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Abstract: The increased focus on sustainability in response to climate change has given rise to many
new initiatives to meet the rise in building load demand. The concept of distributed energy resources
(DER) and optimal control of supply to meet power demands in buildings have resulted in growing
interest to adopt microgrids for a precinct or a university campus. In this paper, a model for an
actual physical microgrid has been constructed in OPAL-RT for real-time simulation studies. The
load demands for SIT@NYP campus and its weather data are collected to serve as input to run on
the digital twin model of DERs of the microgrid. The dynamic response of the microgrid model
in response to fluctuations in power generation due to intermittent solar PV generation and load
demands are examined via real-time simulation studies and compared with the response of the
physical assets. It is observed that the simulation results match closely to the performance of the
actual physical asset. As such, the developed microgrid model offers plug-and-play capability, which
will allow power providers to better plan for on-site deployment of renewable energy sources and
energy storage to match the expected building energy demand.

Keywords: Matlab/Simulink; load demands; microgrid; DER; OPAL-RT; digital twin; energy
optimization; Gurobi; sustainable building

1. Introduction

Sustainable energy has garnered significant prominence in the contemporary global
context. The world is steadfastly progressing toward a more ecologically conscious and
energy-efficient paradigm, with an increasing emphasis on sustainable building manage-
ment. Concurrently, Distributed Energy Resources (DERs), exemplified by renewable
energy sources and Battery Energy Storage Systems (BESS), have gained substantial popu-
larity for the purpose of mitigating energy consumption in urban buildings. Furthermore,
the concept of microgrids has emerged as a key enabler in this pursuit.

The heightened emphasis on sustainability in response to the challenges posed by
climate change has precipitated a surge in novel initiatives aimed at addressing the esca-
lating demand for building energy consumption. This shift in focus has been particularly
instrumental in catalyzing the exploration of innovative solutions, such as Distributed
Energy Resources (DERs) and sophisticated control strategies for the efficient provision of
power within building environments. Consequently, there has been a burgeoning inter-
est in the integration of microgrids within precincts or expansive institutional campuses,
notably universities.

In the context of this research endeavor, we present a comprehensive and empirically
grounded model for an actual physical microgrid. This model is meticulously designed and
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realized using the OPAL-RT platform, thus rendering it amenable for real-time simulation
studies. To facilitate these simulations, we have gathered extensive datasets encompassing
the load demands specific to the SIT@NYP campus, along with the pertinent meteorological
data. These datasets, serving as crucial input parameters, are meticulously integrated into
the digital twin model representing the DERs of the microgrid.

The primary objective of this study is to scrutinize the dynamic response characteristics
exhibited by the microgrid model in the face of varying power generation profiles, which
predominantly stem from intermittent solar photovoltaic (PV) sources, and the concurrent
variations in building load demands. This examination is rigorously conducted through
the execution of real-time simulation studies, with a deliberate intent to draw parallels and
distinctions between the responses of the digital twin model and the actual physical assets
constituting the microgrid.

A salient observation that emerges from this research is the striking congruence be-
tween the simulation results and the performance of the tangible, real-world infrastructure.
This observation serves as a testament to the fidelity and accuracy of the developed micro-
grid model, substantiating its utility as a plug-and-play tool for stakeholders, particularly
power providers, who are tasked with strategic planning for the on-site deployment of
renewable energy resources and energy storage systems. This endeavor is inherently driven
by the overarching objective of harmonizing energy supply with the anticipated building
energy demand, thereby fostering a more resilient and sustainable energy ecosystem.

The power usage of HVAC systems is highly cyclical, primarily due to the daily and
seasonal variations in environmental factors and human behavior. This fact supports the
use of Recurrent Neural Networks (RNNs) as the prediction model for forecasting HVAC
power consumption. Previous studies [1–3] have successfully used neural networks and
deep learning for HVAC power forecasts, incorporating diverse input variables. Our study
employs a Long Short-Term Memory (LSTM) network for this purpose. The flexibility of
LSTM allows adaptation to various buildings and locations when appropriately trained
with relevant data.

Microgrids constitute a transformative advancement in modern energy systems, de-
parting from conventional centralized power distribution. These self-sufficient, localized
grids seamlessly integrate diverse distributed energy resources, including renewables,
energy storage, and advanced control systems, fostering both resilience and sustainability.
A primary merit lies in their capacity to bolster energy security by providing decentralized
power sources, thereby minimizing the impact of grid failures. Furthermore, microgrids
empower communities to incorporate renewable energy, facilitating a shift towards cleaner
and more sustainable energy practices. The adaptability and versatility of microgrids
play a crucial role in optimizing energy efficiency, curbing transmission losses, and en-
abling the seamless integration of intermittent renewable sources into the broader energy
infrastructure. As the global emphasis on constructing resilient and environmentally con-
scious energy networks intensifies, the significance of microgrids becomes increasingly
indispensable in shaping a more sustainable and dependable energy landscape.

2. Experimental Details

Aiming at enhancing predictive power control, the authors introduced an innovative
approach by integrating various disciplines. This approach capitalizes on a multi-faceted
approach, incorporating Artificial Intelligence (AI), energy optimization, and digital twin
technologies. Each of these technological components contributes to the development
loop of a sustainable Energy Management System (EMS), collectively working towards
achieving resilient, sustainable, and efficient building energy management. This section
covers the methodology of our approach.

The overarching proposed methodology, outlined in Figure 1, encompasses vari-
ous stages. In Section 2.1, a comprehensive analysis of the building’s load dynamics is
conducted, facilitating the identification of pertinent features crucial for input into the
predictive model. Section 2.2 expounds on the utilization of LSTM, an AI algorithm aimed
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at forecasting the building’s load demand. In Section 2.3, the predictive model for the
HVAC building load is developed employing both single-layer and two-layer LSTM ar-
chitectures across distinct dates. Moving to Section 2.4, the methodology incorporates
Gurobi optimization to ascertain the requisite reference point for BESS. Notably, one of the
essential inputs for this optimization procedure is the anticipated load demand derived
from the LSTM model. Conclusively, the methodology advances by constructing a digital
twin model, serving as a parallel system to validate and affirm the efficacy of the proposed
predictive building power control. In practical implementation, outcomes derived from the
digital twin system furnish the building operator with predictive insights and optimized
operational profiles to guide decision-making. The proposed method exhibits versatility,
operating either in real-time, thereby reducing human intervention, or functioning as a par-
allel digital-twin-based system, providing monitoring and predictive consultancy services.
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Figure 1. Overview of predictive building power control using AI, energy optimization, and microgrid
digital twin platform.

The research commences with an examination of the cooling system within the
Singapore Institute of Technology (SIT) at the Nanyang Polytechnic (NYP) campus (the
building reflected in Figure 1).

In the ensuing sections, we provide a comprehensive exposition of the experimental
specifics pertaining to each constituent element of the predictive building power control system.

2.1. Cooling System in SIT @ NYP

An overview of the cooling system in the SIT @ NYP building is shown in Figure 2.
The main components of the cooling system are three units of cooling towers (CT), three
units of chillers (CH), three units of chiller water pumps (CWP), three units of condenser
water pumps (CHWP), Air Handling Units (AHU), and Fan Control Units (FCU). The
system works together to regulate the temperature and flow of chilled water. The chilled
water is supplied to AHU and FCU to condition air before it is distributed to the building
space. Then, chilled water is returned to the chiller to complete the chilled water circulation.
In the chiller (more specific in evaporator), returning chilled water will dump its heat on the
refrigerant to lower its temperature before it is supplied to AHU and FCU. The refrigerant’s
heat will be released at the condenser water before it is circulated back to the evaporator.
The condenser water will be pumped to the cooling tower to reject the heat at the outdoor.
Then, condenser water will be returned to the chiller and ready to absorb some heat from
the refrigerant. The AHU and FCU take fresh air from outside the building, then filter,
dehumidify, and cool the air to the temperature specified by the BMS before it is distributed
into the occupied spaces.
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Figure 2. Overview of SIT @ Nanyang Polytechnic chilled water system.

The building’s cooling system is automatically monitored and controlled by Honeywell
Building Management System. It is designed to run only one unit at a time during normal
periods but can run multiple units during periods of high demand.

2.2. Brief Description of LSTM

Recurrent Neural Networks (RNNs) are ideal for time series prediction problems,
where the input and output data are in sequential form. This is because RNNs have a
feedback mechanism that allows them to consider previous input data to predict future
values. However, one of the challenges of RNNs is the exploding and vanishing gradients
that occur during the back-propagation step [4]. This occurs because RNNs have a limited
memory and as they go back in time during the back-propagation, the gradients become
increasingly small, leading to vanishing gradients. To overcome this problem, Long Short-
Term Memory (LSTM) networks are a variant of Recurrent Neural Networks (RNNs) that
have been shown to have more stable gradients [4,5]. Hence, LSTM networks can capture
long-term dependencies in data more effectively.

An LSTM network consists of several key components, including the hidden state
(ht), cell state (Ct), forget gate, input gate, and output gate as shown in Figure 3. State is
a memory unit of the networks that stores information, while gates regulate the flow of
information into the state. Input gates control new information added to the new state,
forget gates decide what information is discarded, and output gates determine information
to be output based on the cell state. The gates employ sigmoid activation functions,
while both the cell state and hidden state commonly utilize the hyperbolic tangent (tanh)
activation function. Current input (Xt) and previous hidden state (ht−1) are passed through
the sigmoid function of the forget gate. If the output value of the forget gate is closer to
0, it means forget, and closer to 1 means to retain. The forget gate determines relevant
information to keep from the prior cell state (Ct−1). The input gate decides relevant new
information to update in the current cell state (Ct) of the current LSTM unit. The present
cell state is determined by the sum of a portion of the previous cell state (factoring in the
output of the forget gate) and a fraction of new information (considering both the output of
the input gate and the cell state activation function). The output gate is multiplied together
with the current cell state to obtain the present hidden state (ht). Information from both the
cell state (Ct) and hidden state (ht) will be passed to the next LSTM unit.
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2.3. HVAC LSTM Load Predictor Model

The LSTM networks [6,7] with one layer and two layers are examined and compared.
The one-layer LSTM network has 100 hidden units, while the two-layer LSTM network
has 100 hidden units in each layer. The features used in this study are pre-processed using
standard scaling and MinMax scaling techniques.

Two approaches are employed for estimating the HVAC load, known as LSTM-1 and
LTSM-2. Both LSTMs are used to predict the load for the next 30 min and are based on the
features listed in Table 1. All features listed in the table are sourced from the BMS. Apart
from different features used in each model, LSTM-1 is trained by using current features,
while LSTM-2 is trained by using features in the rolling windows of the past 20 min as
shown in Figure 4.

Table 1. List of features used in both LSTM-1 and LSTM-2.

No Feature LSTM-1 LSTM-2 Notes

1 chiller water supply temperature Yes Yes

2 chiller water return temperature Yes Yes

3 chiller water flow Yes Yes

4 compressor water supply temperature Yes Yes

5 compressor water return temperature Yes Yes

6 compressor water flow Yes Yes

7 calculated load tonnage Yes No

8 heat out Yes No

9 total HVAC cooling load Yes No Total HVAC cooling load recorded by BMS

10 wet bulb temperature Yes No Weather station measurement

11 ambient temperature Yes No Weather station measurement

12 Irradiation Yes No Weather station measurement

13 HVAC on/off Yes No Scheduled HVAC system turn on/off

14 Day of week No Yes
Weekday: 0,

Saturday: 0.5, and
Sunday: 1

15 Minute of day No Yes Minutes of the day
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2.4. Energy Management Optimization Using Gurobi

The microgrid concept is integral to modern energy systems, where energy storage
emerges as an essential component [8]. This is particularly crucial given the dependency of
Photovoltaic (PV) power generation on solar irradiance, a variable not subject to human
control and contingent upon weather conditions. In the microgrid framework, a key
player with high controllability assumes the responsibility of maintaining power and
energy balance. This player adeptly adheres to setpoints established by the Microgrid
Controller (MGC) or the estates operator. Frequently, BESS is the preferred and commonly
employed technology for this purpose, exemplifying its significance in orchestrating the
intricate dance of power generation and consumption within a microgrid setting. To ensure
optimal functionality, BESS requires precise setpoints which will be dependent on the
power control strategy.

To achieve optimal energy management, optimization is a must-do task. It needs to
generate the setpoints for BESS. We have used free Gurobi academic license version 10.0.1
is a highly utilized mathematical optimization solver and software bundle designed for
addressing intricate linear and nonlinear programming challenges [9]. Energy supply and
demand optimization using Gurobi is particularly valuable in the field of energy manage-
ment, helping the building owner make data-driven decisions to meet the energy demand
efficiently, reduce operational costs, and optimize resource utilization while considering
various constraints and objectives.

As depicted in Figure 1, the optimization process relies on several key input factors,
including power generated by DER, building load demand forecasts generated by LSTM
models, the prevailing electrical tariff, BESS, and PV costs. The objective function of the
optimization is determined by the building operator’s preferences and could encompass
goals such as enhancing energy efficiency, lowering operational expenses, and optimizing
resource utilization, among others.

In this section, the focus shifts to employing energy optimization techniques for the
generation of Battery Energy Storage System (BESS) setpoints, with consideration given to
distinct scenarios.

(i). Scenario 1: the primary objective is to attain the lowest cost of overall building energy
consumption. This involves a comprehensive evaluation that considers the electricity
tariff from the main grid, as well as the costs associated with Photovoltaic (PV) power
generation and BESS operation. The overarching aim is to curtail the total cost, thereby
directly benefiting the building user.
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(ii). Scenario 2: the optimization process centers on minimizing infeed power fluctuation.
High peak-to-peak demand fluctuations pose challenges for the main grid, necessitat-
ing additional resources and costs to accommodate sudden increases and decreases in
power demand. By mitigating these fluctuations, the burden on the main grid is alle-
viated, especially in the context of an expanding microgrid landscape. Additionally,
this approach contributes to the reduction in equipment sizes and associated costs,
offering a dual advantage of enhanced grid stability and economic efficiency.

In Scenario 1: the objective function is to minimize the cost function below.

Obj1 =
N

∑
n=1

(|P bat|∗∆t ∗ Cbat+PPV ∗ ∆t ∗ CPV + Pgrid ∗ ∆t ∗ Cutility)

In Scenario 2: the objective function is to minimize the cost function below.

Obj2 =
∑N

n=1

(
Pgrid − Paverage

)2

n − 1

where Pbat, Ppv, Pgrid are battery, PV, infeed grid active power, respectively. Cbat, Cpv,
Cutility are cost of battery, PV, and utility electricity, respectively. ∆t is the time step (1 min
in the scope of this study). Paverage is the average active power demand from the main grid.
N is the number of time steps involved in the optimization. Depending on the context, N
can be 30 for half hour predictive control, or 1440 for one day predictive control, etc.

Obj1 is the total power cost for the period studied. Obj2 is the variance of the active
power exchange with the main grid, which is useful to describe the power fluctuation
from the prospect of the main grid. Power fluctuation is a rising concern in modern power
systems with renewables.

The constraints are as follows:

(1) Battery SOC should be within given limit at all times.
(2) Battery SOC at the start of the day is the same as the end of the day to ensure

continuous operation of BESS.
(3) Maximum infeed power at PCC is 200 kW at any time. And no power flows into the

main grid.
(4) Power is balanced at all times and Pbat is the output variable which is then used as the

BESS setpoint in Section 3.

2.5. Digital Twin Modelling

Digital twinning of the microgrid has become critical for effective projection of renew-
ables and power source generation to meet the need of load demand [10]. In this section,
the potential application of a microgrid in the building is studied. The microgrid is an
experimental microgrid testbed set up in Singapore Power Concept Lab, which is used
to create a digital twin using Opal-RT RT-Lab 2019.3 + Matlab 2018b. The digital twin is
created using the test data from the experimental microgrid and modeled in detail. It is
based on hardware-controller-in-the-loop real-time simulation. The digital twin system
architecture is shown in Figure 5. It consists of

(1) Siemens MGC;
(2) Engineering PC;
(3) Real-time simulator;
(4) Toolbox Server.
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Figure 5. Digital twin architecture which comprises Siemens MGC, Engineering PC, Real-time
simulator, and Toolbox server. The OPAL RT 5700 is sourced from OPAL-RT Technologies Inc,
Montreal, Quebec, Canada. The Microgrid controller A8050 is sourced from Siemens, Munich
Germany.

The digital twin is wired up using the IEC 60870-104 [11] communication protocol.
MGC is the same model as in the experimental setup. MGC logic is replicated to the best
effort to provide maximum accuracy in the digital twin. The simulation model is built
in details and runs in real-time, enabling the digital twin to be able to model transient
dynamic events and compatibility to connecting various hardware in the loop.

As the experimental microgrid and NYP building are of different energy scales, the
following rating/capacities are altered to make a better match. The voltage and the rated
power/capacity are as shown below.

Microgrid Parameters
Unit Voltage Rated Power/Capacity
PV 415 V 300 kW
BESS 275 V/415 V 300 kW/200 kWh
2 × 1:1 transformer 415 V/415 V 400 kVA

The circuit is shown in the figure below (Figure 6). The experimental microgrid is
formed by a common busbar (HT-SS1). The PV is connected through the PV inverter.
The NYP load is represented by an aggregated load model. BESS is connected through a
step-up transformer and a 1:1 transformer. The latter one is for safety reasons and acting
as an isolation barrier in the case of faults on either the building side or BESS side. The
same principle applies for a back-up combined heat and power generator (CHP). However,
CHP is a back-up for islanded scenarios when there is a power outage on the main grid.
CHP is more for energy reliability in contingencies and is not an economic DER in energy
optimization. Hence, it is excluded in this paper.

The digital twin model verification and validation is completed by conducting various
simulations and physical experiments. Several test cases are designed, covering from the
component level to the system level, from islanded mode to grid connected mode, from dy-
namic to steady-state scenarios. The test cases are used to verify the simulation model. The
comprehensive validation and verification of the digital twin are elaborated upon [12,13],
albeit regrettably omitted herein due to constraints imposed by page limitations. The
outcomes attained in this study underscore a notable level of fidelity and accuracy [14].
The research leverages the microgrid digital twin as a pioneering tool to substantiate the
predictions expounded in Section 3.1 and fine-tune the optimization procedures outlined
in Section 3.2. This methodological advancement is poised to significantly enhance the pre-
cision of predictive power control mechanisms within the context of sustainable buildings.
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2.6. Summary of Section 2

This integrated framework harnesses the strengths of AI, enabling advanced predictive
capabilities. Energy optimization techniques are employed to enhance the efficiency and
effectiveness of energy usage within the system. Additionally, the utilization of digital twin
technology provides a virtual representation of the physical system, facilitating simulation,
monitoring, and optimization of operations.

By combining these diverse technologies within the sustainable EMS development
loop, the methodology presents a holistic solution for managing building energy. It aims
to achieve resilience against fluctuations, sustainability by minimizing environmental
impact, and efficiency in energy consumption, thus paving the way for more effective and
comprehensive energy management practices.

3. Results and Discussion
3.1. Cooling Prediction

Different lengths and periods of training data, and different architectures and scaling
methods of LSTM (using Matlab 2022b) are studied and discussed in this section.
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3.1.1. LSTM-1

In first case, LSTM-1 is trained by using July–September 2020 data. Table 2 shows
the forecast accuracy of trained LSTM on different test data (October 2020, September
2022, and October 2022), architecture (one-layer and two-layer), and scaler (MinMax and
Standard). These metrics quantitatively assess a model’s accuracy and reliability. The
combination ensures a robust evaluation, covering different aspects of prediction accuracy.
RMSE considers both magnitude and direction, emphasizing larger discrepancies. MAE
evaluates average magnitude without directional consideration, offering a straightforward
accuracy measure. Examining bias helps identify systematic errors, crucial for ensuring
unbiased forecasts. Performance metrices used in the forecast are RMSE, MAE, and bias.
For comparison over different models’ (one-layer LSTM MinMax scaler, one-layer LSTM
Standard scaler, two-layer LSTM MinMax scaler, and two-layer LSTM Standard scaler)
performance, the average forecast performance of October 2020, September 2022, and
October 2022 test data is also presented in Table 2. The average results show that the scaling
method has quite a significant influence on the performance of the forecast accuracies. The
one-layer LSTM Standard scaler has RMSE 23.8 kW, MAE 11.9 kW, and bias −2.5 kW, while
the one-layer LSTM MinMax scaler has RMSE 33.9 kW, MAE 17 kW, and bias 11.5 kW. The
two-layer LSTM Standard scaler has RMSE 22.5 kW, MAE 11.1 kW, and bias 0.4 kW, while
the two-layer LSTM MinMax scaler has RMSE 28.1 kW, MAE 13.9 kW, and bias 1.6 kW. In
both one-layer and two-layer LSTM architecture, the Standard scaler has outperformed
the MinMax scaler in terms of performance metrices. This can be attributed to the data
being approximately more Gaussian and there being outlier data which MinMax scaling is
more sensitive to and hence it is projected as being less accurate. The performance metrices
RMSE and MAE of both one-layer and two-layer LSTM in the Standard scaler are very
similar. Thus, the one-layer LSTM-1 Standard scaler works well to forecast the load. The
forecast output of the HVAC load in time series is presented in Figure 7. The load that we
used in our study for the SIT@NYP building is more straight forward but with some outlier
data. Hence, one-layer LSTM-1 is adequate to provide accurate prediction, while two-layer
LSTMs lead to overfitting with some of the outliers and the dataset is not big considering
the training data that were used, the July–September 2020 data.

Table 2. Prediction results of LSTM-1 based on Jul-September 2020 trained data.

Architecture Scaling Train Data Test Data RMSE MAE Bias

One-layer LSTM
MinMax July to September 2020 October 2020 11.81 5.67 −1.03
MinMax July to September 2020 September 2022 15.23 7.36 0.68
MinMax July to September 2020 October 2022 74.63 38.04 34.89

Mean 33.9 17 11.5

One-layer LSTM Standard July to September 2020 October 2020 11.6 5.82 2.4
Standard July to September 2020 September 2022 18.18 8.88 −5.2
Standard July to September 2020 October 2022 41.86 21.2 −4.72

Mean 23.8 11.9 −2.5

Two-layer LSTM
MinMax July to September 2020 October 2020 12.75 7.71 −3.13
MinMax July to September 2020 September 2022 19.1 11.11 −6.16
MinMax July to September 2020 October 2022 52.44 23.05 14.17

Mean 28.1 13.9 1.6

Two-layer LSTM Standard July to September 2020 October 2020 11.3 4.83 −0.87
Standard July to September 2020 September 2022 16.94 9.92 −1.53
Standard July to September 2020 October 2022 39.36 18.54 3.72

Mean 22.5 11.1 0.4
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Figure 7. Measured load vs. predicted load. (a–c) One-layer LSTM-1 MinMax scaler; (d–f) One-
layer LSTM-1 Standard scaler, (g–i) Two-layer LSTM-1 MinMax scaler, and (j–l) Two-layer LSTM-1
Standard scaler. (a,d,g,j) 1st week of October 2020 test data. (b,e,h,k) 1st week of September 2022 test
data. (c,f,i,l) 1st week of October 2022 test data.

In the second case, LSTM-1 is trained by using the short length of data from
1 September 2022 to 6 September 2022 while it makes the forecast for the next two days
(7–8 September 2022). This allowed us to see the impact of using less data for training
and how it can affect the forecast performance. The forecast performance is presented in
Table 3. The one-layer LSTM Standard scaler has RMSE 20.9 kW, MAE 11.9 kW, and bias
0.1 kW, while the one-layer LSTM MinMax scaler has RMSE 21.4 kW, MAE 13.8 kW, and
bias 5 kW. The two-layer LSTM Standard scaler has RMSE 22.6 kW, MAE 14.2 kW, and
bias 2.1 kW, while the two-layer LSTM MinMax scaler has RMSE 26 kW, MAE 17.8 kW,
and bias 11.1 kW. The best model is the one-layer LSTM Standard scaler. In both cases, the
one-layer LSTM with Standard scaler outperformed other models and the accuracies of the
prediction are not necessary to improve due to the increased number of layers in LSTM. By
comparing the result in Tables 2 and 3, we can also see that the one-layer LSTM Standard
MAE value is 8.88 as compared to 11.91. This is also an indication that a richer training
data pool helps to make the performance forecast more accurate. This was also observed
for the two-layer LSTM for both the MinMax and Standard, where MAE is 11.1 and 9.9 in
Table 2 as compared to 17.79 and 14.25 in Table 3.

3.1.2. LSTM-2

Similar with LSTM-1, the LSTM-2 is trained by using the Jul-September 2020 data
in the first case; however, it is used for forecasting results over a longer duration period.
Table 3 shows the forecast accuracy of trained LSTM on different test data, architectures,
and scalers. The average forecast performance of the October 2020, September 2022, and
October 2022 test data is presented in Table 4. The one-layer LSTM Standard scaler has
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RMSE 45.27 kW, MAE 20 kW, and bias 8.58 kW, while the one-layer LSTM MinMax scaler
has RMSE 37.03 kW, MAE 18.43 kW, and bias 4 kW. The two-layer LSTM Standard scaler
has RMSE 46.17 kW, MAE 20.97 kW, and bias 7.02 kW, while the two-layer LSTM MinMax
scaler has RMSE 49.07 kW, MAE 23.8 kW, and bias 6.3 kW. From these results, the one-layer
LSTM MinMax scaler has the least RMSE, MAE, and bias error among other models. The
forecast output of the HVAC load in time series is presented in Figure 8.

Table 3. Prediction results of LSTM-1 based on 1–6 September 2022 trained data.

Architecture Scaling Train Data Test Data RMSE MAE Bias

One-layer LSTM MinMax 1–6 September 2022 7–8 September 2022 21.48 13.83 5.01

One-layer LSTM Standard 1–6 September 2022 7–8 September 2022 20.98 11.91 0.17

Two-layer LSTM MinMax 1–6 September 2022 7–8 September 2022 26.02 17.79 11.17

Two-layer LSTM Standard 1–6 September 2022 7–8 September 2022 22.64 14.25 2.08

Table 4. Prediction results of LSTM-2 based on July–September 2020 trained data.

Architecture Scaling Train Data Test Data RMSE MAE Bias

1 Layer LSTM
MinMaxScaler July to September 2020 October 2020 33.29 14.17 8.14
MinMaxScaler July to September 2020 September 2022 30.42 15.1 6.59
MinMaxScaler July to September 2020 October 2022 47.38 26.04 −2.7

Mean 37.03 18.43 4

1 Layer LSTM StandardScaler July to September 2020 October 2020 40.79 16.56 8.6
StandardScaler July to September 2020 September 2022 41.95 18.21 5.3
StandardScaler July to September 2020 October 2022 53.08 25.26 11.86

Mean 45.27 20 8.58

2 Layer LSTM
MinMaxScaler July to September 2020 October 2020 37.66 16.23 9.94
MinMaxScaler July to September 2020 September 2022 41.5 18.44 7.95
MinMaxScaler July to September 2020 October 2022 68.07 36.72 1.02

Mean 49.07 23.8 6.3

2 Layer LSTM StandardScaler July to September 2020 October 2020 41.67 17.87 8.57
StandardScaler July to September 2020 September 2022 48.08 21.05 12.67
StandardScaler July to September 2020 October 2022 48.77 24 −0.16

Mean 46.17 20.97 7.02
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Figure 8. Measured load vs. predicted load. (a–c) One-layer LSTM-2 MinMax scaler; (d–f) One-
layer LSTM-2 Standard scaler, (g–i) Two-layer LSTM-2 MinMax scaler, and (j–l) Two-layer LSTM-2
Standard scaler. (a,d,g,j) 1st week of October 2020 test data. (b,e,h,k) 1st week of September 2022 test
data. (c,f,i,l) 1st week of October 2022 test data.
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Similar with LSTM-1, the LSTM-2 in the second case is trained by using data from
1 September 2022 to 6 September 2022 while the forecasting period is from 7 September 2022
to 8 September 2022. The forecast performance is presented in Table 5. The one-layer LSTM
Standard scaler has RMSE 22.41 kW, MAE 13.07 kW, and bias −3.12 kW, while the one-layer
LSTM with MinMax scaler has RMSE 21.22 kW, MAE 12.28 kW, and bias −1.52 kW. The two-
layer LSTM with Standard scaler has RMSE 23.7 kW, MAE 13.18 kW, and bias −1.57 kW,
while the two-layer LSTM with MinMax scaler has RMSE 23.73 kW, MAE 13.18 kW, and
bias −2.21 kW. The best model is the one-layer LSTM MinMax scaler, which is similar to
the first case.

Table 5. Prediction results of LSTM-2 based on 1–6 September 2022 trained data.

Architecture Scaling Train Data Test Data RMSE MAE Bias

1 Layer LSTM MinMaxScaler 1–6 September 2022 7–8 September 2022 21.22 12.28 −1.52

1 Layer LSTM StandardScaler 1–6 September 2022 7–8 September 2022 22.41 13.07 −3.12

2 Layer LSTM MinMaxScaler 1–6 September 2022 7–8 September 2022 23.73 13.18 −2.21

2 Layer LSTM StandardScaler 1–6 September 2022 7–8 September 2022 23.7 13.18 −1.57

Based on both the LSTM-1 results in Table 1 and the LSTM-2 results in Table 2, the
one-layer LSTM works sufficiently accurately to predict the HVAC cooling load. For the
choice of scaling, it is dependent on the type of model used in the prediction.

3.2. Energy Optimization in Microgrid

As concluded in Section 3.1, the one-layer LSTM is sufficiently accurate to predict the
cooling load. The cooling load in NYP can be accurately predicted. In this section, one day
(1 September 2022, trained using July 2020 and September 2020 data, one-layer LSTM) is
taken as an example sample to conduct the energy optimization. In addition to the cooling
load, there are static loads in the building which are running 24/7, such as the server room.
Adding the static load and the cooling load, the total load demand in the building can be
obtained. The left figure in Figure 9 is the actual vs. predicted total load in the building.
The predicted load colored in orange provides an accurate prediction compared with the
actual value. The right figure in Figure 9 is the recorded solar irradiance level. There are
frequent fluctuations in the morning, depicting a cloudy day, and the sun is fully covered
in the afternoon.
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Figure 9. (Left) Actual load demand vs. predicted load demand. (Right) Irradiance for the day
(sensor noise is corrected).

The electric tariff is set to SGD 0.2996/kWh with reference to Singapore’s utility price in
the 3rd quarter of 2023. The electrical tariff is assumed to provide an incentive to consumers
to use power during the off-peak period. The off-peak price is set to SGD 0.18/kWh. The
cost of a battery is set to SGD 0.1715/kWh usage with reference to the cost projection for
battery storage provided by the National Renewable Energy Laboratory. The cost of PV is
neglected as the PV system can last for 20~30 years with low maintenance costs.
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Scenario 1 is further separated into Scenario 1A—lowest cost with Fixed SOC0 and
Scenario 1B—lowest cost. SOC0 is the initial battery SOC. In Scenario 1A, SOC0 is fixed
at 50%. In Scenario 1B, SOC0 is flexible and becomes one of the variables to solve. In all
scenarios, the battery SOC limit is set to 5~95%.

Scenario 1A: lowest cost with Fixed SOC0 (LCFS).
The actual optimal energy management profile (BESS power setpoint) and predicted

optimal energy management profile are shown in Figure 10.
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Figure 10. BESS power setpoint in Scenario 1A, actual optimal vs. predicted optimal.

In general, the LCFS optimization shows a close match between the predicted and
actual loading scenarios. This is due to the good prediction accuracy from LSTM as shown
in Figure 9. There are several discrepancies noticed:

(1) At 8 am in the morning, there is a power demand surge in the building due to the
cooling system. The BESS setpoint is able to follow the power surge with some errors
that originated from the load prediction as shown in Figure 9.

(2) At the end of the day, the actual BESS setpoint starts to charge the battery at an earlier
time as compared to the predicted case, meaning there is more power discharged
from the actual case during the day.

The result reveals that the predicted optimal solution provides an accurate BESS power
setpoint. The resulting LCFS predicted electricity cost is SGD 1028.03 as compared to SGD
1027.81 for the actual. Without the microgrid, the electricity cost is 1334.43 SGD. The
reduction in energy cost is SGD 306.4.

Scenario 1B: lowest cost (LC).
The actual optimal energy management profile (BESS power setpoint) and predicted

optimal energy management profile are shown in Figure 11.
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The graphical representation illustrates that the predicted optimal solution effectively
aligns with the true BESS power setpoint. As a consequence, the forecasted LCFS electricity
cost amounts to SGD 1017.25, closely approximating the actual cost of SGD 1017.03. In
the absence of the microgrid infrastructure, the electricity cost rises to SGD 1334.43. This
discernible disparity results in a noteworthy reduction in energy-related expenditures,
amounting to SGD 317.18. In this case, the flexible SOC0 provides extra energy reduction.
The optimal SOC0 at the beginning of the day is 5%, the defined lower limit of SOC.

A sharp decrease in setpoint is registered in the actual optimal energy management
profile at 10:54 am. This was a result of the optimization process recognizing the need to
charge the battery at that specific moment. Due to the absence of penalties for abrupt power
changes and a consistent electricity price throughout the daytime, the algorithm charged
the battery at the maximum allowable rate within the defined constraints. Consequently, it
set a −200 kW target at 10:54 am. In essence, multiple optimal solutions exist that yield the
same objective value. For instance, when charging the battery, whether done gradually or
aggressively, the outcome remains identical in this scenario, provided there is adequate
headroom for charging setpoints and the electricity price remains constant during the
charging interval.

Scenario 2: lowest Variance (LV). The actual optimal energy management profile
(BESS power setpoint) and predicted optimal energy management profile based on lowest
Variance (LV) are as shown in Figure 12.
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Figure 12. BESS power setpoint in Scenario 2, actual optimal vs. predicted optimal.

The variance of grid power serves as a pivotal metric denoting the oscillation in power
load. As exemplified by the observed electrical load requisites, the zenith of power demand
culminates at 428.85 kW. In the context of high-tension power supplies, the rate applied to
contracted capacity is more favorable in comparison to uncontracted capacity, signifying
an economic incentive for responsible capacity planning. It is imperative to acknowledge
that an elevated variance in power consumption substantially heightens the likelihood of
incurring expenses related to uncontracted capacity, accentuating the financial significance
of minimizing load fluctuations and optimizing capacity utilization.

The result of LV optimization for actual load demand and predicted load demand is
shown in Figure 13. The LV optimization using predicted load data is 1024.01 kW2, which
is lower than 1097.78 kW2. This is due to more fluctuation in the actual load demand than
the prediction. The results of the optimization process are summarized in Table 6.
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Table 6. Optimization result with varying scenarios.

Scenario Objective
Function

Objective Value
(SGD or kW2)

Percentage
Improvement Accuracy Error BESS Initial SOC

W/O microgrid Cost/Variance 1334.43/5840.35 -- - -

LCFS_actual Cost 1027.81 22.98% - 50.00%

LCFS_predicted Cost 1028.03 22.96% −0.07% 50.00%

LC_actual Cost 1017.03 23.79% - 5.00%

LC_predicted Cost 1017.25 23.77% −0.07% 5.00%

LV_actual Variance 1097.78 81.20% - 31.02%

LV_predicted Variance 1024.01 82.47% 1.56% 29.36%

3.3. Microgrid Digital Twin Result and Discussion

Following Section 3.2, the optimized setpoints are used as the reference in the mi-
crogrid digital twin system. The result achieved reveals a close-to-reality performance of
microgrid integration with the SIT@NYP campus. The objective is to verify the results from
Sections 3.1 and 3.2. The findings from the microgrid digital twin reveal the discrepancies
due to the physical microgrid and give feedback to the building’s predictive power control.

Scenario 1A: lowest cost with Fixed SOC0 (LCFS).
In this scenario, the actual power demand that is required from the grid is plotted as

in Figure 13.
The actual power needed from the grid is based on the optimization of the actual

building load, which is the optimal energy management in an ideal scenario. The predicted
power needed from the grid is based on the optimization of the predicted building load
demand using LSTM. The result shows a close match between two scenarios. The battery
is charging during the mid-night period. During charging, the battery charging solution is
not unique, and the time of charging is flexible given that it will not affect the value of the
objective function. Hence, the grid power consumption at the end of the day is different
between the actual and predicted load.

In both actual and predicted cases, the optimization process gives a lower power
consumption from the main grid. In physical microgrids, energy conversion efficiency
always introduces power loss in the system. In addition, there are various ancillary devices
required for microgrid operation, such as industrial PC, controller, data servers, etc. Hence,
the microgrid digital twin reveals the power consumption that is closer to the real-world
application. Figure 14 shows the solar energy conversion efficiency. The actual power
generated is lower as compared to the predicted PV power.
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Scenario 1B: lowest cost (LC).
In this scenario, the actual power demand that is required from the grid is plotted as

in Figure 15.
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In this scenario, the initial battery SOC is flexible. After digital twin simulation, it
was observed that the grid power demand has a similar trend as in Scenario 1A. There is
additional power required from the grid. The battery is at 5% SOC in the beginning of the
day and is charged early in the morning to take advantage of the lower electricity price in
the off-peak hours.

Scenario 2: lowest Variance (LV).
In this scenario, the focus is to reduce the power fluctuations so that the power variance

is minimized. The result from the digital twin is plotted in Figure 16. The power fluctuation
from the DT is much higher as compared with the ideal optimization. However, due to the
additional power consumption in the microgrid, the variance is decreased in DT.

When the microgrid is unmanaged, namely, BESS is not active, the power drawn from
the grid is shown in the figure below.

As compared to the unmanaged case (Figure 17), the peak power demand is reduced
from 405.47 kW to (229.79 kW, 232.94 kW) in the digital twin verified result. This significant
reduction in peak power will benefit both the building owner as well as the grid provider.
The size of the equipment (such as transformer, protection device) can be reduced for the
SIT@NYP building and the user can subscribe to smaller contracted capacity. Hence, it will
bring economic benefits to stakeholders.
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Figure 18 summarizes the reduction in variance and peak power in all cases of Scenario
2. The result reveals the capability of the proposed method in stabilizing the power
fluctuation and decreasing the peak load or rated power of electrical assets needed.
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Figure 18. Grid power demand comparison in Scenario 2.

Across three scenarios, there is a common observation of power loss within the
microgrid, and higher power taken from the main grid. In the intricate web of a microgrid,
power loss manifests through a spectrum of factors inherent in its diverse components
and the intricacies of energy transmission and distribution. Noteworthy among these
contributors are

• Conversion Inefficiencies: The transformation of energy from one form to another,
such as the conversion between AC and DC, often incurs losses owing to the imperfect
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efficiency of devices like inverters, converters, and transformers operating within
the microgrid.

• Transmission and Distribution Losses: In the journey of electricity through wires
and cables, resistance along the transmission lines induces voltage drops and dissi-
pates energy. These resistive losses amplify with increased transmission distances or
diminished conductor quality.

• Component Degradation: Components like batteries, solar panels, inverters, and
generators in the microgrid degrade over time. This decline reduces their efficiency,
leading to increased internal resistance or lower energy conversion efficiency, con-
tributing to power losses.

• Ancillary Equipment Consumption: Devices like controllers, sensors, monitoring
systems, and auxiliary loads (such as equipment cooling systems) consume power
for operation. While essential for microgrid functioning and monitoring, their power
consumption adds to overall system power losses.

• The aforementioned losses can be reduced but cannot be eliminated. Hence, the
authors suggest to include the losses in the optimization or the prediction process so
that the proposed model can be applied in various types of buildings, geographical
locations, and application constraints.

3.4. Discussion on the Practical Implementation Concerns of the Proposed Predictive Power
Control Method
3.4.1. Building Operators Preference

When it comes to the selection of the objective of optimization, it is contingent upon
a case-by-case evaluation. Building operators possess the autonomy to select operational
strategies based on their preferences. This study investigates two prevalent objective func-
tions. The first centers on optimizing economic benefits, specifically aiming for the lowest
electricity cost. The second objective function prioritizes mitigating power fluctuation and
minimizing peak demand. Other key objectives concerning building operator include:

• Sustainability and Environmental Stewardship: A priority for many proprietors is
mitigating environmental impact by lowering energy usage, thereby reducing green-
house gas emissions. This often involves integrating renewable energy sources and
implementing eco-friendly practices.

• Regulatory Compliance: Adherence to energy efficiency standards, building codes,
and governmental regulations is imperative to ensure legal compliance and promote
energy-conservation measures.

• Resilience and Reliability: Ensuring a dependable power supply is vital. Some propri-
etors prioritize systems capable of withstanding power disruptions, often incorporat-
ing backup power sources like generators or battery storage for resilience. This can
impose additional constraints on SOC in order to maintain sufficient reserve.

Each of the objectives can formulate its objective functions for optimization. For
complicated scenarios, the building operator may pursue more than one objective. In such
cases, weighted factors or coefficients can be applied using the following objective function.

new−obj = ∑ Wi × Obji

where new−obj is the overall objective, Wi is the weighing factor for ith objective, Obji is
the ith objective function.

3.4.2. The Cost-Effectiveness

It is crucial to prioritize economic considerations in practical implementation. The
additional costs associated with the proposed method, such as computation/simulation
hardware, software, and configuration manpower expenses, are quantifiable and relatively
limited. Notably, these costs remain consistent regardless of the scale of power, which stands
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as a notable advantage of employing a digital twin. In addition, the implementation has low
marginal cost and wide application scope due to the low sensitivity of the applied scenario.

The cost-effectiveness of the proposed method relies heavily on the economic benefits
it generates, which can stem from various aspects:

• Cost Reduction and Optimization: The method outlined in this paper demonstrates
a capacity for substantial energy optimization, promising considerable cost savings
over an extended period.

• Operational Efficiency: Leveraging virtual models allows for real-time monitoring
and analysis of assets or processes, fostering optimized operations. By simulating
diverse scenarios and strategies, organizations can pinpoint the most efficient and
cost-effective approaches.

• Improved Decision-Making: Digital twins furnish data-driven insights and simula-
tions, enhancing decision-making. This can translate into reduced risks, optimized
resource allocation, and more informed investments, positively impacting the overall
financial performance.

• Insight Provision: In certain implementation scenarios, digital twin-based control
systems can offer vital insights even before the physical installation of assets. The pro-
vision of insights through simulation aids in informed decision-making and planning.

These economic benefits highlight the potential of the proposed method to yield sub-
stantial returns by optimizing energy usage, enhancing operational efficiency, improving
decision-making, and offering valuable insights. The quantification of various economic
benefits may be challenging and vary case-by-case. Once quantified, the cost-effectiveness
can be determined. This will promote energy resilience and sustainability as based on the
operational strategies of the building operators’ preference for cost-effectiveness.

3.4.3. Technical Feasibility

The practicality of the suggested approach has been demonstrated via the SIT@NYP
scenario. The AI, energy optimization, and digital twin components have been tested
and showcased the proposed method’s functionality or effectiveness. Consequently, its
technical readiness level stands high, making it prepared for implementation.

4. Conclusions

In summary, the authors present a systematic way of combining AI, optimization, and
the microgrid digital twin to form a novel method of predictive power control to buildings.
The results show promising accuracy and accountability. In the prediction analysis, the
result reveals that for buildings with cyclic power demand, the load is highly predictable
and the one-layer LSTM can provide sufficiently good prediction regardless of training
data date (pre COVID-19 or during COVID-19). The optimization process shows perfor-
mance improvement from 22% to 82% depending on the building operator’s preference.
In future, or when the physical microgrid is implemented, the real-time digital twin can
provide online energy prediction and optimization, which can operate in real-time with
the building’s electrical and cooling systems. It will further unleash the power of the
microgrid digital twin in predictive power control to sustainable buildings. Additional
deliberation regarding the practical implementation concerns is provided, encompassing
various building operators’ preferences, cost efficiency, and technical readiness. The sug-
gested predictive power control exhibits remarkable adaptability to accommodate diverse
building scenarios, offers a broad spectrum of economic advantages, and holds significant
promise for practical implementation.
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