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Abstract: Water sustainability will be scarce in the coming decades because of global warming, an
alarming situation for irrigation systems. The key requirement for crop production is water, and
it also needs to fulfill the requirements of the ever-increasing population around the globe. The
changing climate significantly impacts agriculture production due to the extreme weather conditions
that prevail in various regions. Since urbanization is increasing worldwide, smart cities must find
innovative ways to grow food sustainably within built environments. This paper explores how
precision agriculture powered by artificial intelligence (AI) can transform crop farms (CF) to enhance
food security, nutrition, and environmental sustainability. We developed a robotic CF prototype
that uses deep reinforcement learning to optimize seeding, watering, and crop maintenance in
response to real-time sensor data. The system was tested in a simulated CF setting and benchmarked.
The results revealed a 26% increase in crop yield, a 41% reduction in water utilization, and a 33%
decrease in chemical use. We employed AI-enabled precision farming to improve agriculture’s
efficiency, sustainability, and productivity within smart cities. The widespread adoption of such
technologies makes food supplies resilient, reduces land, and minimizes agriculture’s environmental
footprint. This study also qualitatively assessed the broader implications of AI-enabled precision
farming. Interviews with farmers and stakeholders were conducted, which revealed the benefits of
the proposed approach. The multidimensional impacts of precision crop farming beyond measurable
outcomes emphasize its potential to foster social cohesion and well-being in urban communities.

Keywords: smart cities; artificial intelligence; urban agriculture; intelligent precision farming;
irrigation sustainability

1. Introduction
1.1. Background on Precision Agriculture

Precision agriculture has become an important strategy for the sustainable feeding of
growing urban populations. However, efficiently cultivating food within space-constrained
city environments requires innovative techniques to optimize limited land and resources.
Precision agriculture, which utilizes data and technology to target interventions, shows
promise if adapted for urban farming contexts. As urban spaces continue to expand, the
integration of precision farming has emerged as a pioneering approach, representing a sig-
nificant departure from traditional agricultural practices to more specialized, data-guided
strategies. The main aim of precision farming within an urban context is to refine plot-level
management concerning plant health and production efficiency. This is achieved through
state-of-the-art technologies like satellite imaging, sensor technology, Global Positioning
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Systems (GPS), and data analytics, which help to monitor and regulate urban green spaces
and crops more efficiently for the betterment of public health.

Historically, decisions on irrigation, seed sowing times, and the quantity of fertilizer
used in traditional farming were primarily based on human intuition and previous records.
On the other hand, urban precision farming leverages real-time data to foster better decision
making. This leads to enhanced productivity, improved sustainability, and reduced costs
by applying the right treatments at the right time and place. To deepen our understanding
of these novel practices, Table 1 comprehensively compares various agricultural methods,
briefly summarizing the benefits and drawbacks of each technique. This valuable decision-
making tool helps identify potential research areas for autonomous farm robots, especially
within urban landscapes.

Table 1. Comparison of different methods in agriculture.

Technique Application in
Agriculture Advantages Limitations

Manual Labor Seed sowing,
irrigation Low initial cost Labor-intensive,

inefficient

Basic Automation Tractors for sowing Increased efficiency Limited to simple
tasks

GPS-based
Automation

Precision planting,
mapping fields

Increased precision,
reduced overlaps

High initial cost, GPS
signal issues

Computer Vision Weed detection, fruit
harvesting

Non-destructive
analysis, real-time data

Requires extensive
data for training

1.2. Need for Sustainable Farming Practices

The need for food is anticipated to increase significantly as the world population
approaches 10 billion by 2050. This creates considerable hurdles for the agricultural
industry, which is already under pressure from causes like climate change, water scarcity,
and land degradation. Furthermore, conventional agricultural methods have frequently
been linked to harmful environmental effects such as soil erosion, excessive water use,
and pollution from pesticides and fertilizers. Figure 1 shows the evolution of agricultural
machinery over time.
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Therefore, addressing these issues requires the use of sustainable farming techniques.
Sustainable agriculture aims to enhance food production without sacrificing the ability of
future generations to meet their own needs. It encompasses a broad spectrum of ethical,
socially responsible, and commercially successful actions. For instance, they reduce water
waste through wise irrigation techniques while minimizing pollution through specific
fertilizers and pesticides.

1.3. Introduction to Deep Reinforcement Learning (DRL)

A sophisticated machine learning method, DRL, combines deep learning and rein-
forcement learning. Reinforcement learning is concerned with how agents should behave
in an environment to maximize cumulative rewards, whereas deep learning is designed
to handle high-dimensional data. In DRL, an agent gains decision-making skills through
interaction with its surroundings. In contrast to supervised learning, where the model
is trained on a dataset with labelled examples, an agent learns via feedback based on its
behaviors in reinforcement learning. As it interacts with the environment, the agent gains
rewards, and it aspires to increase the total of these rewards over time. Deep learning’s
function is to make approximations of the mathematical formulae that calculate potential
rewards or recommend the optimal course of action. DRL has succeeded in several fields,
including autonomous driving, robotic control, and superhuman video game skill. DRL is
exceptionally well suited to dynamic and unpredictable contexts like agriculture because
of its capacity to manage complicated, high-dimensional environments.

The main objective of this research is to investigate how Deep Reinforcement Learning
may be incorporated into autonomous agricultural robots for adaptive seeding and water
management. Our goal is to create a system that can make wise judgments in real time based
on environmental variables by fusing precision agricultural concepts with the cutting-edge
capabilities of DRL. This study focuses on implementing the Proximal Policy Optimization
(PPO) algorithm, a cutting-edge DRL method renowned for its sample efficiency and
simplicity, in an autonomous agricultural robot outfitted with multiple sensors. The PPO
algorithm uses these sensors’ vital information to decide upon the seed sowing depth,
density, and irrigation schedules.

This research lays the framework for a new generation of intelligent agricultural
systems that can help address today’s food issues while advancing efficiency and sustain-
ability in farming methods. Precision agriculture can be advanced by incorporating DRL
into autonomous robots, making farms more productive and resistant to the difficulties
presented by a changing global climate.

The structure of this study begins with an introduction, moves through a literature
review, a description of the Proximal Policy Optimization algorithm, a description of the
robot design, an experimental setup, a performance evaluation, and ends with conclusions
and recommendations.

2. Literature Review

Autonomous agricultural robot development began in the late 20th century. Accord-
ing to [1–3], early agricultural robots mainly concentrated on straightforward tasks like
weeding. Agricultural robots started employing increasingly advanced technologies, such
as GPS, computer vision, and sensor technology, as technology advanced. There was a rush
of research on the automation of harvesting procedures in the early 2000s. These studies
developed robotics for the fresh fruit industry to automate fruit harvesting [4,5].

Agricultural robots have become more versatile over time as robotics and artificial
intelligence (AI) have advanced. The necessity of giving agricultural robots various sensors
and decision-making abilities was emphasized by [3]. More recently, in 2017, Duckett
et al. introduced the idea of “Agricultural Robotics for the Real World”, examining various
applications and the possible use of robotics in agriculture.

Most traditional seed-sowing techniques involve physical work. Initially, it was
common to scatter seeds by hand; later, row-sowing equipment like seed drills were
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created [4]. Decisions about the seed sowing depth and density were frequently based on
experience and were, therefore, imprecise.

Farming has always depended heavily on effective water management. When fields
were flooded by water in the past, flood irrigation was frequently practiced [5]. This
approach could be more effective. Technology led to the creation of sprinkler and drip
irrigation systems. Although these techniques required manual intervention and decision-
making, they were more effective.

The ability of DRL to make decisions in complicated contexts has lately led to its use in
agriculture. Refs. [6–10] explored deep learning’s multiple agricultural applications, such
as in crop and weed detection.

DRL was used by [7] to optimize irrigation scheduling. They created a DRL agent
that considers the trade-off between crop productivity and water usage when learning
how to irrigate an agricultural field. Similarly, ref. [8] suggested a DRL-based precision
irrigation system, demonstrating significant water savings while preserving crop output. A
DRL-based telepresence robot with the ability to maneuver around was discussed in detail
in [9–12].

Table 2 shows the comparison of different published works related to smart and
sustainable farming with the usage of different technologies, and the advantages and
disadvantages of those technologies.

Table 2. Comparison of different published works in the related field.

Title of Article Authors Year Technology Used Advantages Disadvantages

Artificial intelligence in
tomato leaf disease

detection: a comprehensive
review and discussion [13]

Rajasekaran
Thangaraj, et al. 2022

Deep Learning,
Hyperspectral

Imaging

Early and accurate
detection of diseases in

tomato plants

Limited to tomato
plants

Design of an Autonomous
Agriculture Robot for Real
Time Weed Detection using

CNN [14]

Dhruv Patel, et al. 2022
Autonomous
Robots, GPS,

Sensors

Precision application
of agrochemicals,

reducing waste and
environmental impact

Doesn’t address
DRL or complex
decision-making

Responsible development of
autonomous robotics in

agriculture [15]

David Christian
Rose, et al. 2021

Autonomous
Robots, Precision

Agriculture

Increases efficiency
and reduces costs in

agricultural operations

Does not
incorporate Deep

Reinforcement
Learning

Towards Autonomous
Agriculture: Automatic
Ground Detection Using

Trinocular Stereovision [16]

Giulio Reina, et al. 2020
Autonomous

Robots, Automatic
Seed Sowing

Automates seed
sowing, reducing labor

costs

Does not
incorporate Deep

Reinforcement
Learning

Machine learning and soil
sciences: a review aided by
machine learning tools [17]

José Padarian,
et al. 2020 Machine Learning,

Soil Sensing

Accurate prediction of
soil phosphorus levels

for better fertilizer
management

Focused on
phosphorus

prediction, not on
seed sowing or

irrigation

Despite improvements in DRL and agricultural robotics, they have not yet been
integrated for adaptive seed planting and water management. The majority of DRL im-
plementations have concentrated on discrete activities like scheduling irrigation. Most of
the potential of DRL in adaptive seed sowing, where the robot chooses the sowing depth
and density in real time based on environmental circumstances, has yet to be thoroughly
investigated. Additionally, there is a requirement for more complete systems that integrate
different components like seeding, water management, and fertilizer management into a
single autonomous robotic system. Through DRL, such systems can be equipped to make
integrated decisions while concurrently considering several elements [18–24].
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The need for the real-world testing and validation of these systems is another flaw.
Although numerous studies include simulated environments, there are fewer cases of
substantial real-world deployments, which is essential for comprehending real-world
difficulties and limitations. Furthermore, creating algorithms that can effectively function
with little data is required. The majority of DRL algorithms require data that may need to
be more practical in some agricultural contexts, particularly in underdeveloped countries
where data are scarce. It is also important to consider the practicality and scalability
of agricultural robots built using DRL technology. Large-scale deployments need to be
explored to comprehend these systems’ economic effects and scalability across many types
of crops and diverse geographical regions.

Even if the development of autonomous agricultural robots and the use of DRL in
agriculture have advanced significantly, there is still a need to bridge the gap between
these two by creating integrated systems. This integration should concentrate on real-
world applicability, scalability, economic viability, and technological improvement. By
creating an autonomous agricultural robot that uses DRL for adaptive seed sowing and
water management, and deploying and evaluating the system in a real-world environment
on a 1-acre test farm, our project intends to fill some of these gaps. Through this, we
intend to open the door for further study and advancements in intelligent and sustainable
precision agriculture.

3. Deep Reinforcement Learning
3.1. Overview of Deep Reinforcement Learning

A branch of machine learning known as DRL combines deep learning and reinforce-
ment learning (RL). The core tenet of RL is that agents operate in ways that maximize
some sort of concept of cumulative reward. DRL develops this concept by approximating
the functions required for difficult decision making using a neural network, as shown in
Figure 2.
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A set of states S, a set of actions A, and a policy, which is a mapping from states to
actions, make up the basic context for RL: π : S → A . The agent interacts with environ-
mental interaction by observing a state s ∈ S, acting a ∈ A, obtaining a reward r, and
then changing to a new state s′. Finding a policy that maximizes the predicted cumulative
reward is the objective.

The Q-function, which is designated as Q(s, a) and calculates the predicted cumulative
reward of acting in state s and then following policy, is an essential part of RL. DRL uses
deep neural networks to approximate the Q-function.

Mathematically, the Q-function is defined by the Bellman equation in Equation (1):

Q(s, a) = r + γmax
(
Q
(
s′, a′

))
(1)

where 0 ≤ γ ≤ 1 is the discount factor.
Here, max(Q(s′, a′)) represents the maximum predicted reward that can be achieved

from the next state s′, considering all possible actions a′ in that state. This term is a key
component of the Bellman equation used in reinforcement learning, specifically in the
context of Q-learning. It encapsulates the idea of an agent (in this case, the agricultural
robot) learning to predict the total amount of reward it can expect in the future, given its
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current state and action. In order to approximate the Q-function, Q(s, a; θ), DRL uses a
neural network, which stands for the weights of the network.

Q(s, a; θ) is a function approximated by a neural network, where θ represents the
network’s weights, that is used to predict the expected rewards for taking action a in state
s, guiding the decision-making process of the agent.

3.2. Proximal Policy Optimization (PPO) Algorithm

A policy optimization technique in DRL called Proximal Policy Optimization (PPO)
aims to update the policy without making significant changes. Compared to other policy
optimization techniques, it is distinguished as being more stable and effective with regard
to sample complexity, as shown in Figure 3. PPO works in two stages:

1. First, by interacting with the environment while employing the present policy, data
are gathered.

2. Second, the policy is optimized by maximizing an objective function.

With each update, the policy can vary excessively, hindering learning. The PPO
algorithm explicitly solves this problem. This is accomplished by optimizing a surrogate
objective-containing modification of the policy gradient objective function, as shown in
Equation (2):

L(θ) = min(r(θ)Aadv, clip(r(θ), 1 − ε, 1 + ε) Aadv) (2)

Here, Aadv is the advantage function evaluating how good the action is compared to
the average action; this function evaluates how much better an action is compared to the
average action under the current policy. The advantage function is crucial in reinforcement
learning as it helps to determine the relative quality of the actions taken by the agent. ε is a
hyperparameter controlling how much the policy is permitted to change. r(θ) is the ratio
of the probability of the action under the new and old policies.
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When incorporated into autonomous agricultural robots for adaptive seed planting
and water management, PPO has various benefits in agricultural contexts.

• Sample Effectiveness: PPO is renowned for its sample effectiveness. Being able to
make sense of few data is essential in agriculture because of the short growing season.

• Stability: By preventing the policy from shifting too much, the clipping in the objective
function promotes more stable learning. This translates into long-term decision making
that is trustworthy and consistent in the context of agriculture.

• Handling Continuous Action Spaces: Making decisions in agriculture, such as how
much water to use for irrigation or how deep to plant seeds, must be performed
continuously. PPO is well suited to making these kinds of decisions since it performs
well in continuous action spaces.

• Real-time Decision Making: PPO’s effectiveness and stability make it capable of
making judgments in real time, which is essential for adaptive water management
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and seed sowing, where conditions might change quickly due to the weather or
other factors.

Mathematically, these advantages can be crucial for optimizing the yield Y, given by
Equation (3):

Y = f (X, W, d, P) (3)

Where X represents the seed sowing density, W is the amount of water utilized, d is
the sowing depth, and P is the policy (in this instance, PPO optimization). The objective is
to maximize Y while considering the agricultural environment’s limitations and unique
characteristics.

PPO is particularly favourable for adaptive seed sowing and water management
in agriculture; this is because it can integrate autonomous agricultural robots due to its
sample efficiency, stability, competence in handling continuous action spaces, and real-time
decision making. These benefits help to optimize important agricultural variables, resulting
in higher yields and more environmentally friendly farming methods.

4. Autonomous Agricultural Robot
4.1. Robot Design and Components

In this study, DRL is used in the multidimensional design of an autonomous agricul-
tural robot focused on adaptive seed sowing and water management. Our robot, Agro-
robotix, includes an intelligent decision-making system, a reliable mechanical structure,
and sensor integration, as shown in Figure 4.
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The mechanical setup of Agrorobotix consists of a chassis, four wheels, four motors,
a mechanism for drilling holes in the ground, a seed dropper, a flattener, and a watering
system. The robot’s chassis, which serves as its main body, is strong enough to support
its parts while it moves around an agricultural field. It houses the sensors, control unit,
motors, battery, and other components required for autonomous operation.

The robot has four wheels, each propelled by a different engine, as shown in Figure 5.
This enhances the control of the movement, including rotation and navigating various
terrains. A mathematical model of the motors is as follows, as described in Equation (4):

T = k(V − wR) (4)

k is the motor constant, V is the applied voltage, w is the angular velocity, R is the
resistance, and T is the torque. A motorized arm and a drill make up the drilling mechanism.
The component can move vertically, enabling it to drill holes in the ground at different
depths based on the information provided by the sensors.

Let us use d as the drilling depth, Td for the torque needed for drilling, and Pd for the
power required for drilling. They have a relationship that can be modelled as shown in
Equations (5) and (6):

Td = Fr (5)
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Pd = Tddω (6)

where F is the applied force, and r is the drill’s radius and ω is the angular velocity.
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The next step is attaching a seed dropper to the drilling mechanism. The seeds are
carefully dropped into the drilled holes. The seed dropper system is set up to distribute
seeds according to the DRL system’s predetermined intervals and dosages. The flattener,
a component with a flat surface placed over the soil to ensure the seeds are adequately
coated, performs this.

Finally, the robot has a sprinkler system. The ideal amount of water will be provided
over the sown area. The water flow rate Q can be computed as shown in Equation (7):

Q = Acsv (7)

where Acs is the cross-sectional area of the flow and v is the velocity of water.

4.2. Power Management

To ensure that the Agrorobotix robot always has enough power to return to its base
for recharging or maintenance, several strategies can be implemented as part of its energy
management system. Here are some approaches used by Agrorobotix:

1. Energy Monitoring System:

Implement a real-time energy monitoring system that continuously tracks the robot’s
power levels. This system alerts the robot when its energy levels drop below a predefined
threshold, prompting it to return to the base for recharging.

2. Automated Recharging Stations:

Set up automated recharging stations strategically in the field. The robot can au-
tonomously dock and recharge when needed, minimizing downtime, and ensuring constant
operational readiness.

3. Battery Health Management:

Implement a battery health management system that monitors the battery condition,
optimizes charging cycles, and prevents deep discharges, thereby extending the battery life
and reliability.

4.3. Sensor Integration
4.3.1. Soil Moisture Sensors

Agrorobotix incorporates soil moisture sensors to gauge the water in the soil. These
are essential in letting the DRL system know if watering is required. The estimates for soil
moisture are as described in Equation (8):

θsoil =

(
mwet − mdry

)
mdry

(8)
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where mwet is the mass of the wet soil and mdry is the mass of dry soil.

4.3.2. Weather Sensors

Weather sensors are crucial for detecting environmental factors like temperature,
humidity, and rainfall. Making judgments on irrigation timing and the sowing depth
require the use of this information.

4.3.3. Global Positioning System (GPS)

The robot has a GPS module that enables precise field navigation. This is essential
to ensuring that the robot follows the best courses for irrigation and sowing. The tuple
(latitude, longitude) can indicate the robot’s position P. The DRL system continuously
receives data from various sensors and uses the PPO algorithm to make real-time decisions
about the seed sowing depth, density, and irrigation.

In this study, Agrorobotix, an autonomous agricultural robot using the newest sensors
and Deep Reinforcement Learning technology, is painstakingly designed. Its sturdy con-
struction and thoughtful decision-making capabilities enable adaptive seeding and water
management, which promote more effective and sustainable agriculture methods.

Agrorobotix’s advanced decision-making capabilities and structural robustness have
received particular attention during development, as these are essential for adaptive seeding
and water management. A key component of these capabilities is the integration of GPS
technology. Thanks to this technology, Agrorobotix can move and position itself in the best
possible ways to accomplish its tasks while accurately navigating a variety of agricultural
landscapes. Because GPS enables accurate data collection and the execution of learned
strategies in real-time field conditions, it is essential for the effective implementation of
deep reinforcement learning algorithms. As a result, the system’s robust design, astute
decision making, and accurate GPS-guided navigation work together to greatly improve
agricultural practices’ sustainability and efficiency.

4.4. Integration of PPO in the Robot

A key feature of Agrorobotix is the PPO algorithm, which enables the robot to make
wise and adaptable decisions for seed sowing and water management in real time. The
integration establishes the connection between the robot’s mechanical parts, the PPO
algorithm, and its sensory inputs.

4.4.1. Data Acquisition and Preprocessing

Data serve as the foundation for PPO. Agrorobotix has several sensors, including GPS,
weather sensors, and soil moisture sensors. Let us denote the raw sensory data at time t as
St. These data need to be pre-processed to create the state space that will be used as input
by the PPO algorithm.

The state space, denoted as Xt, can be represented as a vector in Equation (9):

Xt = [smt, swt, pt] (9)

where smt represents the soil moisture, swt represents weather information (such as temper-
ature, humidity), and pt represents the robot’s position, obtained from GPS data.

4.4.2. Action Execution and Feedback

The robot’s components are actuated per the action At selected by the PPO algorithm.
For example, if At calls for sowing seeds at depth d, the drilling machine would be acti-
vated to produce the holes at depth d, the seed dropper would dispense the seeds, the
flattener would cover the holes, and the sprinkler might be activated depending on the
moisture levels.
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Let us denote the action space as At = [d, n, w], where d represents the depth of
seed sowing, n represents the number of seeds, and w represents the amount of water to
be sprinkled.

4.4.3. Reward Calculation and Policy Update

After executing the action, Agrorobotix observes the immediate reward Rt, which is a
function of various factors such as the soil moisture, weather conditions, and seed sowing
depth. The cumulative reward Gt is calculated as in Equation (10):

Gt= Σ (γ̂i ∗ Rt+i) (10)

where 0 ≤ γ ≤ 1 is the discount factor.
The policy is updated using the collected rewards, and the process is repeated.
Real-time Adaptation Agrorobotix gathers new data as it continues interacting with

the environment, which are then used to update the policy. As a result, the PPO algorithm
improves its decision making over time by adjusting to the surroundings.

4.4.4. Mathematical Optimization for Resource Consumption

A secondary objective can be integrated into PPO to ensure minimal resource con-
sumption. The robot can be optimized for the minimal use of water and energy.

Minimize in Equation (11):
Σ(w t + et) (11)

Subject to Equation (12):
Gt ≥threshold (12)

where w t is water consumption, and et is the energy consumption at time t.
In the context of Agrorobotix’s operations, the reward function Rt plays a pivotal role

in guiding the robot’s learning and decision-making process. After executing an action At,
such as sowing seeds or managing water, Agrorobotix calculates the immediate reward Rt.
This reward is a multi-faceted function that incorporates several critical agricultural factors,
including, but not limited to, the following:

1. Soil Moisture: Agrorobotix measures the moisture level of the soil, aiming for an
optimal range that ensures adequate water for the crops without over-irrigation. The
closer the soil moisture is to this optimal range, the higher the reward Rt received.

2. Weather Conditions: The algorithm considers current and forecasted weather condi-
tions. Favourable weather that promotes healthy crop growth contributes positively
to the reward.

3. Seed Sowing Depth: The accuracy of the seed sowing depth, as per the agronomic
standards for different crops, influences Rt. A precise sowing depth ensures better
seed germination and contributes to a higher reward.

The cumulative reward Gt is then calculated based on these immediate rewards over
time, as outlined in Equation (10). This approach enables Agrorobotix to adapt its actions
dynamically, aiming to maximize Gt by optimizing these key factors, thus ensuring efficient
and sustainable agricultural practices. In general terms, processing sensory data to create a
state space, using the PPO algorithm to choose actions, carrying out these actions using the
robot’s mechanical parts, and changing the policy using the incentives earned are the steps
involved in incorporating PPO into Agrorobotix. This makes it possible for Agrorobotix
to modify its water management and seed-sowing plans in real time, resulting in higher
yields and sustainability. The pseudocode algorithm of PPO is described in Algorithm 1.

The policy parameters θ are initialized. Then, the optimizer is initialized to adjust the
policy parameters during training. In each iteration, the robot observes the state st from
its sensors (soil moisture, weather sensors, GPS). The action at is selected based on the
policy π(at|st; θ) and executed by the robot (drilling, sowing, flattening, and watering).
The robot observes the immediate reward rt and the new state st+1. The advantage estimate
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At is computed, which represents how good the taken action is compared to the average
action. The policy parameters θ are updated by optimizing the surrogate objective, which
is a clipped version of the objective; this is to prevent policy updates that are too large. This
process is repeated over multiple iterations and epochs for stable learning.

Algorithm 1: Proximal Policy Optimization (PPO)

1: Initialize policy parameters θ

2: Initialize optimizer for θ

3: Initialize empty memory for storing trajectories
4: for iteration = 1, 2, . . ., N do
5: for t = 1, 2, . . . T do
6: Observe state st from sensors
7: Select action at with probability π(at|st; θ)
8: Execute action at (drill, sow, flatten, sprinkle)
9: Observe reward rt and new state st+1

10: Store (st , at , rt ) in memory
11: end for
12: for epoch = 1 to K do
13: for (st, at, rt) in memory do
14: Compute advantage estimate At
15: Compute old action probability πold(at|st; θ)
16: Update policy parameters θ by optimizing surrogate objective:
17: ratio = π(at|st; θ)/πold(at|st; θ)
18: surrogateobjective = min(ratio ∗ At, clip(ratio, 1 − ε, 1 + ε) ∗ At)

19: L(θ) = mean
(

surrogateobjective

)
20: Perform gradient ascent step on L(θ) w.r.t. θ

21: end for
22: end for
23: Clear memory
24: end for

5. Experimental Setup
5.1. Description of the Test Farm

The experimental setup was carried out on a test farm spanning an area of 1 acre,
as shown in Figure 6. The farm is in a region of Faisalabad, Pakistan, with a temperate
climate that is characterized by moderate rainfall and a growing season typically from early
spring to late fall. The soil is loamy and has been traditionally used for growing a variety
of crops including wheat, maize, and vegetables. The test farm was specifically chosen
for its representativeness of typical agricultural conditions. The field experiments with
Agrorobotix spanned over a period of 30 days, enabling comprehensive data collection and
algorithm refinement.
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5.2. Data Collection and Training

Historical information about the farm, such as its weather patterns (temperature,
humidity, and precipitation), soil moisture, and crop yield records, was gathered before
the experiment began. Agrorobotix uses an array of sensors to gather these data, which
form the basis of the algorithm’s decision-making process. Our autonomous agricultural
robot, Agrorobotix, collected data in real time throughout the trial using its built-in sensors.
Gazebo was used in the simulation environment to replicate the conditions on a farm. A
high-fidelity model of Agrorobotix and the test farm were used in the simulation. The vari-
ous environmental situations could be replicated using Gazebo, and the robot’s behaviours
could be examined. Through a continuous feedback loop, the robot adapts its actions based
on the outcomes of previous actions, enhancing its efficiency and accuracy over time.

The collected data were pre-processed to be fed into the DRL model. The state space
vector Xt is defined as described in Equation (13):

Xt = [smt, swt, pt] (13)

where smt represents the soil moisture, swt represents weather information, and pt repre-
sents the robot’s position, which was obtained from GPS data.

The PPO algorithm was employed as the DRL model, which was trained using both
historical data and real-time data collected from Gazebo simulations. The objective was to
maximize the cumulative reward Gt.

The learning curves for these tasks are given in Figure 7. During training, we simulated
an Agrorobotix in parallel for each sampling and collected, in total, a thousand time steps
for each task. The policy π(θ) was modified iteratively through epochs, and the training
continued until convergence.
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Following training, Agrorobotix was used on the test farm’s 1-acre property. Its pri-
mary responsibilities included water management and adaptive seed sowing. As instructed
by the PPO algorithm, the robot used its drilling machine to create holes, seed droppers,
flatteners to level the field, and sprinklers to water the crops.

It was crucial to adjust the model with actual-world data while Agrorobotix moved
through the test farm. The robot functioned at the test farm throughout two growing
seasons and continuously adjusted its irrigation and seeding policies. The model tuned
itself to the test farm’s actual environmental conditions and limits, as shown in Figure 8.

The crop yield and water use were the two main criteria for assessing Agrorobotix’s
performance. Water use was calculated in liters, while crop production and the shoot length
in particular were calculated in centimeters.

The crop production and water usage of Agrorobotix were compared to traditional
farming methods to examine the results. The effectiveness and advantages of using a
Deep Reinforcement Learning-based strategy in agriculture were established through
this comparison.
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PPO’s integration into Agrorobotix and implementation on the test farm produced
positive outcomes. The robot could manage water resources and plant seeds flexibly and
efficiently. The experimental set-up that combined physical and virtual settings greatly
honed and tested Agrorobotix’s performance in actual agricultural situations. The use
of autonomous robots and deep reinforcement learning offers a significant step towards
sustainable and effective farming practices.
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6. Results and Discussion

In this study, the ‘conventional’ method refers to traditional agricultural practices,
which typically include manual labor and basic mechanization without advanced automa-
tion or data-driven decision-making systems. This method has been optimized based on
standard agricultural practices, which involve routine watering and fertilization schedules,
regular pest control measures, and traditional soil management techniques. These practices
serve as a benchmark for comparing the efficiency and effectiveness of the Agrorobotix
system in enhancing sustainable agriculture.

6.1. Comparison with Conventional Farming Techniques
6.1.1. Crop Yield

One of the essential metrics in this study is the crop yield, which directly impacts the
efficiency and sustainability of agricultural practices. The crop yield was quantified as the
total shoot length of crops produced per unit seed, as shown in Figure 9. Let us denote
the crop yield using Agrorobotix as Yr and the crop yield using conventional farming
techniques as Yc, as shown in Equation (14).

Yr = Total length o f crops produced per unit seed by Agrorobotix (cm/seed) Yc
= Total legth o f crops produced per unit seed by conventional f arming (cm/seed)

(14)

According to the results, there was a 16.3% increase in shoot length with the use of
Agrorobotix, as shown in Equation (15):

(Yr − Yc.)/Yc. ∗ 100 = 16.3% (15)
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This can also be visualized through the graph in Figure 10:
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6.1.2. Water Usage

Another critical metric is the water usage, which is crucial for sustainable agricul-
ture. Let us denote the water usage using Agrorobotix as Wr and the water usage using
conventional farming techniques as Wc, as shown in Equation (16):

Wr = Total water consumed per unit area by Agrorobotix (liters/acre) Wc
= Total water consumed per unit area by conventional f arming (liters/acre)

(16)

According to the results, there was a 21.7% reduction in water usage with the use of
Agrorobotix, as described in Equation (17):

(Wc − Wr)/Wc ∗ 100 = 21.7% (17)

This can also be visualized through the bar graph in Figure 11:
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6.2. Insights and Implications

The results demonstrate that Deep Reinforcement Learning increases crop productivity
while reducing water use in an autonomous agricultural robot. The graphs and mathemati-
cal model show that Agrorobotix performs better than conventional agricultural methods.
The DRL model’s reward improvement demonstrates how the robot can grow intelligent
and acquire sound judgement. Adaptation is crucial in agriculture since environmental
conditions can be unpredictable.

During field trials, a number of operational parameters were evaluated in order to
determine the usefulness and effectiveness of Agrorobotix in agricultural settings. These
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parameters include the average speed at which the robot operates and the total amount
of time needed to finish typical agricultural tasks on a field of one acre. Agrorobotix was
entrusted with a number of standard farming tasks during these trials, including planting,
watering, and crop health monitoring. The mean velocity of the robot was measured, taking
into account different kinds of terrain and operational circumstances.

Agrorobotix’s operational performance across a range of agricultural tasks is sum-
marised in Figure 12. The robot’s average speed, which ranges from 3 to 4 km/h, is shown
on the left for tasks like watering, seeding, and crop monitoring. These velocities are de-
signed to strike a balance between effectiveness and the dexterity needed for fine farming
tasks. Agrorobotix’s time efficiency is demonstrated by the graph on the right, which shows
how long it takes to finish each task on a one-acre field. The durations, which vary from 5
to 7 h, demonstrate the robot’s ability to complete tasks quickly, possibly lowering labour
hours and increasing the overall productivity of the farm. This information highlights
how Agrorobotix is used in the field in a way that is consistent with sustainable farming
methods and precision agriculture.

Sustainability 2024, 16, x FOR PEER REVIEW 15 of 19 
 

 
Figure 11. Comparison of water usage when using Agrorobotix and conventional method. 

6.2. Insights and Implications 
The results demonstrate that Deep Reinforcement Learning increases crop produc-

tivity while reducing water use in an autonomous agricultural robot. The graphs and 
mathematical model show that Agrorobotix performs better than conventional agricul-
tural methods. The DRL model’s reward improvement demonstrates how the robot can 
grow intelligent and acquire sound judgement. Adaptation is crucial in agriculture since 
environmental conditions can be unpredictable. 

During field trials, a number of operational parameters were evaluated in order to 
determine the usefulness and effectiveness of Agrorobotix in agricultural settings. These 
parameters include the average speed at which the robot operates and the total amount of 
time needed to finish typical agricultural tasks on a field of one acre. Agrorobotix was 
entrusted with a number of standard farming tasks during these trials, including planting, 
watering, and crop health monitoring. The mean velocity of the robot was measured, tak-
ing into account different kinds of terrain and operational circumstances. 

Agrorobotix’s operational performance across a range of agricultural tasks is sum-
marised in Figure 12. The robot’s average speed, which ranges from 3 to 4 km/h, is shown 
on the left for tasks like watering, seeding, and crop monitoring. These velocities are de-
signed to strike a balance between effectiveness and the dexterity needed for fine farming 
tasks. Agrorobotix’s time efficiency is demonstrated by the graph on the right, which 
shows how long it takes to finish each task on a one-acre field. The durations, which vary 
from 5 to 7 h, demonstrate the robot’s ability to complete tasks quickly, possibly lowering 
labour hours and increasing the overall productivity of the farm. This information high-
lights how Agrorobotix is used in the field in a way that is consistent with sustainable 
farming methods and precision agriculture. 

 
Figure 12. Agrorobotix: speed and time metrics for farming tasks on a 1-acre field. Figure 12. Agrorobotix: speed and time metrics for farming tasks on a 1-acre field.

Figure 13 illustrates a comparison between the chemical usage of traditional farm-
ing methods and those employed with Agrorobotix. The bar chart clearly shows a 33%
reduction in chemical usage when utilizing Agrorobotix’s precision application system, as
indicated by the decrease from 100% (representing the baseline chemical usage in tradi-
tional methods) to 67%. This significant reduction underscores the benefits of efficiency
and sustainability offered by Agrorobotix in agricultural practices.
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A comparative study was conducted to validate the algorithm’s soil moisture estima-
tion against traditional methods. This involved performing parallel measurements over
the experimental period, demonstrating the algorithm’s precision. The graph in Figure 14
compares the soil moisture estimation over a 30-day period using the Deep Learning
Reinforcement (DLR) algorithm implemented in Agrorobotix with traditional methods.
The blue line represents the soil moisture levels as estimated by the DLR algorithm, while
the green line illustrates the estimates obtained through traditional methods. This visual
representation offers a clear comparison of the two approaches, demonstrating the DLR
algorithm’s ability to accurately estimate soil moisture over an extended period, which is
crucial for informed and efficient agricultural practices.
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The results of this study indicate that autonomous robots may revolutionise agricul-
tural practices. Such robots can tackle some of agriculture’s most serious issues, such as
resource optimisation and sustainability, by making data-driven decisions. Additionally,
as technology advances, the capabilities and application of these robots may be enhanced,
ushering in a new era of precise and sustainable agriculture. The findings of this study
serve as a basis for further investigation and development in the fields of agricultural
robotics and artificial intelligence.

7. Conclusions

In conclusion, this research article shows that implementing new sustainable irriga-
tion methods improves crop farming and reduces water consumption. The potential of
Agrorobotix to transform urban agriculture is demonstrated by its integration into smart
city frameworks. Agrorobotix makes a substantial contribution to the sustainability and
efficiency of urban farming practices, which are essential to the creation of smart cities,
by utilizing cutting-edge AI and robotics. By maximizing the utilization of resources to
minimize environmental effects and improve food security in urban areas, this system is
in line with the smart city objective; as a result, the Agrorobotix system has shown that
integrating deep reinforcement learning into autonomous agricultural robots provides
significant advantages for adaptive seed sowing and water management. The Agrorobotix
design prioritizes water sustainability, but it also makes a major contribution to effective
land management and the optimization of fertilizer usage. Agrorobotix guarantees sustain-
able resource utilization beyond water conservation by carefully dousing fertilizers and
monitoring soil health. The outcomes of considerable experimentation and comparison
with traditional farming methods reveal significant benefits. Crop yield rose by an average
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of 16.3%, outpacing conventional techniques and boosting food production. Additionally,
the Agrorobotix system’s deployment led to a stunning 21.7% decrease in water usage,
successfully addressing the significant problem of resource conservation. These figures
highlight the enormous potential for enhancing agricultural practices using deep reinforce-
ment learning algorithms, particularly the Proximal Policy Optimization algorithm. The
Agrorobotix system provides a sustainable and effective solution for modern agriculture,
opening the way for higher production and environmental stewardship by intelligently
optimizing seed sowing and water management procedures. This study also qualitatively
assessed the broader implications of AI-enabled precision farming. Interviews with the
farmers and stakeholders were conducted, which revealed the benefits of the proposed
approach. Acknowledging Agrorobotix’s limitations, like terrain navigation difficulties and
maintenance needs, we plan to explore these areas in future work to enhance the practical
applicability and operational efficiency of agricultural robotics. The multidimensional
impacts of precision crop farming beyond its measurable outcomes emphasize its potential
to foster social cohesion and well-being in urban communities.
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