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Abstract: Currently, the use of intelligent models for decision making in the water treatment process
is very important, as many plants support their implementation with the aim of obtaining economic,
social, and environmental gains. Nevertheless, for these systems to be properly modeled, the data
should be carefully selected so that only those that represent good operating practices are used. Thus,
this study proposes an approach for identifying water quality and operational scenarios using the
expectation maximisation (EM) and self-organising maps (SOMs) techniques when using data from
a water treatment plant. The results showed that both techniques were able to identify quantities
of different scenarios, some similar and others different, allowing for the evaluation of differences
in a robust way. The EM technique resulted in fewer scenarios when compared with the SOMs
technique, including in the cluster selection process. The results also indicated that an intelligent
model can be trained with data from the proposed clustering, which improves its prediction capacity
under different operating conditions; this can lead to savings in chemical product usage and less
waste generation throughout the water treatment process, which is in good agreement with cleaner
production practices.

Keywords: clustering; expectation maximisation; self-organising maps; water quality scenarios;
coagulant dosage; cleaner production practices

1. Introduction

Water treatment and supply plants are becoming important for ensuring the avail-
ability and quality of this essential resource for human health, which is mainly due to the
increasing demand for water in urban areas [1].

In this context, water treatment plants (WTPs) are mainly designed for the removal of
substances and microorganisms present in the water that is available in watersheds, and
the plants make the water suitable for consumption [2,3]. Throughout the water treatment
process, several chemicals are used to adjust the pH to ensure disinfection and enable
water coagulation [4–6]. The number of chemicals necessary depends on the quality of
the raw water collected, which may vary by season or by river or dam degradation [7,8].
The reduction of these non-renewable natural resources in the processing could help to
mitigate environmental impacts [9].

Coagulation is the most important step in the existing WTP processes, which consists
of destabilizing dirt particles so that they are retained in subsequent procedural steps [10,11].
The coagulation step consists of a complex, non-linear process and has several physical and
chemical parameters that impact the determination of dosage reference values [12,13].

The jar test assays consist of a traditional laboratory method for determining the ap-
propriate coagulant dosages depending on the different existing raw water qualities [14,15].
This test is long-lasting and requires significant labor from the people involved [16]. An-
other way to determine appropriate dosage is to use the operator’s experience in adjusting
the reference values in cases where there are changes in the characteristics of the collected
raw water [17,18].
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Other methods have been studied as alternatives for determining coagulant dosages,
such as intelligent systems using artificial intelligence techniques, an example of which is
the artificial neural networks (ANN) [4,19,20]. These systems can predict coagulant dosages
by learning from a historical base with adequate WTP data [21,22]. These data need to
be selected so that the system does not learn from data that are related to undesirable
operational situations [23–25].

In addition, the data to be used in the development of intelligent systems need to
contain all existing scenarios so that the intelligent prediction model can assist with all
possible operational conditions [20,26,27]. An alternative used in the identification of
similar operational conditions is the submission of a database to processing using clustering
techniques, which has the purpose of identifying different operational scenarios with their
respective records [28–30].

The water resources field has several studies that have used clustering methods such
as the SOM technique, mainly in the development of hybrid models using ANN [31,32],
in addition to monitoring and identifying process scenarios involving water treatment,
i.e., effluent treatment [33,34].

In [35], a self-organising map was used to classify the environmental data of a river
by using chemical indicators of water quality. When used together with the principal
component analysis (PCA) technique, this method made it possible to identify the most
relevant variables that were responsible for the clusters in addition to data that represent
the same water quality.

The performance analysis of water treatment plants concerning the removal of organic
matter was proposed by [36]. The combination of a self-organising map for multivariate
data analyses with the ANN technique showed satisfactory results, making it suitable
for the application.

In [37], a multilayer perceptron (MLP) network for modelling jar test assays was pro-
posed. The predicted parameters related to raw and treated water, which were submitted
to the SOM clustering technique to segment the training and validation data. The results
were satisfactory for predicting the final water parameters and coagulant dosage.

According to [38], the water treatment process has many complex physical and chemi-
cal processes that could make the use of traditional methods to detect anomalies unfeasible.
Nevertheless, equipment failures and water source conditions, for instance, can be detected
using self-organising maps as a means of data analysis, allowing actions to ensure the
quality of the treated water.

A way of detecting contamination problems in watersheds and rivers using self-
organising maps was proposed by [39]. In such a manner, early corrective measures
could avoid health problems for the population that lives close to these places. According
to [40], the use of SOMs can overcome other methods for solving problems that involve
water resources.

The use of a hybrid approach with a self-organising map using wavelet and feed-
forward neural networks was carried out by [41]. The clustering aimed to identify precipi-
tation data from satellites. The results of the proposed models were satisfactory and led to
an improvement in the rainfall-runoff forecasting.

The EM method is also used in some studies focusing on the water resources sector.
In [42], a hybrid algorithm was proposed with the use of EM for the weather-based opera-
tion and energy optimization of large effluent treatment plants based on historical data.
The results indicated that the inclusion of climate-based variables in the process can bring
about reductions in the consumption of electrical energy in the aeration process.

In [30], the weekly and real-time physical-chemical parameters of a surface water
source were collected in 21 different locations and submitted to EM. The results showed
that there were different periods with variations in water quality, indicating potential
sources of pollution; this approach can be incorporated into a decision support system so
that management increases in efficiency.
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In [43], EM was used to detect possible changes in data as a function of time that has
unknown and variable covariances. This study was based on simulated data and conducted
in an experimental way and showed that single or multiple changes were satisfactorily
detected. The additional refresh extends the scheduled refresh operations and provides
an automated creation and management of dataset partitions so that new and updated
datasets are frequently loaded.

To the best of our knowledge, none of the works already reported here have conducted
a comparison between the clustering techniques discussed here and applied them for the
selection of water quality; they have also not used operational scenarios for the training of
intelligent support systems for decision support. Furthermore, none have proposed the use
of the EM technique in the selection of data from water treatment processes.

Thus, the objective of this study was to propose a comparison of two clustering
techniques, called EM and SOM, in a database of a WTP located in the metropolitan region
of São Paulo for the identification of raw water quality scenarios and practical operational
situations; this was performed to select optimised process situations for later use in the
training of coagulant dosage prediction models.

2. Theoretical Background
2.1. Expectation Maximisation (EM)

The EM algorithm (Expectation Maximisation) is an iterative method that is commonly
used to estimate the maximum likelihood or maximum a posteriori (MAP) of parameters in
statistical models where some of the data is missing or unobserved. It alternates between
computing the expected values of the unobserved variables given the observed data (E-step)
and updating the estimates of the parameters to maximise the expected likelihood (M-step).
The EM technique is widely used in many applications, including for pattern recognition
using artificial neural networks [44,45].

According to [46], the observed data x has a probability density function (PDF) g(x∨ ϕ),
where ϕ is the vector containing the unknown parameters in the postulated form for the
PDF of X. Thus, the main goal is to maximise the likelihood L(ϕ) = g(x ∨ ϕ) as a function of
ϕ over the parameter space Ω. Within the incomplete data framework of the EM algorithm,
x denotes the vector containing the complete data and ϕ denotes the vector containing the
missing data. For many statistical problems, the complete data likelihood has a nice form.
Let gc(x ∨ ϕ) denote the PDF of the random vector X corresponding to the complete data
vector x. Then, the complete data log likelihood function that could be formed for ϕ if x
were fully observable is given by (1):

gc(x ∨ ϕ) (1)

where:

• ϕ represents the vector of unknown parameters.

In this degree, ϕ can be the maximisation parameter of [44,45]:

logLc(ϕ) = log gc(x ∨ ϕ) (2)

According to [43,47], there are two steps for each iteration of the technique:

• Expectation or E-step, which is intended to find the clusters probabilities:

Q
(

ϕ ∨ ϕ(i)
)
= Eϕ(i) [logLc(ϕ) ∨ x] (3)

• Maximisation or M-step, which corresponds to maximisation through Equations (4)
and (5):

Q
(

ϕ(i+1) ∨ ϕ(i)
)
≥ Q

(
ϕ ∨ ϕ(i)

)
(4)

M
(

ϕ(i)
)
= arg max

ϕ
Q
(

ϕ ∨ ϕ(i)
)

(5)
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where:

• i represents the number of iterations.

2.2. Self-Organising Maps (SOM)

SOMs were proposed by [48] and consist of a clustering technique based on artificial
neural networks with unsupervised and competitive training [34]. In a SOM network, there
are gridded or reticulated structures of one or two dimensions that are known as the output
layer; the inputs are called the input layer [49]. The basic self-organising map structure is
shown in Figure 1.

Figure 1. Structure of a self-organising map.

This model of neural networks learns to group in clusters by using the similarity
of the data presented in the inputs, that is, the database used in the training process,
even presenting non-linear and high-dimensional characteristics [41]. The pattern of SOM
topology entries is defined by Equations (6) and (7) [34]:

X = [x1, x2, x3, ..., xn] (6)

Wi = [wi1, wi2, wi3, ..., win] (7)

where:

• X is the input vector;
• W is the vector of synaptic weights;
• n is the number of entries;
• 1 is the neuron number.

The winning neuron or best matching unit (BMU) is defined by calculating the Eu-
clidean distance, and it is the most used unit with this clustering technique, that is, the neu-
ron that presents the lowest cost or shortest distance, according to Equation (8) [41].

||x− w|| =
√

n

∑
i=1

(xi − wi)2 (8)

where:

• x is the input vector;
• w is the vector of synaptic weights;
• wi is the value of the synaptic weight of neuron i;
• n is the number of entries;
• 1 is the neuron number.
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Unsupervised training uses the database and iteratively adjusts the synaptic weights
to each input sample. The updating of synaptic weights during training is achieved using
Equation (9) [49].

wi(t + 1) = wi(t) + η(t)hbi(t)[x− wi(t)] (9)

where:

• x is the input vector;
• wi is the value of the synaptic weight of neuron i;
• t is the iteration number;
• η is the learning rate defined between 0 and 1;
• hbi describes the neighborhood.

3. Materials and Methods
3.1. Characteristics of the Studied Process

The WTP Alto Cotia has a nominal production capacity of 1.25 m³/s and is located in
the metropolitan region of São Paulo. The source of this production system is composed
of two dams, known as Cachoeira da Graça and Pedro Beicht. Raw water is captured at
the smaller Cachoeira da Graça, and the volume of water is transferred from Pedro Beicht
to Cachoeira da Graça using gravity. This WTP has two coagulant dosing application
points due to an expansion made to increase the production capacity, which are known
as gravity system dosing and pumping system dosing, respectively. Data were collected
from SABESP’s laboratory management system for the period ranging from 2010 to 2017,
totalling 29,292 records. The data were collected approximately every 2 h during the
12 months, which meant that rainy and dry periods have been contemplated. These data
are the result of the ETA operation. Table 1 displays the maximum and minimum values
for each physical-chemical parameter.

Table 1. Maximum and minimum values of physical-chemical parameters.

Parameter Minimum Maximum Mean Standard Deviation

Raw water turbidity [NTU] 0.3 52 6.34 2.91
Raw water colour [Pt-Co] 3.0 369 54.48 18.28

Clarified water turbidity [NTU] 0.5 10.8 1.31 0.36
Clarified water colour [Pt-Co] 1.0 111 10.77 3.37
Filtered water turbidity [NTU] 0.1 0.6 0.38 0.09
Coagulant dosage system by

gravity [mg/L] 7.1 55.3 19.02 6.99

Coagulant dosage system by
pumping [mg/L] 7.3 55.3 18.94 6.96

The physical-chemical parameters that refer to the quality of raw water were the
turbidity and colour of the raw water. The efficiency of the coagulation process was
measured using the physical-chemical parameters, i.e., the turbidity and colour of the
decanted water and the turbidity of the filtered water. The coagulant dosing references
were the coagulant dosage system using gravity and the coagulant dosage system using
pumping. These variables were considered as outputs, that is, they were the values used in
the water treatment process.

3.2. Test Platform and Database

The collected database was submitted to EM and SOM clustering techniques in order to
identify scenarios without any preliminary dealings, with the exception of the elimination of
outliers. WEKA software [50] version 3.8.6 × 64 was used to process the 29,292 records and
7 attributes related to the process parameters of the WTP under study. The automatic cluster
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generation option was enabled for this processing, and the heap size increased to 16,394 MB.
The study was completed in four parts, as shown in Figure 2 and explained below.

Figure 2. Steps of the experiments.

• Data pre-processing: manual elimination of values considered inconsistent and null
from the raw database (e.g., negative values);

• Normalization of the database with the interval, according to Equation (10);
• Data clustering: use of EM in the pre-processed database;
• Data clustering: use of SOM in the pre-processed database;
• Comparative analysis of the results of the techniques: the analysis and evaluation

of clusters generated by EM and SOM in order to identify existing scenarios in
the database.

The normalization of attributes was performed according to Equation (10), converting
the database to range from 0 to 1 [10].

xnorm =
(xi − xmin)

(xmax − xmin)
(10)

where:

• xnorm is the normalized record value;
• xi is the record value;
• xmin is the minimum attribute valuer;
• xmax is the maximum attribute value.

Some of the configuration parameters of the EM and SOM techniques were changed
as described below, while the others remained with the default values:

EM clustering technique:

• Debug has been changed to true;
• MaxIterations was set to 1000;
• numClusters was set to −1, that is, automatic generation of clusters quantity;
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• numKMeansRuns has been changed to 100;
• numExecutionSlots has been changed to 8.

SOM clustering technique:

• calcStats has been changed to true;
• Height and width changed to match the quantity of clusters generated by the EM technique.

The same number of clusters was assigned to make the comparison between the
techniques more consistent. The WEKA software used in this work has the option of
automatically generating clusters for the EM technique, which obtained 6 clusters between
the processing (tests) carried out and were replicated to the tests using the SOM tech-
nique. Finally, there is no restriction on the number of clusters for both techniques, that is,
the methodology conducted automatic generation using the EM technique, and the number
was maintained for subsequent experiments.

4. Results

The processing of the EM algorithm generated six clusters for the database processed
with the seven attributes. In this way, the topology using the SOM technique had a height
equal to three and width equal to two. The processing time of the EM technique, with the
automatic cluster generation option enabled, was 502.94 s, while the SOM technique took
83.8 s. However, when determining the amount of clusters in the EM technique, the time
drops to 148.54 s. The results of clustering using the EM and SOM techniques are shown in
Tables 2 and 3, respectively.

The clusters that correspond to the rainy periods were characterized by the highest
values of turbidity and colour of the raw water, as well as coagulant dosages. The dry
periods were within the clusters with the lowest values of turbidity and raw water colour,
as well as the lowest dosage values. The clusters with these intermediate values determine
the transition periods, specifically in the autumn and spring seasons.

Table 2. Clustering using expectation maximisation.

Cluster Quantity Percentage

0 4051 13.83%
1 3712 12.67%
2 4815 16.44%
3 4516 15.42%
4 9092 31.04%
5 3106 10.60%

Mean 4882 16.67%

Table 3. Clustering using self-organising maps.

Cluster Quantity Percentage

0 6727 22.97%
1 1085 3.70%
2 4537 15.49%
3 8238 28.12%
4 2191 7.48%
5 6514 22.24%

Mean 4882 16.67%

Tables 4 and 5 show the results of the EM and SOM processing techniques, respec-
tively, informing the averages of each physical-chemical parameter and coagulant dosage
reference. These values show each scenario identified by the techniques used, which have
some characteristics that are different among each other.
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Table 4. Clustering using expectation maximisation.

Parameter Cluster
0

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Raw water turbidity [NTU] 40.84 45.90 43.15 58.96 55.92 89.30
Raw water colour [Pt-Co] 4.50 4.53 4.58 7.05 6.52 12.05

Clarified water turbidity [NTU] 10.94 11.66 9.68 9.28 11.01 12.89
Clarified water colour [Pt-Co] 1.41 1.23 1.14 1.17 1.35 1.68
Filtered water turbidity [NTU] 0.47 0.40 0.31 0.35 0.39 0.35
Coagulant dosage system by

gravity [mg/L] 13.56 12.71 13.17 25.24 19.40 32.59

Coagulant dosage system by
pumping [mg/L] 13.47 12.48 13.14 24.99 19.49 32.40

Table 5. Clustering using self-organising maps.

Parameter Cluster
0

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Raw water turbidity [NTU] 55.70 98.09 57.86 43.96 79.68 48.42
Raw water colour [Pt-Co] 6.60 13.61 6.65 4.60 9.93 5.64

Clarified water turbidity [NTU] 10.55 12.59 9.99 10.52 11.11 11.56
Clarified water colour [Pt-Co] 1.32 1.68 1.18 1.20 1.36 1.46
Filtered water turbidity [NTU] 0.40 0.38 0.29 0.34 0.27 0.50
Coagulant dosage system by

gravity [mg/L] 20.55 39.04 21.16 12.66 29.83 17.02

Coagulant dosage system by
pumping [mg/L] 20.48 38.86 21.07 12.58 29.58 17.01

The EM clustering technique generated three similar scenarios that allowed the iden-
tification of different values of physical-chemical parameters of raw water and coagulant
dosage. Clusters 0, 1, and 2 represented the lowest values of the turbidity and colour of the
raw water and the dosages of the pumping and gravity systems. The biggest difference
between these clusters was the colour of the raw water, which had a 15% difference be-
tween clusters 0 and 1; the turbidity of the raw water had an approximately 1.5% difference
between clusters 0 and 2. The coagulant dosage values had a less than 8% difference
between clusters 0 and 1. The next scenario is represented by clusters 3 and 4, which had
the values of turbidity and colour of raw water as higher than the first scenario identified.
Although the values of turbidity and colour of the raw water remained close, the reference
values of the coagulant dosages had a difference of approximately 30%, showing a differ-
ential even with the physical-chemical parameters of the raw water, with a differential of
less than 5%. The number of classified records for cluster 4 was double compared with
cluster 3, showing a longer historical period of the water treatment process. Cluster 4 had
lower reference values for coagulant dosages, representing an operational advantage and a
possibility of reducing chemical products for the same raw water quality. The third scenario,
identified by cluster 5, contained the highest values of the physical-chemical parameters
that refer to raw water quality and coagulant dosages. This cluster was characterized by
the rainy season, that is, the period with the highest rainfall, resulting in the transfer of the
largest amount of suspended materials to the water treatment process.

The SOM clustering technique identified a distinct and additional scenario in relation
to the EM clustering technique. Clusters 3 and 5 contained information regarding the dry
season scenario, with the lowest values of turbidity and raw water colour. Cluster 3 had
turbidity and raw water colour values that were 11.6% and 22.6% lower than cluster 5,
respectively. Higher values were also reflected in post-coagulation parameters, such as the
colour and turbidity values of the decanted water and the turbidity of the filtered water,
in addition to coagulant dosage references. It can be seen that cluster 3 had references for
coagulant dosages that were approximately 40% lower, which makes it a favourable cluster
with good historical practices for the process.
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Clusters 0 and 2 were characterized as another scenario, which have higher raw water
turbidity and colour values compared with clusters 3 and 5; consequently, this scenario
had higher reference values for the coagulant dosage. Cluster 2 had values of turbidity and
colour of raw water that were 3.8% and 1.0% higher than cluster 0, respectively. In this
scenario, the values of the colour and turbidity of the decanted water in cluster 2 were 10.7%
and 28.5% lower than in cluster 0, respectively, but the dosage values were 3.0% higher.
Thus, cluster 0 may be favourable for modelling intelligent models based on process history,
as post-coagulation parameters are more adequate and optimized with the operational
characteristics of the WTP under study.

Moreover, the coagulant dosage is related to the amount of organic matter and sus-
pended elements present in the raw water. In this way, the destabilization of the electrical
charges of the undesirable substances present in the raw water must occur in a way such
that the dirt is retained in the subsequent coagulation processes. Increasing the turbidity of
the raw water or the colour of the raw water requires the coagulant dosage to be increased
so that the turbidity or colour of the settled water is kept within the acceptable limits of the
water treatment process. When the turbidity and colour values of the raw water decrease,
the dosage references must be reduced so that the process remains within operational limits
without wasting chemical products unnecessarily.

The SOM clustering technique identified two distinct scenarios in relation to the EM
clustering technique. The references of the turbidity and colour of raw water were the high-
est, characterizing rainy periods; in other words, cluster 4 showed an intermediate scenario
and cluster 1 had the highest values of turbidity and colour of raw water. The differentials
were 23.1% and 37.1%, respectively, in relation to raw water quality, whereas the dosages
had reference values greater than 30%.

However, the SOM clustering technique identified two scenarios with higher values
for raw water parameters (clusters 1 and 4), whereas the EM clustering technique identified
a scenario with the lowest values of raw water parameters (cluster 0), characterizing a
scenario of a period of little rain or drought. In this way, the techniques showed a distinction
in relation to the historical data. That is, the EM showed that a quantity of data can be
highlighted because the cluster 0 data do not show more optimized values in relation to the
other identified scenarios, while the SOM identified a favourable scenario to be considered
for the rainy season, i.e., the data selected by cluster 4, as the coagulant dosage references
were reduced in relation to cluster 1.

Figures 3 and 4 show the physical-chemical parameters and coagulant dosage refer-
ences of each cluster, showing the dispersion contained in each cluster through the boxplots.
This information provides the details of the groups of techniques that are presented in a con-
solidated form in Tables 2 and 3, which refer to the EM and SOM techniques, respectively.

Figure 3a shows the results of cluster 0 with the physical-chemical parameters relating
to the raw water quality with the lowest interquartile dispersion in relation to the other
clusters. The results show that there were outliers in all parameters, with most being
concentrated in the parameters of the colour and turbidity of the decanted water and the
turbidity of the filtered water. The dispersion of the filtered water parameter was the
highest among the scenarios that had low raw water colour and turbidity values. The other
parameters, post-coagulation and dosages, also showed greater dispersion in relation to
clusters 1 and 2.

Figure 3b shows the result of cluster 1, highlighting the behaviour of the turbidity
parameter of the filtered water, which had a value fixed at 0.4 NTU and presented an
outlier after the upper limit. The physical-chemical parameters and dosages had the lowest
dispersions in relation to clusters 0 and 2; however, this characteristic did not extend to the
parameters of the colour and turbidity of the raw water.

Figure 3c shows the result of cluster 2, highlighting that the coagulant dosages do
not have outliers. In addition, the physical-chemical parameters of the colour of raw
and decanted water have the most distant outliers in relation to the maximum limit.
The dispersion of raw water colour was equal to that of cluster 0, but smaller compared with
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cluster 1. The scenario with the closest results to cluster 2 was cluster 1. With the exception
of raw water colour, the other cluster parameters in cluster 2 have larger dispersions
compared with cluster 1.

Figure 3d shows the result of cluster 3, which had higher raw water colour and
turbidity values compared with cluster 0 to 2; that is, it was characterized by the highest
rainfall in this grouping. All parameters had outliers; however, the turbidity of the filtered
water contained the most points beyond the lower and upper limits.

Figure 3e shows the result of cluster 4, which had a scenario similar to the scenario
of cluster 3. The main differences were the smaller dispersions of raw water parameters
and the colour and turbidity of the decanted water. The parameters of the turbidity of
the filtered water and dosages had greater dispersions in relation to cluster 3. It can be
observed that the turbidity of the filtered water did not have outliers; however, it had the
greatest dispersion among the other clusters obtained after using the EM technique.

Figure 3. Boxplot graph (EM).
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Figure 3f shows the scenario in relation to the highest rainfall index, that is, the scenario
with the highest values of colour and turbidity of raw water and, consequently, the highest
values of coagulant dosages. It can be seen that cluster 5 had the highest dispersions in
all parameters, in addition to the existence of outliers in all parameters, when focusing on
the turbidity parameters of the raw and decanted water. The possible reason for having
only one scenario representing the rainy season is the reduced amount of data, as these
situations occur less frequently in the water treatment process.

Table 6 shows the minimum, maximum, first and third quartiles, mean, median, and
interquartile range values of the parameters of each cluster resulting from the application
of the EM technique. Through Figure 3a–f and Table 6, it can be seen that clusters 2, 4, and
5 are appropriate to be selected for training intelligent models for predicting coagulant
dosage based on the history of the water treatment process. The exclusion of outliers from
these clusters is mandatory in order to avoid scenarios that could compromise the learning
of the computational model.

Figure 4a shows the result referring to cluster 0 of the SOM technique. This scenario
presented an intermediate rainfall index and was similar to cluster 2. The raw water colour
and turbidity values were higher in relation to clusters 3 and 5, which showed scenarios
with better raw water quality; that is, cluster 0 is characterized as the dry season.

Table 6. Boxplot values of the parameters and cluster of the EM technique.

Cluster Properties

Raw
Water
Colour
[Pt-Co]

Raw
Water

Turbidity
[NTU]

Clarified
Water
Colour
[Pt-Co]

Clarified
Water

Turbidity
[NTU]

Filtered
Water

Turbidity
[NTU]

System
Gravity
Dosage
[mg/L]

System
Pumping
Dosage
[mg/L]

Cluster 0

Minimum 24.00 2.90 3.56 0.75 0.35 8.00 7.90
Maximum 62.00 6.40 19.00 2.19 0.59 19.26 19.20

1st Quartile 35.00 3.98 9.00 1.20 0.44 12.08 12.08
3rd Quartile 46.00 4.95 13.00 1.60 0.50 15.10 15.10

Median 40.00 4.40 11.00 1.34 0.49 13.58 13.59
Mean 40.85 4.50 100.41 1.41 0.47 13.56 13.47

Interquartile range 11.00 0.97 4.00 0.40 0.06 3.02 3.02

Cluster 1

Minimum 27.00 2.80 6.00 0.80 0.40 8.00 7.90
Maximum 70.00 6.40 17.00 1.60 0.40 18.14 18.38

1st Quartile 40.00 4.00 10.00 1.10 0.40 11.40 11.00
3rd Quartile 52.00 5.00 13.00 1.30 0.40 14.10 14.10

Median 45.00 4.50 11.00 1.20 0.40 12.50 12.10
Mean 45.90 4.53 11.66 1.27 0.40 12.71 12.48

Interquartile range 12.00 1.00 3.00 0.20 0.00 2.70 3.10

Cluster 2

Minimum 27.00 2.80 3.50 0.62 0.26 7.55 7.57
Maximum 64.00 6.70 15.50 1.64 0.37 19.19 19.01

1st Quartile 37.00 4.00 8.00 1.00 0.30 11.60 11.50
3rd Quartile 48.00 5.10 11.00 1.26 0.33 14.71 14.94

Median 40.00 4.41 10.00 1.10 0.30 12.90 13.00
Mean 43.14 4.58 9.68 1.14 0.31 13.17 13.14

Interquartile range 11.00 1.10 3.00 0.26 0.03 3.11 3.44

Cluster 3

Minimum 25.00 3.10 1.00 0.50 0.16 20.30 19.69
Maximum 97.00 12.20 17.00 2.11 0.54 30.20 30.20

1st Quartile 46.00 5.75 7.00 0.91 0.30 23.63 23.63
3rd Quartile 70.00 8.34 11.07 1.40 0.40 26.26 26.26

Median 60.00 7.10 9.00 1.15 0.33 25.20 24.90
Mean 58.97 7.34 9.28 1.17 0.33 25.24 24.99

Interquartile range 24.00 2.59 4.08 0.49 0.10 2.63 2.63
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Table 6. Cont.

Cluster Properties

Raw
Water
Colour
[Pt-Co]

Raw
Water

Turbidity
[NTU]

Clarified
Water
Colour
[Pt-Co]

Clarified
Water

Turbidity
[NTU]

Filtered
Water

Turbidity
[NTU]

System
Gravity
Dosage
[mg/L]

System
Pumping
Dosage
[mg/L]

Cluster 4

Minimum 29.00 3.61 3.00 0.61 0.13 13.90 14.00
Maximum 83.00 9.43 19.00 2.15 0.60 24.40 24.80

1st Quartile 49.00 5.79 9.00 1.10 0.30 18.07 18.20
3rd Quartile 63.00 7.25 13.00 1.52 0.46 20.90 21.00

Median 56.00 6.40 11.00 1.30 0.41 19.39 19.69
Mean 55.93 6.71 11.00 1.35 0.13 19.40 19.49

Interquartile range 14.00 1.46 4.00 0.42 0.16 2.84 2.80

Cluster 5

Minimum 42.00 1.72 3.00 0.60 0.16 15.20 13.30
Maximum 136.10 21.90 22.00 3.02 0.54 51.00 50.80

1st Quartile 76.00 8.90 10.00 1.30 0.30 28.08 27.40
3rd Quartile 100.00 14.10 15.00 2.00 0.40 37.30 37.00

Median 87.00 10.80 13.00 1.60 0.33 32.39 32.20
Mean 89.30 12.05 12.89 1.99 0.35 32.59 32.40

Interquartile range 24.00 5.20 5.00 0.70 0.10 9.22 9.60

The filtered water parameter behaved similarly to cluster 1 of the EM technique,
keeping the value fixed at 0.4 NTU. Another difference was found in the values of raw
water parameters, which differed between the EM and SOM techniques, that is, the SOM
technique resulted in higher values.

Figure 4b presents cluster 1, which is characterized as the scenario with the highest
rainfall, showing the rainy season of the database that was submitted to processing. It is
observed that the turbidity of the filtered water did not have outliers; however the other
parameters did. The dispersion of the turbidity of the filtered water was the greatest in
relation to the other clusters, which may be caused by the low amount of data that related
to the rainy season. In the same way as cluster 0, the colour and turbidity of the decanted
water did not have outliers at the lower limit.

Figure 4c shows cluster 2, which represented the intermediate scenario and was similar
to that presented in cluster 0. With the exception of the turbidity of the filtered water,
the other parameters did not show outliers at the lower limit. The raw water parameters
were close, as well as the coagulant dosage values; however, they significantly differ.

The colour dispersions of the raw water and the turbidity of the decanted water were
higher in relation to cluster 0. The other parameters had smaller dispersions, with the
exception of the turbidity of the filtered water in cluster 0, which had a value of 0.

Figure 4d is related to the scenario with the best quality of raw water, that is, the
scenario with the lowest values of colour and turbidity of raw water. A similar scenario
was found in cluster 5. The turbidity parameter of the filtered water had no outlier, unlike
the other parameters. The coagulant dosages had only one reference that was considered
as an outlier in consideration that little information could be discarded.

The colour and turbidity of the raw water and the colour of the decanted water had
several outliers far from the upper limit, whereas the turbidity outliers of the decanted
water were close to the upper limit, which shows the importance of this resource for the
evaluation of clustering.

Figure 4e shows a scenario not identified by the EM technique that was classified
within a rainy period, but with lower rainfall rates. The coagulant dosage values and
raw water parameters were lower compared with cluster 1; four different scenarios were
identified with the SOM technique, while the EM technique identified three.

It can be considered that this scenario was merged with the rainy season scenario in
the EM technique; however, cluster 4 allows for the exploration of an intermediate scenario,
which increases the complexity from an operational point of view. The parameters had
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outliers with the exception of the turbidity of the filtered water, showing that undesired
data always occur in all clusters.

Figure 4f shows cluster 5, which represented a scenario similar to that presented in
cluster 3. However, cluster 5 presented values for colour and turbidity of raw water and
coagulant dosages that were higher than cluster 3.

The dispersions of colour and turbidity of the raw water, colour and turbidity of the
decanted water, and coagulant dosages were also superior in relation to cluster 3, only
maintaining the turbidity of the filtered water with less dispersion.

Figure 4. Boxplot graph (SOM).

Table 7 shows the minimum, maximum, first and third quartile values, mean, median,
and interquartile range of the parameters of each cluster resulting from the application
of the SOM technique. By observing Figure 4a–f and Table 7, it is verified that clusters
0, 1, 3, and 4 are appropriate to be selected for training intelligent models for predicting
coagulant dosage based on historical water treatment process. As with the EM technique,
the exclusion of outliers from these clusters were also mandatory.
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Table 7. Boxplot values of the parameters and cluster of the SOM.

Cluster Properties

Raw
Water
Colour
[Pt-Co]

Raw
Water

Turbidity
[NTU]

Clarified
Water
Colour
[Pt-Co]

Clarified
Water

Turbidity
[NTU]

Filtered
Water

Turbidity
[NTU]

System
Gravity
Dosage
[mg/L]

System
Pumping
Dosage
[mg/L]

Cluster 0

Minimum 25.00 3.12 2.00 0.57 0.40 12.35 13.00
Maximum 91.00 10.60 20.00 2.09 0.40 31.69 31.30

1st Quartile 46.00 5.30 8.00 1.10 0.40 17.51 17.54
3rd Quartile 64.00 7.42 13.00 1.50 0.40 23.28 23.10

Median 55.00 8.88 10.00 1.28 0.40 20.13 20.20
Mean 55.70 6.60 10.55 1.32 0.40 20.55 20.48

Interquartile range 18.00 2.12 5.00 0.40 0.00 5.77 5.56

Cluster 1

Minimum 58.00 0.40 4.00 0.60 0.20 30.80 29.80
Maximum 166.00 29.95 22.00 2.90 0.60 46.20 47.10

1st Quartile 80.00 9.20 10.00 1.30 0.30 36.30 35.81
3rd Quartile 115.00 17.50 15.00 1.96 0.42 40.30 40.35

Median 97.00 12.20 12.00 1.53 0.40 38.00 37.90
Mean 8.08 13.61 12.60 1.68 0.38 39.04 38.86

Interquartile range 35.00 8.30 5.00 0.66 0.12 4.00 4.54

Cluster 2

Minimum 28.00 3.10 1.00 0.50 0.25 15.50 14.10
Maximum 97.00 10.30 19.00 2.02 0.33 27.16 27.72

1st Quartile 47.10 5.61 7.00 0.97 0.28 18.88 19.05
3rd Quartile 68.00 7.50 12.00 1.39 0.30 23.28 23.00

Median 59.00 6.55 10.00 1.14 0.30 21.20 21.00
Mean 57.88 6.65 9.99 1.18 0.29 21.16 21.07

Interquartile range 20.90 1.89 5.00 0.42 0.02 4.40 3.95

Cluster 3

Minimum 25.00 2.80 4.60 0.60 0.18 7.55 7.57
Maximum 65.00 6.65 16.50 1.72 0.45 18.14 18.30

1st Quartile 38.00 4.00 9.00 1.02 0.30 11.32 11.10
3rd Quartile 49.00 5.06 12.00 1.30 0.40 14.07 14.00

Median 42.00 4.40 10.00 7.50 0.34 12.40 12.23
Mean 43.96 4.60 10.52 1.20 0.34 12.66 12.58

Interquartile range 11.00 1.06 3.00 0.28 0.10 2.75 2.90

Cluster 4

Minimum 36.00 3.53 3.00 0.50 0.10 24.00 23.80
Maximum 122.00 16.30 19.00 2.30 0.41 39.60 39.20

1st Quartile 68.00 7.80 9.00 1.10 0.20 27.17 27.00
3rd Quartile 90.00 11.20 13.00 1.59 0.30 32.20 31.90

Median 80.00 9.13 11.00 1.30 0.30 29.10 28.80
Mean 79.66 9.92 11.11 1.36 0.27 29.83 29.589

Interquartile range 22.00 3.40 4.00 0.49 0.10 5.03 4.90

Cluster 5

Minimum 23.00 1.72 3.00 0.69 0.45 7.13 7.30
Maximum 81.00 9.69 19.00 2.37 0.53 29.20 29.90

1st Quartile 39.00 4.37 9.00 1.20 0.48 13.56 13.580
3rd Quartile 56.00 6.50 13.00 1.67 0.50 19.83 20.20

Median 47.00 5.30 11.00 1.40 0.50 16.48 16.75
Mean 48.43 5.64 11.56 1.46 0.50 17.02 17.01

Interquartile range 17.00 2.13 4.00 0.47 0.02 6.27 6.62

5. Discussion

The coagulation process is characterized as a non-linear and multi-parameter step
when considering raw water parameters. The values of the turbidity and colour of raw
water vary according to the rainy and dry season with respect to the highest and lowest
values, respectively. The coagulant dosage should consider these changes, not in a linear
way, but according to historical tests or jar tests to determine the most adequate dosage for
the present scenario. In addition, the post-coagulation parameters must also be considered
with the aim of optimizing the dosages because for the same value of turbidity and colour
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of raw water, the dosage values can change depending on the efficiency of the coagulation
and flocculation. In this way, the parameters of the decantation and filtration steps may
be relevant for decision making for a possible reduction or increase in coagulant dosages
when the raw water quality remains stable.

The EM and SOM clustering techniques have been applied in several studies in the
area of water resources to identify operational scenarios or unforeseen conditions. However,
specifically, no reference was found that used the EM technique in the selection of data for
the construction of intelligent models for the prediction of coagulant dosage references.
This limitation forced the comparison to be made with other studies that focused on water
resources, which obtained satisfactory results with the application of both techniques.

In [38], the SOM technique resulted in five different scenarios of a water treatment
plant, covering the most common scenarios and the situations that did not require greater
attention in order to avoid damage to the process. It can be observed that the identification
of scenarios allows for a more accurate decision-making process in relation to possible
operational conditions.

According to [30], the EM technique enabled the identification of scenarios of 21 sites
through the examination of physical-chemical parameters in relation to the water quality
of the hydrographic basins. The results show that five clusters were used to identify
the classes.

In this study, we used six clusters to classify the historical database and focused on
the coagulation process of a water treatment plant. The number of clusters was determined
by the EM technique itself and the WEKA data mining tool; from then on, the number
was replicated using the SOM technique. The number of clusters was smaller by one;
however, the database used in the proposed study is 7 years old and has approximately
29,300 records, which may be a possible reason for the greater number of clusters.

Another important point to be observed is the use of physical-chemical parameters
that were submitted to clustering processes with the common purpose of identifying or
classifying operational scenarios, which helps during decision making or data selection for
intelligent models that use algorithms of supervised training.

The results of the EM and SOM techniques showed that a database can provide
different scenarios of water quality and operational practices. The EM technique presented
scenarios with lower raw water colour and turbidity values compared with the SOM
technique, showing that the results must be carefully evaluated and aimed at choosing
the most appropriate data possible. An important point in both techniques was the low
dispersion of the turbidity parameter of the filtered water, with the other parameters
showing different values. In this way, it can be considered that the techniques identified
the pattern in the turbidity of the filtered water, but in different scenarios.

The clusters with the smallest dispersions show that the technique identified scenarios
with less variation in the parameters related to raw water quality, such as turbidity and
colour, which can be considered an adequate selection of data for later use in training
intelligent models. The clusters with smaller dispersions can be considered as good options.

In the boxplot graphs, it was possible to identify the outliers that should be discarded if
the respective scenarios were considered for later stages of model construction, such as the
modelling of intelligent systems based on supervised training. Although both techniques
can be used alone or in combination, the EM technique resulted in a smaller number of
scenarios compared with the SOM technique, which can lead to more efficient systems.

6. Conclusions

This study addressed the use of two clustering techniques to identify quality scenarios
and operational practices in a water treatment plant, which was performed to select data
for training intelligent models for predicting coagulant reference dosages with the aim of
obtaining economic, social, and environmental gains.
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The results showed that both techniques are viable for the purpose; however, the EM
technique identified a lower number of scenarios, which is considered to be preferable for
modelling using algorithms that use supervised training.

The clustering techniques used have different processing and convergence contexts,
as can be seen in the theoretical framework. The results show that some differences were
proposed by both and can facilitate the evaluation and decision making of data selection
processes. The difference that can be highlighted is the intermediate scenario of the SOM
technique, which represents a specific rainy season but with lower rainfall rates, as the raw
water quality parameters were not the highest in relation to all clusters. Another important
point that can be highlighted is the lack of the use of the EM technique to perform clustering
for data selection for training intelligent models, as proposed in this study. In this way,
the EM technique proves to be viable for this purpose, as well as in the classification of
scenarios in the field of water resources.

Moreover, the good operational practices identified in the evaluated clusters can bring
benefits to the process, such as a reduction of expenses using chemical products, specifically
for the coagulant, which requires the extraction from nature to be manufactured for later
use in the water treatment process; in addition, more benefits can be gained by signifi-
cantly reducing the generation of waste that is sent for a final destination at wastewater
treatment plants or sludge treatment facilities, as such waste cannot be discharged into the
environment, thus reducing environmental problems.
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