/abc L2/S1/abc L2/S3/abc L3/S1/abc L3/S3/abc L4/S1/abc L4/S3/abc L5/S1/abc L5/S3/abc L6/S2/abc

L1/S1/abcg L1/S3/abcg L2/S1/abcg L2/S3/abcg L3/S1/abcg L3/S3/abcg L4/S1/abcg L4/S3/abcg L5/S1/abcg L5/S3/abcg L6/S2/abcg

L1/S1/abg L1/S3/abg L2/S1/abg L2/S3/abg L3/S1/abg L3/S3/abg L4/S1/abg L4/S3/abg L5/S1/abg L5/S3/abg L6/S2/abg

L1/S1/ac L1/S3/ac L2/S1/ac L2/S3/ac L3/S1/ac L3/S3/ac L4/S1/ac L4/S3/ac L5/S1/ac L5/S3/ac L6/S2/ac

L1/S1/acg L1/S3/acg L2/S1/acg L2/S3/acg L3/S1/acg L3/S3/acg L4/S1/acg L4/S3/acg L5/S1/acg L5/S3/acg L6/S2/acg

L1/S1/ag L1/S3/ag L2/S1/ag L2/S3/ag L3/S1/ag L3/S3/ag L4/S1/ag L4/S3/ag L5/S1/ag L5/S3/ag L6/S2/ag

L1/S1/bc L1/S3/bc L2/S1/bc L2/S3/bc L3/S1/bc L3/S3/bc L4/S1/bc L4/S3/bc L5/S1/bc L5/S3/bc L6/S2/bc

L1/S1/bcg L1/S3/bcg L2/S1/bcg L2/S3/bcg L3/S1/bcg L3/S3/bcg L4/S1/bcg L4/S3/bcg L5/S1/bcg L5/S3/bcg L6/S2/bcg

L1/S1/bg L1/S3/bg L2/S1/bg L2/S3/bg L3/S1/bg L3/S3/bg L4/S1/bg L4/S3/bg L5/S1/bg L5/S3/bg L6/S2/bg

L1/S1/cg L1/S3/cg L2/S1/cg L2/S3/cg L3/S1/cg L3/S3/cg L4/S1/cg L4/S3/cg L5/S1/cg L5/S3/cg L6/S2/cg

L1/S2/ab L1/S4/ab L2/S2/ab L2/S4/ab L3/S2/ab L3/S4/ab L4/S2/ab L4/S4/ab L5/S2/ab L6/S1/ab L6/S3/ab

L1/S2/abc L1/S4/abc L2/S2/abc L2/S4/abc L3/S2/abc L3/S4/abc L4/S2/abc L4/S4/abc L5/S2/abc L6/S1/abc L6/S3/abc

L1/S2/abcg L1/S4/abcg L2/S2/abcg L2/S4/abcg L3/S2/abcg L3/S4/abcg L4/S2/abcg L4/S4/abcg L5/S2/abcg L6/S1/abcg L6/S3/abcg

L1/S2/abg L1/S4/abg L2/S2/abg L2/S4/abg L3/S2/abg L3/S4/abg L4/S2/abg L4/S4/abg L5/S2/abg L6/S1/abg L6/S3/abg

L1/S2/ac L1/S4/ac L2/S2/ac L2/S4/ac L3/S2/ac L3/S4/ac L4/S2/ac L4/S4/ac L5/S2/ac L6/S1/ac L6/S3/ac

L1/S2/acg L1/S4/acg L2/S2/acg L2/S4/acg L3/S2/acg L3/S4/acg L4/S2/acg L4/S4/acg L5/S2/acg L6/S1/acg L6/S3/acg

L1/S2/ag L1/S4/ag L2/S2/ag L2/S4/ag L3/S2/ag L3/S4/ag L4/S2/ag L4/S4/ag L5/S2/ag L6/S1/ag L6/S3/ag

L1/S2/bc L1/S4/bc L2/S2/bc L2/S4/bc L3/S2/bc L3/S4/bc L4/S2/bc L4/S4/bc L5/S2/bc L6/S1/bc L6/S3/bc

L1/S2/bcg L1/S4/bcg L2/S2/bcg L2/S4/bcg L3/S2/bcg L3/S4/bcg L4/S2/bcg L4/S4/bcg L5/S2/bcg L6/S1/bcg L6/S3/bcg

L1/S2/bg L1/S4/bg L2/S2/bg L2/S4/bg L3/S2/bg L3/S4/bg L4/S2/bg L4/S4/bg L5/S2/bg L6/S1/bg L6/S3/bg

L1/S2/cg L1/S4/cg L2/S2/cg L2/S4/cg L3/S2/cg L3/S4/cg L4/S2/cg L4/S4/cg L5/S2/cg L6/S1/cg L6/S3/cg

normal

The ROC curve is a plot tool that provides the false positive rate and the true positive
rate of each predicted class. The area under curve (AUC) is an indicator of the quality of
the classifier. The AUC values range between 0 and 1, with a higher value indicating a
better performance of the classifier [30].

In Figures 12 and 13, the ROC curves for some representative cases studied are
presented. Figure 12 presents the ROC curve for the medium neural network model with
an accuracy validation of 98.0% and Figure 13 presents the ROC curve for the medium
neural network model with an accuracy validation of 94.7%. In both figures, the highest
and the lowest values of AUC are shown.

For the model which predicts only the location of the fault, has an accuracy validation
of 98.0%, and encompasses 23 situations, the maximum value of AUC (1.00) is reached
for several classifiers. Figure 12a presents the ROC curve in one of these situations, while
Figure 12b presents the lower value of AUC, which, in this case, is of 0.99 and occurs for
Line 6-Sector 2.

For the model which predicts both location and type of the fault, has an accuracy
validation of 94.7%, and encompasses 243 situations, the maximum value of AUC (1.00)
is also reached for several classifiers. Figure 13a presents the ROC curve in one of these
situations, while Figure 13b presents the lower value of AUC, which, in this case, is of 0.94
and also occurs for Line 6-Sector 2.

Both situations reveal a good accuracy validation prediction.
By analyzing the ROC curves and comparing their results with the ones of the confu-

sion matrices, it is obvious that the two plotting tools offer the same results but in different
ways. Since the confusion matrix presents an overview of all classes, the ROC curve
presents specific results for each class.
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3.4. Prediction of Faults Based on the Trained Model

After analyzing the different types of trained models, these can be exported from the
Classification Learner app to the Matlab workspace as a new variable (“trainedModel”).
This variable can be used to predict responses for other faults which may occur in the same
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distribution system, and which have not been considered in the previous training dataset.
As an example, Tables 6 and 7 contain four situations in which different fault and ground
resistances have been used.

Table 6. Data for predictions—voltage measurements.

V_B1 F_B1 V_B2 F_B2 V_B3 F_B3 V_B4 F_B4 V_B5 F_B5 V_B6 F_B6 V_B7 F_B7 V_B8 F_B8 Fault

23,387.39 20.70 13,006.09 −12.14 12,881.25 −13.06 12,864.69 −13.77 12,989.73 −12.85 13,006.09 −12.14 12,993.94 −12.67 13,006.09 −12.14 L2/S1/bg

20,579.33 20.40 11,010.63 −13.41 10,238.55 −16.38 9846.89 −18.38 10,981.53 −14.08 11,010.63 −13.41 10,988.92 −13.91 11,010.63 −13.41 L3/S2/abc

25,874.47 19.42 14,763.31 −13.30 14,752.70 −13.97 14,743.79 −14.63 14,754.46 −13.97 14,763.31 −13.30 14,756.85 −13.80 14,763.31 −13.30 L1/S4/ag

19,363.64 19.39 10,176.50 −15.19 10,143.97 −15.87 10,112.66 −16.55 9503.63 −18.32 10,176.50 −15.19 10,153.10 −15.70 10,176.50 −15.19 L4/S3/abcg

Table 7. Data for predictions—current measurements.

I_B1 FI_B1 I_B2 FI_B2 I_B3 FI_B3 I_B4 FI_B4 I_B5 FI_B5 I_B6 FI_B6 I_B7 FI_B7 I_B8 FI_B8 Fault

23,387.39 20.70 13,006.09 −12.14 12,881.25 −13.06 12,864.69 −13.77 12,989.73 −12.85 13,006.09 −12.14 12,993.94 −12.67 13,006.09 −12.14 L2/S1/bg

20,579.33 20.40 11,010.63 −13.41 10,238.55 −16.38 9846.89 −18.38 10,981.53 −14.08 11,010.63 −13.41 10,988.92 −13.91 11,010.63 −13.41 L3/S2/abc

25,874.47 19.42 14,763.31 −13.30 14,752.70 −13.97 14,743.79 −14.63 14,754.46 −13.97 14,763.31 −13.30 14,756.85 −13.80 14,763.31 −13.30 L1/S4/ag

19,363.64 19.39 10,176.50 −15.19 10,143.97 −15.87 10,112.66 −16.55 9503.63 −18.32 10,176.50 −15.19 10,153.10 −15.70 10,176.50 −15.19 L4/S3/abcg

Measurements generated for the predictions must be introduced in a variable (“Ttest”)
with the same structure as (“DataTable”) as the variable used in the training dataset. After
processing the variable to be tested, using the prediction function for the trained model,
the response based on the trained model will be obtained.

Figures 14 and 15 present the responses of the two cases studied, e.g., for the medium
neural network model with an accuracy of 98.0% and for the medium neural network
model with an accuracy of 94.7%.
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By applying the prediction function to Tables 6 and 7, which contain the voltage
and current measurement data, two cell arrays are created, namely two column vectors
(see Figures 14 and 15).
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It can be observed that in the first case, the response contains only the location of
the fault, and in the second case, the response includes in addition the type of the fault.
By comparing the result of the prediction function with the last column (“Fault”) of the
(“Ttest”) table, one can observe that the trained model operates properly.

4. Discussion

The paper presents a solution for detecting and locating faults in electrical distribution
systems using a Simulink model combined with the ANN algorithms of the Classification
Learner app provided by Matlab.

The high performance of the proposed technique emphasizes the potential of using
this principle for real-world distribution electrical systems.

After the first stage devoted to the development of the simulation model and the
simulations presented in the second stage, in the third stage, it can be observed that the
performance of the trained model is correlated to the training dataset. The larger the
database is, the higher the performance of the trained model is. In order to have a good
accuracy validation value, the number of simulations must be adapted to the complexity of
the analyzed system.

Simulating all the cases which can offer a solid test set for the presented case study
implies the use of high-level hardware and software resources. These needs can be covered
by using local hardware resources; however, much better results can be obtained by using a
virtual machine which can significantly shorten the required simulations time. If several virtual
machines are simultaneously used, the simulation process can be accelerated, and in the end,
the data collected from all of them can be processed and integrated into a single database.

When applying the method presented above for a real-world distribution electrical
system, it is mandatory that the Simulink model must contain its very real components.
This method can also be used in other situations, for instance, in industrial estates, where
the consumers, components of the system and their structure are already well-known.

5. Conclusions

The developed method has a good accuracy and its use in real-world situations is therefore
recommended. The trained model which predicted the location of faults (with 23 possible
responses) had an accuracy validation of 98%, while the trained model which predicted both
location and type of faults (with 243 possible responses) had a slightly lower accuracy validation
(94.7%). Both trained models were based on the same data training set (measurements from
6150 of simulations), which revealed that for obtaining a good accuracy validation value, a
larger number of responses, and of the data training set were needed.

The major advantage of the presented method lies in its good precision in detecting,
locating, and predicting faults. At the same time, running a large number of simulations
could be considered a tedious operation. Clearly, the simulations’ time was closely related
to the complexity of the Simulink model and the number of parameters that needed to be
modified at each simulation. Additionally, the developed Simulink model of the electrical
power system could also decisively contribute by performing different updates of the system
if necessary. It could be used, for example, to simulate the impact of a new structure of the
system or to analyze possible future improvements performed on the electrical system.

Methods of faults detecting, locating, and predicting in electrical power systems, based
on ANN algorithms, could also solve complex problems encountered at electric lines or
branched systems of cables, situations difficult to be managed using classic methods of
detecting faults.

In further research, this method could be improved in the direction of generating
dynamic changes of the loads simulations, and in developing a friendly graphical user
interface to the application.

The presented topic, regarding faults detection and location in electrical systems, was
and remains a main and permanent concern of utility companies, which continuously seek
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to improve and adapt proprietary methods in order to have an optimal operation of their
electrical power systems.
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Appendix A

T = [];
model = 'name_model';
tstop = 0.1;
% 1 2 3 4 5 6
Line.Name = {'L1', 'L2', 'L3', 'L4', 'L5','L6'};
Line.Sectors = [ 4 4 4 4 3 3 ];
Faults = {'0','ag','bg','cg','ab','bc','ac','abg','bcg','acg','abc','abcg'};
nLine = 1:6;
nFault = 1:12;
Faulty.Lines.Name = {Line.Name{nLine}};
Faulty.Sectors = Line.Sectors(nLine);
Type_Faults = {Faults{nFault}};
open_system(model);
for iFaultyLines = 1:length(Faulty.Lines.Name)

for iFaultType = 1:length(Type_Faults)
Fault_Type = Faults(iFaultType);

Faulty.Lines = [model,'/',Faulty.Lines.Name{iFaultyLines}];
open_system(Faulty.Lines);
Nsectors = Faulty.Sectors(iFaultyLines);
FaultBlock = [Faulty.Lines,'/Fault'];
try

addbd = add_block([model,'/Fault'],FaultBlock,'Commented','off','Position', [545
-545 595 -495]);

catch
Position = get_param(FaultBlock,'Position');
delete_block(FaultBlock);
add_block([model,'/Fault'],FaultBlock,'Commented','off','Position',Position + 10);

end
if contains(Fault_Type,'g')

set_param(FaultBlock,'GroundFault','on')
else

set_param(FaultBlock,'GroundFault','off')
end
if contains(Fault_Type,'a')

set_param(FaultBlock,'FaultA','on')
else
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set_param(FaultBlock,'FaultA','off')
end
if contains(Fault_Type,'b')

set_param(FaultBlock,'FaultB','on')
else

set_param(FaultBlock,'FaultB','off')
end
if contains(Fault_Type,'c')

set_param(FaultBlock,'FaultC','on')
else

set_param(FaultBlock,'FaultC','off')
end
for iSectors = 1:Nsectors

NameBlock = [Faulty.Lines,'/S',num2str(iSectors)];
hFault = get_param(FaultBlock,'PortHandles');
hBlock = get_param(NameBlock,'PortHandles');
hLines = add_line(Faulty.Lines,hFault.LConn,hBlock.RConn);
Ron = logspace(log10(1e-4),log10(20),5); %FaultResistance
Rg = logspace(log10(1e-4),log10(20),5); %GroundResistance
for iR1 = 1:length(Ron)

set_param(FaultBlock,'FaultResistance',num2str(Ron(iR1)));
for iR2 = 1:length(Rg)

set_param(FaultBlock,'GroundResistance',num2str(Rg(iR2)));
out = sim(model);
cellrow{1,1} = out.yout{9}.Values.V_B1.Data(end,:);
cellrow{1,2} = out.yout{9}.Values.F_B1.Data(end,:);
cellrow{1,3} = out.yout{9}.Values.V_B2.Data(end,:);
cellrow{1,4} = out.yout{9}.Values.F_B2.Data(end,:);
cellrow{1,5} = out.yout{9}.Values.V_B3.Data(end,:);
cellrow{1,6} = out.yout{9}.Values.F_B3.Data(end,:);
cellrow{1,7} = out.yout{9}.Values.V_B4.Data(end,:);
cellrow{1,8} = out.yout{9}.Values.F_B4.Data(end,:);
cellrow{1,9} = out.yout{9}.Values.V_B5.Data(end,:);
cellrow{1,10} = out.yout{9}.Values.F_B5.Data(end,:);
cellrow{1,11} = out.yout{9}.Values.V_B6.Data(end,:);
cellrow{1,12} = out.yout{9}.Values.F_B6.Data(end,:);
cellrow{1,13} = out.yout{9}.Values.V_B7.Data(end,:);
cellrow{1,14} = out.yout{9}.Values.F_B7.Data(end,:);
cellrow{1,15} = out.yout{9}.Values.V_B8.Data(end,:);
cellrow{1,16} = out.yout{9}.Values.F_B8.Data(end,:);
cellrow{1,17} = out.yout{10}.Values.I_B1.Data(end,:);
cellrow{1,18} = out.yout{10}.Values.FI_B1.Data(end,:);
cellrow{1,19} = out.yout{10}.Values.I_B2.Data(end,:);
cellrow{1,20} = out.yout{10}.Values.FI_B2.Data(end,:);
cellrow{1,21} = out.yout{10}.Values.I_B3.Data(end,:);
cellrow{1,22} = out.yout{10}.Values.FI_B3.Data(end,:);
cellrow{1,23} = out.yout{10}.Values.I_B4.Data(end,:);
cellrow{1,24} = out.yout{10}.Values.FI_B4.Data(end,:);
cellrow{1,25} = out.yout{10}.Values.I_B5.Data(end,:);
cellrow{1,26} = out.yout{10}.Values.FI_B5.Data(end,:);
cellrow{1,27} = out.yout{10}.Values.I_B6.Data(end,:);
cellrow{1,28} = out.yout{10}.Values.FI_B6.Data(end,:);
cellrow{1,29} = out.yout{10}.Values.I_B7.Data(end,:);
cellrow{1,30} = out.yout{10}.Values.FI_B7.Data(end,:);
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cellrow{1,31} = out.yout{10}.Values.I_B8.Data(end,:);
cellrow{1,32} = out.yout{10}.Values.FI_B8.Data(end,:);
FaultLocation = [Faulty.Lines.Name{iFaultyLines},'/S',num2str(iSectors)];
StringFaultLocation = convertCharsToStrings(FaultLocation);
if contains (Fault_Type,'0')

cellrow{1,33} = ("normal");
else

cellrow{1,33} = strcat(StringFaultLocation,"/",Fault_Type);
end
cellrow{1,34} = Ron(iR1);
cellrow{1,35} = Rg(iR2);
T1 = cellrow;
T = [T;T1];
save(date);
end

end
delete_line(hLines);

end
end

DataTabel = cell2table(T);
save('data_generation');
end
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