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Abstract: Global fossil fuel consumption and associated emissions are continuing to increase amid
the 2022 energy crisis and environmental pollution and climate change issues are becoming even
severer. Aiming at energy saving and emission reduction, in this paper, a new unit commitment
model considering electric vehicles and renewable energy integration is established, taking into
account the prediction errors of emissions from thermal units and renewable power generations.
Furthermore, a new binary CMAES, dubbed BCMAES, which uses a signal function to map sampled
individuals is proposed and compared with eight other mapping functions. The proposed model
and the BCMAES algorithm are then applied in simulation studies on IEEE 10- and IEEE 118-bus
systems, and compared with other popular algorithms such as BPSO, NSGAII, and HS. The results
confirm that the proposed BCMAES algorithm outperforms other algorithms for large-scale mixed
integer optimization problems with over 1000 dimensions, achieving a more than 1% cost reduction.
It is further shown that the use of V2G energy transfer and the integration of renewable energy can
significantly reduce both the operation costs and emissions by 5.57% and 13.71%, respectively.

Keywords: unit commitment; electric vehicles; renewable generation; emission reduction; binary
covariance matrix adaption evolution strategy

1. Introduction

In light of the energy crisis of the new century, rethinking power generation in power
systems is becoming increasingly popular. Traditional thermal power plants mainly rely
on fossil fuels to generate electricity. The substantive consumption of fossil fuels and
the subsequent emissions have been identified as one of the main contributors to climate
change and the deterioration in air quality, particularly, in the midst of the energy crisis
in 2022. To address these global challenges, the large scale roll-outs of renewable energy
and electric vehicles are viewed as important measures. The integration of renewable
energy and electric vehicles into the grid can reduce both operation costs and capital
costs in building more power system assets, while effectively reducing greenhouse gas
emissions. It is estimated that by 2030, carbon dioxide emissions will be reduced by up to
77.6 million tons and environmental costs will be reduced by up to USD 18.945 billion [1].
However, due to the uncertainty in and volatility of renewable energy, balancing supply
and demand in the power grid become more difficult, and brings significant challenges to
the unit scheduling, power grid control, and market operation of power systems [2]. There-
fore, it is of great significance to study the impact of renewable energy and electric vehicles
on a power grid to reduce the operating costs while maintaining its stable operation.

The unit commitment (UC) problem is an NP-hard combinatorial optimization prob-
lem of high dimension and strong nonlinearity subject to multiple constraints.
Reasonable allocation of the generated power of the unit can bring forward tangible
economic benefits to the power system and ensure its safe and stable operation. The unit
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commitment problem was first discussed in 1966. Under the premise of stable operation of
the power generation units, the start-stop planning of the unit and its output power are
allocated in unit time, to minimize the operating cost of the whole system. The traditional
thermal power unit model has been widely studied. Generally, approaches to consider
the integration of intermittent renewable energy in the UC problem can be divided into
two types [3]. The first approach is to develop a stochastic model for renewable generation
units, while the second approach is to formulate a deterministic UC problem.

Among these approaches, the deterministic method is more commonly used, and
a range of techniques have been proposed to evaluate the impact of EVs or RE on the power
system UC problem. In a 2010 study [4], a model considering only one electric vehicle
(EV) charging mode was incorporated, which can significantly reduce both the cost and
emissions of the unit. A 2014 study [5] designed a UC model with electric vehicles as flexible
loads and the cost is increased by charging electric vehicles. These approaches are useful
for studying the impact of electric vehicles on the grid, but they only consider one operating
mode of electric vehicles. Ehsan et al. [6] evaluated the V2G and G2V modes in the UC
of the power system. The simulation results show that both the cost and spinning reserve
can be reduced but it does not consider renewable energy. A 2012 study [7] proposed a UC
with a spinning reserve for a microgrid with solar and wind energy storage and considered
the prediction error of wind speed and solar radiation of the system. However, the impact of
EVs on the power system is not analyzed. Two further studies [2,8] designed three models
for UC, EV, and RE, respectively, in the UC problem, but the approach mainly considered
the influence of RE and EVs on the system, while the prediction error of RE on the spinning
reserve requirement was not discussed. To produce reliable and cost-effective UC, it is vital
to consider the influence of EV integration and RE intermittency on the UC problem of
the power systems. A schematic diagram to illustrate the UC considering electric vehicles
and renewable energy is given in Figure 1.

Figure 1. Schematic diagram of the unit commitment considering electric vehicles and renewable energy.

As a conventional NP-hard problem, the UC problem has the characteristics of strong
nonlinearity, large scale, mixed integer, and high dimension. Some traditional mathematical
methods were first used to solve this problem, such as Dynamic Programming (DP), Integer
Programming (IP), Mixed-integer Programming (MIP), Branch and Bound Methods (BBM),
and Lagrangian Relaxation (LR) [9]. Although these traditional methods can achieve
good results for a limited number of problems, as the model complexity and system scale
increases, traditional mathematical methods may encounter the dimensionality problem
and the quality and reliability of the resulting solutions may be greatly reduced.

Intelligent optimization algorithms emerged in the 1980s and among the first was
the Genetic Algorithm (GA) proposed by Holland based on Darwin’s “survival of the fittest”
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biological evolution law. Other popular methods have also been proposed in the last few
decades. For example, the simulated annealing algorithm proposed by Kirkpatrick et al.
based on the principle of slow annealing of solids in physics, Particle Swarm Optimization
(PSO) proposed by Kennedy and Eberhart, which was inspired by observing the phe-
nomenon of bird foraging. Similarly, Storn and Price proposed the Differential Algorithm
(DE), which is a probability-based algorithm, by simulating the mutual cooperation and
competition between individuals. The Ant Colony Algorithm (ACO) proposed by Dorigo
and Stützle, based on the process of finding the optimal path when ants carry food, is
a probabilistic algorithm for finding the shortest path. The Shuffled Frog Leaping Algo-
rithm (SFLA) proposed by Eusuff and Lansey imitates the behavior of frogs interacting
with each other during foraging, while Basturk and Karaboga proposed an artificial bee
colony algorithm by observing and imitating the behavior of bees. In recent years, with
the further development of computer technology and artificial intelligence, many new
intelligent optimization algorithms have been introduced. For example, the Harmony
Search Algorithm (HS) [10], Teaching-and-Learning-based Optimization (TLBO) [11], and
the Quantum-inspired Algorithm (QEA) [12]. These heuristic algorithms can be more
flexible and more adaptive in solving UC problems; however, although many methods
have been proposed to solve the UC problem, the quality and efficiency of solutions
for high-dimensional UC problems still have much room for improvement.

The Covariance Matrix Adaption Evolution Strategy (CMAES) is an evolutionary
method proposed by Hansen et al. that continuously adjusts the covariance matrix of
its multidimensional normal distribution during evolution [13]. The CMAES algorithm
mainly uses a rank 1 update to ensure contemporary information, and a rank µ update
to ensure the relationship between generations. It avoids falling into local optima unlike
other algorithms such as the Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO), and has the advantages of strong robustness and optimization capability. Improved
CMAES methods have also been proposed. For example, an orthogonal CMAES [14] was
proposed to incorporate a quantitative orthogonal design to address the high-dimensional
premature convergence problem of the conventional CMAES algorithm. In order to solve
large-scale real-valued optimization problems, the partition strategy was also introduced
to the CMAES algorithm in a 2012 study [15].

The CMAES algorithm has been widely used in various fields, such as the design of
materials, electrical systems, control engineering, and scientific computing. For example,
Manoharan used the CMAES algorithm to solve the dynamic economic load problem [16].
Salman et al. proposed to combine the CMAES and DE algorithms for the optimal design of
reinforced concrete structures [17]. Jia proposed the BESS Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) dispatch algorithm to optimal Hybrid Renewable Energy Sys-
tems. Jia proposed a CMAES algorithm for global optimization of large-scale overlapping
problems [18]. Rezk et al. used the CAMES algorithm to design horn ripples [19]. Raufet
al. used the CMAES algorithm to determine the parameters of a traditional wind-power
optimization algorithm [20].

It should be noted that the CMAES algorithm has been mainly used for solving
continuous optimization problem, while little has been done for discrete systems. Aiming
to address the limitations of CMAES, this paper proposes a new Binary Covariance Matrix
Adaption Evolution Strategy (BCMAES) algorithm, which is used to solve the binary
optimization problem, and applies the algorithm to solve the UC problem, which is often
a nonlinear large-scale mixed integer optimization problem.

The highlights and the main contributions of this paper are summarized below.

• A new discrete mapping operator is designed and compared with eight popular
mapping operators. This new operator allows the CMAES to become applicable to
solving discrete optimization problems;

• The discrete CMAES method is applied to large-scale UC problems for the first time;
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• Two different test systems consisting of 10- and 54-unit power networks are tested
in order to evaluate the searching capability of the proposed algorithm in test cases of
different scales, achieving operating costs reduction of 1.92% and 1.13%, respectively;

• The elite reservation strategy and restart strategy are adopted to strengthen the global
search capability of the algorithm and achieve population adaptation.

The remainder of the paper is organized as follows: Section 2 presents the formulation
of the unit commitment problem, while the proposed Binary Covariance Matrix Adaption
Evolution Strategy (BCMAES) algorithm is presented in Section 3 and its implementation
for a UC problem is presented in Section 4. The numerical results and analysis are given
in Section 5. Finally, Section 6 concludes the paper.

2. Problem Formulation

The unit commitment problem considered in this paper includes three models: the ba-
sic unit commitment problem, the UC problem considering electric vehicles, and the UC
problem considering both electric vehicles and renewable energy.

2.1. Unit Commitment Problem with Electric Vehicles
Charging and Discharge Mode of Electric Vehicle

With the further development of EV technology, Kempton et al. proposed in 1997 [21]
that electric vehicles can be used as mobile energy storage devices, i.e., in addition to
receiving electricity from the grid, they can also release electricity to the grid. This discharge
process from electric vehicles to the grid is called V2G (Vehicle to Grid). The discharge
modes of electric vehicles are discussed below [22].

With the development of smart grid technology, four typical coordinated control
modes of electric vehicle charging have emerged. They are the Electric Power Research
Institute Charging Model (EPRICM), the Off-peak Charging Model (OPCM), the Peak
Charging Model (PCM), and the Stochastic Charging Model (SCM) [22].

Considering the uncertainty in the driver’s charging behavior, a random charging
curve SCM is proposed. The unexpected load curve simulates some emergency group
charging or distributed fast charging at random times throughout the day. The random
probability follows a normal distribution with an average of 5%. The probability of random
charging distribution per hour is 1.1% to 9.7%. The charging probability will change
randomly regardless of the peak or off-peak load time.

• Objective function
The Unit Commitment with Electric Vehicles (UCEV) problem model is adapted
from the basic UC problem model. Its objective function is similar to that of the fun-
damental UC problem, but the constraints are different. The objective function of
the UCEV problem is given in Equation (1):

min FUCEV =
T

∑
t=1

N

∑
i=1

[FFC,i + FSC,i(1 − Ui(t − 1))]Ui(t) (1)

When the objective function considers emissions, Equation (1) can be rewritten as fol-
lows:

min FUCEV =
T

∑
t=1

N

∑
i=1

[φc(FFC,i + FSC,i(1 − Ui(t − 1))) + φeFem,i]Ui(t) (2)

In this objective function, the cost of the electric vehicle is neglected. The model uses
two quadratic cost functions. In addition to the fuel cost of the basic UC problem,
the emission cost is also considered. In Equation (3), Fem,i is the emission target, and
its quadratic function unit power generation is as follows:

Fem,i = αi + βiPu,i(t) + γi(Pu,i(t)) (3)
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where ai, bi, and ci are the weight coefficients of cost and emission, respectively;
• Units Constraints

The constraint conditions have also significantly changed, mainly in terms of the power
balance and spinning reserve constraints. Some constraints of the electric vehicle itself,
the load capacity constraint of the electric vehicle, the balance constraint of the electric
vehicle, and the battery capacity balance constraint, are also added.
The uncertain power output from the EVs and the output from the thermal power
units must meet the load demand, as defined below:

N

∑
i=1

Pu,i(t)Ui(t) + Pc(t) = Pd(t) (4)

The power output from the electric vehicles can be calculated as follows:

Pc(t) = NEV(t)× PVav × ηEV × δ (5)

where Pc(t) is the total efficiency of the electric vehicles, NEV(t) represents the number
of electric vehicles integrated into the grid at time t, PVav is the average battery capacity
of an electric vehicle, and σ presents the average percentage of batteries that electric
vehicles need to charge.
For reliable operation, the spinning reserve needs to be constrained as follows:

N

∑
i=1

Pmax
u,i Ui(t) + Pc,max(t) >= Pd(t)× (1 + SR) (6)

The maximum power output of the electric vehicle at time t. Pc,max(t) can be obtained
by the following equation:

Pc,max(t) = NEV(t)× PVmax × ηEV × δ (7)

The PVmax represents the maximum battery capacity of the electric vehicle;
• Electric vehicle constraints

Load capacity limitation of electric vehicles The power supply connected to the grid is
limited by the capacity of the interface in the parking base area, as given below:

Nmin
EV (t) ≤ NEV(t) ≤ Nmax

EV (t) (8)

Balance constraint of electric vehicle. The number of electric vehicles registered
on the grid within a day is fixed, and all-electric vehicles connected to the grid must
meet the following constraints:

T

∑
t=1

NEV(t) = Ntotal
EV (9)

Battery power balance. For the V2G/G2V mode of the electric vehicles, the charging
capacity and discharge capacity of the battery must be limited by the balance of battery
power, which can be expressed as follows:

T1

∑
t1=1

NG2V
EV (t) =

T2

∑
t2=1

NV2G
EV (t) (10)

where T1 and T2 are the time periods for the electric vehicles to charge and dis-
charge, respectively, and NG2V

EV (t) and NV2G
EV (t) are the number of electric vehicles

charging/discharging to the grid at time t, respectively.
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2.2. Unit Commitment Problem with Electric Vehicles and Renewable Energy
2.2.1. Mathematical Model of UC Problem with Electric Vehicles and Renewable Energy

• Objective function
The model for the Unit Commitment with Electric Vehicles and Renewable Energy
(UCEVR) problem is a more complex model based on UCEV. The UCEVR objective
function is exactly the same as the UCEV objective function. These renewable energy
sources do not affect the change in the model objective function, as shown below:

min FUCEVR =
T

∑
i=1

N

∑
i=1

[
φc

(
Ff c,i + Fsc,i(1 − Ui(t − 1))

)
+ φeFem.i

]
U(t)

i (11)

• Units Constraints
The UCEVR model is based on the UCEV model. For the constraints, the original
power-balance conditions and spinning reserve constraints are changed.
Equations (12) and (13) have changed as follows:

N

∑
i=1

Pu,i(t)Ui(t) + Pw(t) + Ps(t) + Pc(t) = Pd(t) (12)

N

∑
i=1

Pmax
u,i Ui(t) + ηR(Pw(t) + Ps(t)) + Pc,max(t) >= Pd(t).(1 + SR) (13)

where ηR is the prediction error of renewable energy because the renewable energy
in the model is mainly composed of wind and solar energy. So, Pw(t) and Ps(t)
represent the output power of wind energy and solar energy at time t, respectively;

• Renewable energy constraints
Renewable energy has the feature of being unpredictable. Hence, we will only use
a portion of the predicted power of renewable energy for power system scheduling.
Especially when it comes to the constraints of spinning reserves, we need to consider
the prediction error of renewable energy.

2.2.2. Prediction of Renewable Energy

Wind and solar energies are considered in the mathematical model of UCEVR. The pre-
dicted solar data are collected from the literature [4,8]. These data are given in Table 1:

Table 1. The expected value of the predicted solar and wind power generation.

time (h) 1 2 3 4 5 6 7 8
solar (MW) 0 0 0 0 0 0 0.09 17.46
wind (MW) 44 70.2 76 82 84 84 100 100

time (h) 9 10 11 12 13 14 15 16
solar (MW) 31.45 36.01 38.06 35.93 36.78 31.59 9.7 12.92
wind (MW) 78 64 100 92 84 80 78 32

time (h) 17 18 19 20 21 22 23 24
solar (MW) 0 0 0 0 0 0 0 0
wind (MW) 4 8 10 5 6 56 82 52

Three thousand wind power scenarios were generated within 24 h usingatin hypercube
sampling to simulate wind fluctuations. This paper reduces the number of scenarios to 10
using scenario-reduction techniques [23]. The final wind energy is shown in Figure 2, and
the corresponding probability is shown in Table 2.
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Figure 2. Ten wind energy scenarios.

Table 2. The probability for each of the 10 wind power generation scenarios.

Scenario 1 2 3 4 5 6 7 8 9 10

possibility 0.123 0.089 0.072 0.056 0.166 0.077 0.141 0.13 0.093 0.056

To select a representative wind energy fluctuation scenario, a performance index is
introduced, consisting of target cost and wind power supply security calculations [24],
which is defined as follows:

Index1(s) =
Fs

f c + Fs
sc + Fs

ec

10
∑

i=1

(
Fi

f c + Fi
sc + Fi

ec

) (14)

Index2(s) =
1
T

T

∑
i=1

Ps
w(t)

10
∑

i=1
Pi

w(t)
(15)

Sec(s) =
ps

(Index1(s) + Index2(s))
(16)

where Index1 is the target cost of the power system, Index2 is the wind energy security value
of the power system when selecting the sth wind energy scenario, and ps is the probability
value of the sth wind energy scenario. Sec is the probability of the performance index.
We will need to select the wind power generation scenario with the highest Sec as the
representative wind power generation scenario.

3. Binary Covariance Matrix Adaptation Evolution Strategy
3.1. Covariance Matrix Adaptation Evolution Strategy

The CMAES algorithm is a continuous optimization algorithm proposed by Hansen
in 2003 [13] that generates new population individuals by sampling from the probability
distribution constructed in the optimization process. The CMAES algorithm is derived
from the adaptive concept in evolutionary strategy, which adapts to the covariance matrix
of a multivariate normal distribution. One of the core concepts of the algorithm is to
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learn the correlation of parameters and use this correlation to accelerate the convergence
of the algorithm. Due to this learning process, the CMAES algorithm performs a search
independently of the coordinate system, reliably adapts to the topology of any function,
and significantly improves the convergence speed, especially on objective functions that
are inseparable or have a poor scaling ratio.

For nonlinear optimization such as non-convex or rough search environments (such
as sharp bending, discontinuity, outliers, noise, and local optimum), CMAES is a better
choice than classical optimization methods (such as the quasi-Newton method or conju-
gate gradient method). Learning the covariance matrix in CMAES is similar to learning
the inverse Hessian matrix in the quasi-Newton method. The update of the covariance
matrix makes the search distribution adapt to the problem of poor scaling ratio and non-
separability so that CMAES can overcome the limitations of the typical evolutionary
algorithms in solving such issues.

A typical reason for the failure of population-based search algorithms is that complex
methods degrade the population into subspaces. This is usually prevented by non-adaptive
components in the algorithm or a large population size (much larger than the dimension of
the problem). In the CMAES algorithm, the population size can be freely selected because
the learning rate of the covariance matrix Cµ can prevent degradation. At the same time,
use of step size control can avoid the premature convergence of the population.

3.2. Binary Adaptive Matrix Covariance Evolution Strategy

Many practical problems can be formulated as discrete binary optimization problems,
such as the knapsack problem, renewable power generation location problem, and path
planning problem, to name a few. These problems are NP-hard problems, and their main
difficulty lies in the fact that the search space will exhibit an exponential growth trend with
the increase in the number of dimensions. This type of problem also often has the char-
acteristics of non-convexity, nonlinearity, and non-differentiability, and there is very little
mathematical information that can be utilized. Classical optimization methods are no
longer competent. Therefore, intelligent optimization algorithms are a good choice. The bi-
nary particle swarm optimization algorithm limits the position of the individual to between
0 and 1 by rewriting the position update formula of the algorithm [25]. The binary firefly
algorithm discretizes the algorithm by redefining the displacement formula of the firefly
by binary coding the individual fireflies [26]. The binary differential evolution algorithm
without parameter mutation can directly mutate in the discrete domain via the differ-
ence between individuals [27]. CMAES is an effective optimization method for solving
continuous optimization problems. It performs well in solving continuous multimodal
standard test functions, but the algorithm is not suitable for binary optimization problems.
Aiming at the limitations of the CMAES algorithm, this paper proposes a binary covariance
matrix adaptive evolution strategy, and applies the CMAES algorithm to the field of binary
problems.

3.2.1. Variable Discretization

The rounding method can discretize continuous variables into binary variables. Since
the CMAES algorithm generates a solution space subject to a normal distribution through
Gaussian variation, we can discretize the constant variables of the solution space into
binary variables by rounding. According to a 2006 study [28], the initial search points
are randomly distributed between [0, 1]. The initial step size is set to five to ensure that
the initial search points are distributed between 0 and 1. A new set of solutions is generated
through an algorithm update, and then the new solutions are binary-coded by the following
rounding function.

x(g+1)
k =

{
0, if 0 ≤ x(g+1)

k < 0.5
1, if 0.5 ≤ x(g+1)

k < 1
(17)
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It should be noted that in the process of continuous convergence of the entire algorithm,
it is likely that some solutions will cross the boundary. Here, we usually adopt a general
boundary treatment strategy, that is, the endpoint value method, as shown below:

x(g+1)
k =

{
0, if x(g+1)

k < 0
1, if x(g+1)

k > 1
(18)

Therefore, we can combine the above two equations, yielding:

x(g+1)
k =

{
0, if x(g+1)

k < 0.5
1, if x(g+1)

k > 0.5
(19)

In this way, we have initially achieved the goal of simply discretizing population
individuals. In order to better validate the effectiveness of the above discrete methods, we
also selected the discrete design method from a 2013 study [29] as shown in Table 3, and
compared it with the above discrete methods. In summary, we use eight different transfer
functions as variable discretization, as shown in Table 3. Four are S-type, and the other four
are V-type. The shapes of the nine transfer functions are shown in Figure 3.

Table 3. Different discretization methods.

Binary Symmetric Particle Swarm Optimization Family

Name Transfer Function

BCMAES1 T(x) = 1
1+e−2x

BCMAES2 T(x) = 1
1+e−x a

BCMAES3 T(x) = 1
1+e(−1/2x)

BCMAES4 T(x) = 1
1+e(−1/3x)

BCMAES5 T(x) = | erf
(√

π
2 x

)
| = |

√
2

π

∫ (
√

π/2)x
0 e−t2

dt |

BCMAES6 T(x) = | tanh(x)|

BCMAES7 T(x) =
∣∣∣(x)/

√
1 + x2

∣∣∣
BCMAES8 T(x) =

∣∣∣ 2
π arctan

(
π
2 x

)∣∣∣
BCMAES9 T(x) = x < 0
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(a) BCMAES1- BCMAES4 and BCMAES9.
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Figure 3. Symmetric Transfer functions of five BSPSO variants.

BCMAES1–BCMAES9 are shown in Table 1. S1 is steepest, and when x is greater than
4 (or less than −4), the probability value is already close to 1 (or 0). S4 is the smoothest, with
a probability of 0.9 when x is 6. The new population of binary variables is generated as:
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uj,t(k + 1) =
{

1, if rand3 < P(vi(k + 1))
0 otherwise

(20)

BCMAES1–BCMAES9 were used to simulate 10, 20, 60, and 100 fundamental UC
problems. The simulation results are shown in Table 4. BCMAES9 was found to have
the best effect, so its corresponding transfer function is applied to the following simulation
examples.

Table 4. Simulation results for different UC problems using different discretization methods.

20 units 40 units

Min Avg Max Min Avg Max

P1 1.123221 1.12388 1.124417 2.243555 2.245358 2.246763
P2 1.123977 1.124316 1.124769 2.245769 2.24592 2.246111
P3 1.123648 1.124027 1.124217 2.245177 2.246111 2.247369
P4 1.123206 1.123886 1.124233 2.245596 2.245699 2.24588
P5 1.126278 1.126411 1.126614 2.263263 2.263433 2.26362
P6 1.12635 1.126357 1.126371 2.262673 2.263645 2.264279
P7 1.126382 1.126395 1.126422 2.264021 2.264067 2.264091
P8 1.126309 1.126694 1.127319 2.265278 2.266509 2.268025
P9 1.123206 1.123933 1.124379 2.243815 2.244699 2.245697

60 units 100 units

Min Avg Max Min Avg Max

P1 3.364839 3.365072 3.365532 5.608112 5.612727 5.615718
P2 3.364664 3.365765 3.367682 5.608446 5.610708 5.61394
P3 3.364791 3.365063 3.365276 5.606325 5.610009 5.614433
P4 3.364981 3.365393 3.365878 5.615403 5.61664 5.617814
P5 3.384527 3.384724 3.384929 5.668662 5.669071 5.669827
P6 3.383945 3.384454 3.384881 5.668573 5.669215 5.670004
P7 3.386345 3.386472 3.386562 5.673508 5.674349 5.674773
P8 3.393635 3.395331 3.397049 5.698824 5.705164 5.710726
P9 3.363243 3.364866 3.366701 5.605761 5.611051 5.612635

According to Table 4, in the simulation test of 20 units, BCMAES9 achieved the opti-
mal minimum value of 1.123206 and the maximum value of 1.1243794, while BCMAES1
achieved the best average value of 1.1239328. The minimum and average values of 40 units
are 1.123221 for BCMAES1 and 1.234880 for BCMEAS9, respectively. For two large-scale
problems of 80 units and 100 units, the best minimum values of 3.363243 and 5.605761 were
achieved, respectively. It is clear that BCMAES9 is significantly better than other discretiza-
tion methods, so we use BCMAES9 as the discretization method used in all subsequent
simulation experiments.

3.2.2. The Main Steps of the CMAES Algorithm

The adaptive mechanism of the CMAES algorithm mainly consists of the adaptive
covariance and the adaptive global step size. The evolution path and vector difference of
the best individuals in the current and previous generations adjusts the covariance matrix.

• Sampling.
In the CMA evolution strategy, a set of new search points with algebras of g = 0, 1, 2, . . .
are generated by sampling the multivariate normal distribution. The basic formula of
sampling is:

x(g+1)
k ∼ m(g) + σ(g)N

(
0, C(g)

)
for k = 1, . . . , λ (21)
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N(0, C(g)) is a multivariate normal distribution with zero mean and covariance matrix
Cg , x(g+1)

k ∈ Rn is the kth offspring (individual, search point) from the g + 1 gener-
ation, mg is the average of the gth generation search distribution, and σ(g) ∈ R+ is
the overall standard deviation in the gth generation, namely step size;

• Selection and recombination.

The new mean mg+1 is updated by the weighted mean of the sample data x(g+1)
1 , . . . , x(g+1)

λ :

m(g+1) =
µ

∑
i=1

ωix
(g+1)
i:λ (22)

where
µ

∑
i=1

ωi = 1, ω1 ≥ ω2 ≥ . . . ≥ ωµ > 0 (23)

where µ ≤ λ is the parent population size and ωi=1...µ ∈ R+ is the weight coef-
ficient of recombination. For ωi=1...µ = 1/µ, the formula (29) calculates the aver-

age of the selected points, and x(g+1)
i:λ denotes the optimal ith individual selected

from x(g+1)
i , . . . , x(g+1)

λ of (28);
• Update of covariance matrix and step size.

The update formula of covariance matrix is

C(g+1) =
(
1 − c1 − cµ

)
C(g) + c1 p(g+1)

c

(
p(g+1)

c

)T
+ cµ

µ

∑
i=1

ωiy
(g+1)
i:λ

(
y(g+1)

i:λ

)T
(24)

where c1 ≈ 2/n2, cµ = min(µe f f /n2, 1 − c1).
The update formula for the step size is

σg+1 = σg + exp

 cσ

dσ


∥∥∥pg+1

σ

∥∥∥
E∥N(0, I)∥

 (25)

where dσ ≈ 1 denotes the damping parameter and E∥N(0, I)∥ denotes the expectation
of the Euclidean norm of N(0, I) distributed random variables.

3.2.3. Elite Retention Strategy

The GA algorithm originally proposed the elite retention strategy in the application
process, and its optimization process is also the process of population evolution. The value
of the objective function is defined as the fitness. The higher the fitness, the better the in-
dividual performance, closer to the global optimal value. The optimal individual in each
generation is defined as the elite individual. The GA algorithm uses selection, crossover,
mutation, and other operations for population evolution. However, these updating op-
erations may destroy the optimal individual or increase the time to find the optimal one.
Therefore, preserving the optimal individual in the population should be considered.

A similar strategy is adopted here. In the evolution process, considering that updating
the parameters will destroy the original optimal individual, the optimal global individual
is retained to replace the worst individual in the population, which is the individual with
the lowest fitness function. Therefore, the elite retention strategy is divided into two steps,
retention followed by replacement, mostly after sampling the original algorithm.

The idea of retaining the global optimal solution mainly comes from the concept of
a greedy algorithm. This first considers finding the local optimal solution in the searching
process, then gradually approaching the global optimal solution. The formula for retaining
elite individuals is given as follows:
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x(g)
best =

{
x(g)

k , if fitness (k) > gbest(g−1)

x(g−1)
best , otherwise

(26)

gbest(g) =

{
fitness (k), if fitness > gbest(g−1)

gbest(g−1), otherwise
(27)

Here, x(g)
best represents the optimal individual of the gth generation and x(g−1)

best rep-
resents the optimal individual of the previous generation. Similarly, gbest(g) represents
the global optimal value of the gth generation and gbest(g − 1) is the global optimal
value in the population evolving to the previous generation. f itness(k) denotes the fit-
ness function of the kth individual. If the fitness function of an individual is greater than
the original global optimal value, the new elite individual replaces the original global
optimal individual.

The formula of the substitution operation is as follows:

worst = min(fitness (1), . . . , fitness (λ)) (28)

where the worst represents the worst individual value in the population of the generation,
the worst individual is found by based on (35).

Among them, worst is the value of the worst individual in the population of this
generation. The value of the worst individual is found by (40), and thus the worstIndex (the
index number of the individual position in the population) of the worst individual is found.
Finally, the worst individual in the population can be directly replaced with the optimal
individual as follows:

x(g)(worstIndex) = x(g)
best (29)

3.2.4. Restart Strategy

The parameter setting heavily impacts the performance of an evolutionary algorithm.
This algorithm uses the default parameters provided by Hansen [13]. Selecting a suit-
able population size has a crucial impact on the performance of an algorithm. To expand
the global search ability of the algorithm and improve its convergence speed and com-
putational efficiency, a restart strategy is proposed to adjust it adaptively. The restart
strategy implies that the entire algorithm is restarted when the stop criterion is reached,
and the population size is increased by n times. The initial population size will still use
the default parameters, while the expansion factor is generally selected to be between
1.5 and 5, which is a reasonable choice. The expansion factor determined by the proposed
algorithm is chosen to be 2. The flowchart of the BCMAES algorithm is shown in Figure 4.

The stopping criteria of the restart strategy of the algorithm are set as follows according
to its properties:

1. If the optimal function value of the last 10 + [30n/λ] generations is 0 or the absolute
difference between the latest function value and the previous function value is less
than the given number 10–12;

2. If the standard deviation of the normal distribution is less than in all coordinates and
pσ (the evolutionary path) is less than 10−12 in all components;

3. If a standard deviation of 0.1 is added in the direction of the principal axis of C(g),

the vector x(g)
k does not change;

4. If a standard deviation of 0.2 is added to each coordinate, x(g)
k does not change;

5. If the condition number of the covariance matrix exceeds 1014 .
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Figure 4. BCMAES algorithm flowchart.

4. Implementation of BCMAES in the UC Problem

When solving the fundamental UC problem, UCEV problem, and UCEVR problem
based on BCMAES, because EVs and RE are added to the system, there are some dif-
ferences in the expression of the solution, the specific implementation of the algorithm,
and the corresponding constraint processing methods. This paper will detail the specific
implementation steps and constraint processing methods of BCMAES in different models.

4.1. Algorithm Procedure

The algorithm implementation steps of BCMAES in unit commitment problem are
given as follows:

Step 1: Initialize the parameters. Initialize the parameters of BCMAES and the param-
eters of units, electric vehicles, and renewable energy;

Step 2: Population initialization. The initial search point of the BCMAES algorithm is
randomly generated, and the electric vehicle’s state, output power, and initial output are
randomly generated according to the initial variables;

Step 3: Adjust the constraints. Firstly, the initial power of the electric vehicle is adjusted
to meet the limitations on the number of electric vehicles, the upper and lower limits of
power, and the balance of charge and discharge. Then the minimum start-stop planning
and spinning reserve of the whole unit system are adjusted. Through this approach,
the start-stop state of the unit can be determined;

Step 4: Economic load schedule. The Lambda iteration method [30] is used to solve
the economic scheduling problem while solving the power-balance constraints of the unit
and the upper and lower limits of the unit power to determine the output power of each
unit.Calculate the maximum power generation of the operating unit. If the system load is
less than the entire power generation of the functional unit and the power-balance difference
is greater than the set value (0.01 here), Lambda iteration is performed. The process is
shown in Figure 5;

Step 5: Calculate the objective function. Calculate the start-up cost and combustion
cost of all units in unit time. By comparing the greedy algorithm with the minimum cost of
the current iteration each time, if it is less than the minimum cost, it is replaced by a new
minimum cost, the optimal function value;
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Step 6: update the population through the BCMAES algorithm basic sampling, se-
lection, and reorganization to update the covariance matrix C, update the mean m, and
generate new populations and individuals;

Step 7: Termination conditions. Repeat steps 1–6 until the maximum number of
iterations is reached.

The steps of solving these problems with BCMAES are similar to those listed above.
The flowchart of the BCMAES algorithm for solving the UCEVR problem is illustrated
in Figure 6, while the flowcharts for the other two models are quite similar to that shown
in Figure 6.

Figure 5. Lambda iterative method to solve the economic scheduling algorithm flow chart.

BCMAES CMAES

Power balance 
constraints

Calculate the output power of the 
electric vehicle at each moment

Adjusting the minimum start stop 
constraint

Adjusting rotation backup constraints

Turn off excess units

Economic 
Emission Load 

Dispatch

Calculate 
objective 
function

Number balance 
constraints for electric 

vehicles

Adjusting the allocation of 
electric vehicle numbers

NTUUU ,,, 1211 
cTcc PPP ,,, 21 

Renewable 
energy

Extend

Figure 6. The system framework diagram of the UCEVR problem.
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4.2. Encoding of the Solution

When the BCMAES algorithm is used to implement practical applications, all variables
are stored in a sample library vector pop as follows:

pop =
[

X1 . . . Xk . . . Xmax] (30)

where X1 is the first variable of the sample library, Xk is the kth vector in the solution vector
space (the kth individual in the population), and Xmax is the last variable in the solution
vector space. Although the algorithm has a similar solution structure in different models,
the realization of the specific solution is quite different, as shown below:

• Basic UC problem
pop = [U11, U12, . . . , U1T , . . . , UNT ] (31)

• UCEV problem

pop = [U11, U12, . . . , U1T , . . . UNT , Pc1, . . . , PcT ] (32)

• UCEVR problem

pop = [U11, U12, . . . , U1T , . . . UNT , Pc1, . . . , PcT ] (33)

Although renewable energy (solar and wind) is introduced, it is a fixed constant
at each time, so it does not change the structure of the solution of the model. So, it has
the same structure as that of the UCEV solution.

4.3. Constraint Processing
4.3.1. Constraint Handling

• Minimum start-stop time constraint of unit
Because the state of each unit at the characteristic time point in a day is affected by
the state of the previous time point or even the state of the unit at several time points,
they affect each other and couple with each other. Therefore, it is necessary to adjust
the unit’s start-stop state to meet its minimum start-stop constraint;

• Unit spinning reserve constraint
After the minimum start-stop constraint of the unit is completed, the spinning re-
serve constraint of the unit should be carried out to ensure safe and stable operation.
The core steps of adjusting the spinning reserve constraint can be divided into the fol-
lowing:

• Minimize the number of boot constraints
The system may have redundant startup units when the spinning reserve constraint is
adjusted. Therefore, it is necessary to minimize the operation of redundant units and
reduce the operation costs of units while maintaining the stable operation of the power
system;

• Power-balance constraints
When the above constraints are adjusted, the unit state is also determined. At this
time, it is necessary to allocate the unit output power of each period to meet the power-
balance constraint, which is the famous economic load dispatch problem. There are
many mature and effective ways to solve this problem. The BCMAES algorithm
adopts the traditional mathematical method, the Lambda iteration method, to solve
this problem, which is convenient and fast.

4.3.2. Constraint Handling in Electric Vehicle Discharge Mode

• Electric vehicle number constraint.
When the BCMAES algorithm is randomly initialized, NEV(t), the balance constraint
may not be met. The number of electric vehicles at each moment can be considered
a random adjustment process. The number of electric vehicles at one moment is
randomly selected. Then the sum of the number of electric vehicles at all moments is
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adjusted, and the number difference is calculated. The number of electric vehicles is
repeated to meet the number of electric vehicles needed to meet the number constraint
of electric vehicles;

• Electric vehicle load power constraints.
The output power of electric vehicles in the model needs to meet certain restrictions.
In particular, in the process of adjusting to meet the number constraints of electric
vehicles, this process may generate new electric vehicle output that does not meet
the load power constraints of electric vehicles. As with the general boundary treatment
method, the endpoint method is used here to obtain the boundary value of the variable
that crosses the boundary;

• Power-balance constraint and spinning reserve constraint.
The V2G mode of electric vehicles is mainly based on the basic UC problem model,
which mainly increases the charging of electric vehicles. This violates the original
power-balance constraint and spinning reserve constraint. The original power-balance
constraint and spinning reserve constraint are changed as follows:

N
∑

i=1
Pu,i(t)Ui(t) = Pd(t)

N
∑

i=1
Pmax

u,i >= Pd(t)× (1 + SR)
→


N
∑

i=1
Pu,i(t)Ui(t) + Pc(t) = Pd(t)

N
∑

i=1
Pmax

u,i + Pc,max(t) >= Pd(t)× (1 + SR)
(34)

4.3.3. Constraint Handling in Charging and Discharging Mode of the Electric Vehicle

The UCEV (V2G/G2V) problem is mainly based on the UCEV (V2G) model, which
adds a charge-discharge balance constraint on all the original conditions. In the UCEV
(V2G) model, the electric vehicle is discharging at every moment, but the UCEV (V2G/G2V)
model considers another mode, that is, charging at some point in the day, discharging
at some point, and ensuring that the amounts of charge and discharge during the day
are equal.

4.3.4. Renewable Energy Constraint Handling

Under the premise of electric vehicles connected to the grid, renewable energy is
incorporated, mainly increasing amounts of wind and solar energy. In this situation,
the original power-balance constraint and spinning reserve constraint are violated.

N
∑

i=1
Pu,i(t)Ui(t) + Pw(t) + Ps(t) + Pc(t) = Pd(t)

N
∑

i=1
Pmax

u,i + ηR(Pw(t) + Ps(t)) + Pc,max(t) >= Pd(t)× (1 + SR)
(35)

From the above formula, it is easy to see that, although in the original formula,
the increase in the output power of renewable energy invalidates the original formula.
In the UCEVR model, the wind power output power Pw(t), solar power output power
Ps(t), and ηR are constants, so there is no destructive change to the whole constraint, only
the original constraint condition needs to be modified.

5. Analysis of Simulation Results

The algorithm program runs in the Matlab 2019b environment of a desktop PC with
an Intel (R) Core (TM) i7-8700 K CPU 3.70 GHz, 32 GB memory, and Windows 10 operating
system. This paper uses the proposed BCMAES algorithm to solve different UC models.
Several different simulation experiments are designed for comparison and analysis to
verify the algorithm’s effectiveness. This chapter deals mainly with the simulating of
the basic UC model. The initialization parameters of the algorithm are shown in the study
by Hansen [13].
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5.1. Ten Fundamental UC Problems

This section uses the BCMAES algorithm to simulate the basic UC model and compare
this simulations by other algorithms. Yang et al., 2023 [31] gives the system load of the IEEE-
10 standard unit commitment problem. The spinning reserve of unexpected generator
outages and prediction errors is 10% of the hourly demand load (SR = 10%). The study
shows each unit’s characteristic parameters, initial state information, start-up cost, and
minimum switching time. All parameters are obtained from Hansen [13].

The parameter values of each algorithm remain unchanged, and the same constraint
processing method is adopted. Thirty independent simulation experiments are carried out
on the unit commitment example. Each experiment’s maximum function evaluation (FES)
is 50,000.

We can apply our proposed BCMAES algorithm to the basic UC model based on the above
data. To better verify the performance of the algorithm, we compare the results obtained
by the BCMAES algorithm with some excellent algorithms in the literature for the same
model. The results are shown in Table 5.

Table 5. Cost comparison of different algorithms.

Minimum
Cost (USD)

Average
Cost (USD)

Maximum
Cost (USD)

Standard
Deviation

GA 565,825 - 570,032 -
EP 564,554 - 566,231 -
SA 565,828 565,988 566,260 -
BCGA 567,367 - - -
FPGA 564,094 566,675 569,237 -
ICGA 566,404 - - -
MRCGA 564,244 564,467 565,756 -
LR 565,825 - - -
PSOLR 565,869 - 566,793 -
QEA 563,938 564,672 563,969 -
IQEA 563,977 563,977 563,977 0
IPSO 563,954 564,162 564,579 -
IBPSO 563,977 564,155 565,312 143
QBPSO 563,977 563,977 563,977 0
ATHS 563,938 - - -
HHS 563,937 563,965 563,995 -
NBPSO 563,937 563,962 563,977 -
BCSO 563,937 563,937 563,937 0
HS 568,685 569,029 569,296 175
TLBO 566,779 567,017 567,173 258
BPSO 563,975 564,129 564,618 274
BCMAES 563,937 563,937 563,937 0

Table 6 shows the unit state and output required by BCMAES to achieve the minimum
cost per hour on 10 basic UC problems and lists the related operating costs per hour.
It can also be seen that more units are opened during the peak period of corresponding
load demand, and high-power units with low-cost coefficients are preferentially opened.

5.2. Basic UC Problem of High-Dimensional Unit

To verify the effect of the BCMAES algorithm in high-dimensional units, the orig-
inal standard example is extended. The simulation experiments are carried out on 20,
40, 60, 80, and 100 units, respectively. The system’s load is expanded to 2, 4, 6, 8, and
10 times the original, and the parameters of other units remain unchanged. Due to the ex-
pansion of the scale of the problem, the FES of the example is also expanded to the unit
expansion multiple of the original FES, and 30 simulation experiments are still carried out
independently. The comparison results of the BCMAES algorithm with other algorithms
in high-dimensional units are shown in Table 7.
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Table 6. Optimal solutions by BCMAES for UC with 10 units.

Time
Unit Output Start-Up

Cost/USD1 2 3 4 5 6 7 8 9 10

1 455 245 0 0 0 0 0 0 0 0 0
2 455 295 0 0 0 0 0 0 0 0 0
3 455 370 0 0 25 0 0 0 0 0 900
4 455 455 0 0 40 0 0 0 0 0 0
5 455 390 0 130 25 0 0 0 0 0 560
6 455 360 130 130 25 0 0 0 0 0 1100
7 455 410 130 130 25 0 0 0 0 0 0
8 455 455 130 130 30 0 0 0 0 0 0
9 455 455 130 130 85 20 25 0 0 0 860
10 455 455 130 130 162 33 25 10 0 0 60
11 455 455 130 130 162 73 25 10 0 0 60
12 455 455 130 130 162 80 25 43 10 10 60
13 455 455 130 130 162 33 25 10 0 0 0
14 455 455 130 130 85 20 25 0 0 0 0
15 455 455 130 130 30 0 0 0 0 0 0
16 455 310 130 130 25 0 0 0 0 0 0
17 455 260 130 130 25 0 0 0 0 0 0
18 455 360 130 130 25 0 0 0 0 0 0
19 455 455 130 130 30 0 0 0 0 0 0
20 455 455 130 130 162 33 25 10 0 0 490
21 455 455 130 130 85 20 25 0 0 0 0
22 455 455 0 0 145 20 25 0 0 0 0
23 455 420 0 0 0 20 0 0 0 0 0
24 455 345 0 0 0 0 0 0 0 0 0

Total cost: USD 563,937

It can be seen from Table 7 that many algorithms may have better performance in low-
dimensional units. However, when the number of dimensions is expanded, algorithmic
performance is greatly affected by the size, and many algorithms on high-dimensional
units are entirely uncompetitive. Furthermore, the simulation experiment in the high-
dimensional unit can enlarge the difference in performance between the algorithms, al-
lowing the difference in the performance of each algorithm to be more easily compared.
The above table shows that the BCMAES algorithm performs slightly worse than the QEA
algorithm on 20 units but can still obtain the optimal solution compared with other al-
gorithms on high-dimensional units. Therefore, it can be concluded that the BCMAES
algorithm is an excellent algorithm for solving binary problems and is not affected by
the dimension of the problem. Furthermore, with the expansion of the scale of the problem,
the differences between different algorithms are becoming increasingly obvious. Figure 7
shows the convergence curves of the HS, TLBO, BPSO, and BCMAES algorithms in high-
dimensional units.
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Figure 7. Comparison of four different algorithms.
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It can be seen from Figure 7 that with the expansion of the unit dimension, the perfor-
mance differences between each algorithm are getting larger and larger. When there are
100 units, the BCMAES algorithm is far superior to the other three algorithms in the quality
of the solution. As the scale of the unit continues to expand, the convergence of all algo-
rithms worsens. Even though BCAMES solves high-dimensional units, the convergence
of the algorithm is worse than that of low-dimensional units. The convergence speed of
BCMAES is always less than HS and TLBO, and sometimes less than BPSO. BPSO quickly
converges prematurely and produces poor solutions.

5.3. IEEE 118-Bus System with 54 Units Problems

The IEEE 118-bus system with 54 thermal generation units is used in this case study.
The system configuration data is given in [32], while the load data for 24 h duration
along with reserves are given in [33]. Fuel cost functions of all the units are assumed to
be quadratic in nature. The ramp rate constraint is also taken into account along with
the spinning reserve constraint. Transmission losses are neglected in this case. Under these
conditions, the best cost value obtained in 30 trial runs is USD 1,624,873.6, which is less
than the USD 1,636,381.0 that is achieved using ABSSA [34] and the USD 1,643,750.0 that is
obtained using B&B-IPM [35]. The unit commitment status for the 54 thermal units is given
in [31]. A comparison of the cost over 30 runs of a 54-unit system is given in Table 8.

Table 7. Performance comparison of BCMAES with other algorithm for UC with high dimensions.

Type
Minimum Operating Costs (USD)

20 Units 40 Units 60 Units 80 Units 100 Units

GA 1,126,243 2,251,911 3,376,625 4,504,933 5,627,437
EP 1,127,257 2,252,612 3,376,255 4,505,536 5,633,800
SA [28] 1,126,251 2,250,063 – 4,498,076 5,617,876
BCGA 1,130,291 2,256,590 3,382,913 4,511,438 5,637,930
FPGA [36] 1,124,998 2,248,235 3,368,375 4,491,169 5,614,357
ICGA 1,127,244 2,254,123 3,378,108 4,498,943 5,630,838
MRCGA [37] 1,127,244 2,254,123 3,378,108 4,498,943 5,630,838
LR 1,130,660 2,258,503 3,394,066 4,526,022 5,657,277
PSOLR 1,128,072 2,251,116 3,376,407 4,496,717 5,623,607
QEA [38] 1,123,607 2,245,557 3,366,676 4,488,470 5,609,550
IPSO [39] 1,125,279 2,248,163 3,370,979 4,495,032 5,619,284
IBPSO [38] 1,125,276 2,248,581 3,367,865 4,491,083 5,610,293
HS 1,132,029 2,271,188 3,410,737 4,553,929 5,697,561
TLBO 1,131,247 2,286,549 3,425,802 4,587,544 5,747,395
BPSO 1,130,597 2,271,170 3,413,645 4,579,435 5,717,184
BGOA [40] 1,120,470 2,240,277 3,356,574 4,475,407 5,596,414
ABFMO [41] 1,131,551 2,265,867 3,397,162 4,531,605 5,660,087
LS-MFA [31] 1,123,297 2,240,277 3,363,491 4,475,407 5,604,146
BSLPSO [26] 1,124,389 2,246,837 3,367,349 4,491,179 5,611,494
BCMAES 1,124,202 2,246,621 3,365,137 4,487,337 5,607,082

Table 8. Comparison of cost over 30 runs of a 54-unit system.

Methods Total Costs/USD FES

BB-IPM [35] 1,643,750.0 40,000
PSO [42] 1,635,395.3 40,000
GWO [42] 1,643,852.1 40,000
HGWO-PSO [42] 1,619,385.9 40,000
ABSSA [34] 1,636,381.0 40,000
SDP 1,645,445.0 40,000
ABC-LR 1,644,269.7 40,000
BRCFF 1,644,141.0 40,000
GA [43] 1,644,336.8 40,000
ACS [43] 1,643,968.3 40,000
HTACS [43] 1,643,840.4 40,000
BCMAES 1,624,873.60 40,000
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5.4. Unit Commitment Problem with Electric Vehicle Discharge (V2G)
5.4.1. Unit Commitment Problem with Electric Vehicle Discharge (V2G) without
Considering Emissions

Various simulation experiments are designed to analyze the influence of electric vehi-
cle grid connection on power systems under different modes. This section mainly describes
the simulation comparison under UCEV (V2G) mode. The UCEV problem model com-
prises grid-connected electric vehicles (all in discharge state within 24 h) and the previous
10 IEEE-10 standard unit systems. The data on electric vehicles can be obtained from the
literature. The specific parameters are as Table 9.

Suppose the total number of electric vehicles in a region is 50,000. In that case,
the average battery capacity of electric vehicles is 0.015, the average percentage of batteries
that electric vehicles need to charge is 50%, and the total efficiency of electric vehicles is
8%. The average output power of the electric vehicle is 0.015 × 50% × 80%. Table 10 shows
the minimum number of discharges per hour of electric vehicles in this model.

Table 9. EV parameter settings.

Name Value

The average battery capacity of electric vehicles, av PV (MW) 0.015
The maximum battery capacity of an electric vehicle, max PV (MW) 0.025
The minimum battery capacity of an electric vehicle, min PV (MW) 0.01

The average percentage of batteries that need to be charged for electric vehicles 50%
Total efficiency, EV 85%

Table 10. Minimal discharge number of EVs per hour.

Hour N min (t) Hour N min (t) Hour N min (t) Hour N min (t)

1 0 7 0 13 3400 19 0
2 0 8 0 14 1500 20 0
3 2000 9 1500 15 0 21 0
4 0 10 3400 16 0 22 0
5 2200 11 3400 17 0 23 0
6 0 12 3400 18 0 24 0

In summary, the BCMAES algorithm is the best choice among these algorithms to
solve this UCEV (V2G) problem. At the same time, we can see that after all the algorithms
are incorporated into the power grid, the system’s minimum, maximum, and average
operating costs are reduced to a certain extent. Therefore, integrating electric vehicles can
significantly reduce the unit’s operational costs and bring significant economic benefits.

Figure 8a compares the hourly running cost of the solution obtained by the BCMAES
algorithm on the UCEV problem with the results on the UC problem, and Figure 8b shows
the hourly cost savings. It can be seen from Figure 8 that the grid connection of electric
vehicles at most moments can save operating costs for the system. The grid connection of
electric vehicles at a small number of moments will increase the system’s operating costs.
Still, those increased costs are generally far less than the reduction in costs, which can be
compensated by other periods. In addition, the larger areas of cost savings after adding
electric vehicles are concentrated in the peak period.

5.4.2. Unit Commitment Problem with Electric Vehicle Discharge (V2G) Also
Considering Emissions

This paper also considers the emission of the 10 units under study. The emission
coefficient c and the weight factor e are taken from the literature [4]. When considering
emissions in the objective function, the simulation results on the UCEV (V2G) problem
using BCMAES and the other algorithms are as shown in Table 11.
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Figure 8. Comparison of the hourly cost of UCEV (V2G) and UC using BCMAES.

It can be seen from Table 11 that if emissions are considered in a system, some eco-
nomic benefits will inevitably be sacrificed for sustainable development. The operating
cost of the same algorithm in the model with consideration of emissions is less than that
in the model without considering emissions. Compared with the model without consid-
ering emissions, the optimal cost obtained by the BCMAES algorithm increases by USD
29,551/day, or about 5%.

Table 11. Comparison of BCMAES results with and without considering emissions on UCEV (V2G).

Algorithms
Without Emissions With Emissions

Function Cost (USD) Emissions (t) Function Cost (USD) Emissions (t)

PSO [42] 554,509 554,509 - 825,392 565,326 260,066
GA-LR [9] 552,427 552,427 - - - -

GA 556,420 556,420 - 798,183 561,196 236,987
LR 558,389 558,389 - 812,392 559,822 252,570

BCMAES 551,784 551,784 - 760,670 581,335 179,335

Table 12 shows the results of the BCMAES algorithm and other algorithms on the UCEV
(V2G) model without considering emissions compared with the results of the model
in the previous section to compare and analyze the impact of electric vehicle grid connection
on the entire system.

Table 12. Comparison of the results of BCMAES on UCEV (V2G) problem and UC problem.

Algorithms
Basic UC V2G

Minimum Mean Maximum Minimum Mean Maximum

PSO [42] 564,714 554,743 565,443 554,509 557,584 559,987
GA-LR [9] 564,703 - - 552,427 552,965 553,765

GA 565,825 - 570,032 556,420 558,635 560,720
LR 565,825 - - 558,339 560,034 562,572

BCMAES 563,937 563,937 563,937 551,784 552,277 552,745

5.5. Unit Commitment Problem with Electric Vehicle Charging and Discharging (V2G/G2V)

The main consideration in the previous section is the continuous discharge of electric
vehicles within 24 h, but this situation is an ideal model, not close to reality. This section
mainly considers both electric vehicle charging and electric vehicle discharging. As shown
in Figure 9, the 24 h of the day can be divided into three parts and five periods, includ-
ing the Valley stage (0:00–5:00), Off-Peak stage (5:00–9:00, 15:00–19:00), and Peak stage
(9:00–15:00, 19:00–24:00). Among them, electric vehicles are charged during the Valley
phase, and the Off-Peak phase during the two low peaks, and electric vehicles are dis-
charged during the Peak phase during the peak period. Therefore, the probability ratio of
charging and discharging electric vehicles in one day is 1:1.
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5.5.1. Unit Commitment Problem with Electric Vehicle Charging and Discharging
(V2G/G2V) without Considering Emissions

Table 13 compares each algorithm’s lowest, average, and maximum optimization cost
for 10 UCEV (V2G/G2V) problems. It is evident that BCMAES can also obtain the minimum
unit operating cost of USD 558,790/day for more complex constraints. Compared to
the other algorithms, it has better optimization ability and stability. When considering
the discharge of the EV grid, the total minimum cost increased from USD 551,784/Day
to USD 558,790/Day, or about 1.3%. Although the economic cost increases compared to
the first model, the second model is closer to the actual situation.

Figure 9. The high and low peak charge and discharge intervals on the load curve.

Table 13. The comparison of the results of different algorithms on solving the UCEV problem in
different modes.

Algorithms
V2G V2G/G2V

Minimum Mean Maximum Minimum Mean Maximum

PSO [42] 554,509 557,584 559,987 - - -
GA-LR [9] 552,427 552,965 553,765 561,821 564,049 566,281

GA 556,420 558,635 560,720 562,301 565,577 568,804
LR 558,339 560,034 562,572 564,795 567,020 568,138

BCMAES 551,784 552,277 552,745 558,790 559,190 559,845

The addition of electric vehicles to the grid brings difficulties to the start-stop and
output scheduling of the unit while charging and discharging, but this is closer to the actual
situation.

Compared with the situation that electric vehicles are only used as portable energy
storage devices, the operating cost of the unit will inevitably increase. Reasonable alloca-
tion through optimization algorithms can not only balance the number of charging and
discharging events of electric vehicles at all times but also reduce the number of start-stops
of the unit, optimize the output power, and significantly reduce costs.

After the charging and discharging of electric vehicles are connected to the grid,
because the charging of electric vehicles increases the load demand of the system and
the output of the unit, the operating cost of the unit with only discharge will be increased.
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However, compared with the basic unit commitment problem, the daily cost savings can
reach USD 5147/day, and the economic benefits obtained over time are considerable.

5.5.2. Unit Commitment Problem with Electric Vehicle Charging and Discharging
(V2G/G2V) Considering Emissions

When considering emissions in the objective function, the simulation results of BC-
MAES and the other algorithms on the UCEV problem are given in Table 14.

It can be seen from Table 14 that if emissions are considered in a system, some eco-
nomic benefits will inevitably be sacrificed for sustainable development. The operating
costs of the same algorithm in the model with emissions is greater than that of the model
without emissions. For example, the BCMAES algorithm increases the operating costs
by USD 26,354/day when considering emissions. The BCMAES algorithm is capable
of demonstrating the best optimization ability and robustness in the above comparison.
Separately, the algorithm not only has lower operating costs than the other algorithms
but also has lower emissions than the other algorithms. Therefore, the use of the BC-
MAES algorithm can not only bring good economic effects but also reduce emissions
for sustainable development.

Table 14. Comparison of BCMAES results with and without considering emissions for UCEV
(V2G/G2V).

Algorithms
without Emission Emission

Function Cost (USD) Emission (t) Function Cost (USD) Emission (t)

PSO [42] - - - - - -
GA-LR [9] 561,821 561,821 - - - -

GA 563,361 563,361 - 806,485 566,939 239,546
LR 564,795 564,795 - 801,484 570,265 231,219

BCMAES 558,790 558,790 - 769,187 585,144 184,043

Table 15 shows the comparison of the results of different algorithms in solving
the UCEV problem in different modes when considering emissions. Not only the GA
algorithm but also the other two algorithms in the V2G/G2V mode have increased in cost,
but the emissions have been reduced considerably, and the overall objective function has
also been reduced. This shows that the V2G/G2V mode of electric vehicle grid connection
can better maintain the balance between cost and emission than the V2G mode and better
adapt to the needs of the sustainable development of power systems in modern society.
The optimal solution obtained by the BCMAES algorithm is in the V2G/G2V mode not
the V2G mode. However, the operating cost is reduced by about 0.77%, and emissions are
increased by about 8.49%, so the final objective function is also increased by about 1.3%.
Still, this model is closer to the actual production and operational conditions.

Table 15. Comparison of the results of UCEV in different modes when considering emissions.

Algorithms
without Emission Emission

Function Cost (USD) Emission (t) Function Cost (USD) Emission (t)

PSO [42] 825,392 565,326 260,066 - - -
GA-LR [9] - - - - - -

GA 798,183 561,196 236,987 806,485 566,939 239,546
LR 812,392 559,822 252,570 801,484 570,265 231,219

BCMAES 759,346 589,709 169,637 769,187 585,144 184,043

5.6. Unit Commitment Problem with Electric Vehicles and Renewable Energy

In this section, the UCEVR problem considers 10 wind energy and solar energy
production scenarios. In this model, emissions are considered, and different EV grid-
connected operation modes are considered. Therefore, the latter comparison is based
on the UCEV problem considering emissions. Table 16 shows the optimal unit economic
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cost and performance indicators using the BCMAES algorithm in 10 wind power scenarios.
It can be seen that the values of different performance indicators change very little. In
the case of the highest Sec, we will select Wind Scenario 5, use it in the following studies,
and mark it in bold.

After integrating renewable energy into the grid, the daily power generation cost is
USD 552,578 and daily emissions are 158,816 tons, reductions of nearly 5.57% and 13.71%,
respectively. This represents an annual saving of USD 11,886,590 in production costs and
an annual reduction of 9,207,855 tons in emissions.

Figure 10 shows the number of electric vehicles in a 10-unit system with or without
renewable energy within 24 h. V2G electric vehicles are expressed as positive, while G2V
electric vehicles are described as negative. As shown in Figure 10a, when only V2G EVs
are connected to the grid, intermittent wind power has two significant differences, between
1:00–6:00 in the morning and between 14:00 and 24:00 in the evening. In Figure 10b,
the apparent changes in electric vehicles occur at 5:00 to 8:00 in the morning, 9:00 to 12:00
in the morning, 15:00 to 17:00 in the afternoon, and 20:00 to 24:00 in the evening.

Table 16. The optimal unit economic cost and performance index of 10 wind energy scenarios.

Model Scene Cost Emission Index 1 Index 2 Sce

discharge

1 543,942 150,849 0.09996 0.09902 0.6181
2 542,971 150,901 0.09983 0.10015 0.445
3 540,552 154,201 0.09996 0.1017 0.357
4 542,525 151,427 0.09984 0.09824 0.2802
5 542,633 153,297 0.10012 0.09932 0.8298
6 545,941 150,218 0.10016 0.09967 0.3828
7 540,347 154,295 0.09994 0.10088 0.7021
8 541,260 153,444 0.09995 0.10087 0.6449
9 544,800 151,161 0.10013 0.10038 0.4638

10 540,427 155,466 0.10012 0.09972 0.2752

charge

1 548,044 165,029 0.1002 0.09902 0.6174
2 550,253 162,764 0.10019 0.10015 0.4442
3 550,035 162,083 0.10007 0.1017 0.3568
4 553,040 159,041 0.10006 0.09824 0.2824
5 552,578 158,816 0.09997 0.09932 0.8326
6 551,092 159,438 0.09984 0.09967 0.3859
7 554,306 156,440 0.09988 0.10088 0.7023
8 552,564 159,050 0.10000 0.10087 0.6472
9 553,382 157,813 0.09993 0.10038 0.4642
10 551,809 158,732 0.09984 0.09972 0.2806

Figure 11 describes the power requirements of each unit across 24 h. In Figure 11a,
the blue bars indicates the power demand in each hour of the 24 h. As V2G electric vehicles
provide power to meet local load demand, the unit demand for thermal units will decrease,
as shown by the red bars. When the RE is connected to the grid, the power demand of
the thermal units shown by the green bars will be further reduced. Figure 11b shows
the unit’s power output under V2G/G2V. It can be seen that the cooling unit needs to gener-
ate more power during the charging of G2V electric vehicles. However, RE can compensate
for the additional load demand caused by G2V electric vehicles. Therefore, the cooperation
between electric vehicles and renewable energy can reduce the load demand pressure of
the system, especially the additional charging demand brought by G2V electric vehicles.

Figure 12 shows the spinning reserve of the system of 10 units across 24 h. In Figure 12a,
although the number of devices is reduced when renewable energy is connected to the grid,
in the case of UCEVR (V2G), the spinning reserve is more rugged than in the case of UCEV
(V2G). As shown in Figure 12b, for most of the 24 h, the spinning reserve with renewable
energy is rather higher than that without considering renewable energy during the charging
period. Therefore, integrating electric vehicles and renewable energy into the power system
can reduce the spinning reserve’s violent fluctuations and improve the UCEVR system’s
reliability.
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Figure 10. The number of electric vehicles incorporated into the grid in a 24-h period.
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Figure 11. The power demand of the unit across 24 h.
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Figure 12. Spinning reserve energy storage across 24 h.

6. Conclusions

This paper has proposed a new binary CMAES algorithm, dubbed BCMAES, to
solve complex UC problems for power systems integrated with renewable generations
and electric vehicles. To verify the efficacy and effectiveness of the proposed BCMAES
algorithm, a comparative study was conducted with several other popular approaches.
The simulated experimental tests on power systems of two different scales, 10 and 54 units,
show that for the 54-unit system, the proposed algorithm successfully achieved operation
costs reduction of USD 1,624,873.6 per day, which is 1.15% more than the other tested
methods. The results for the 10-unit power system are also quite similar. The main
contributions of this paper are summarized below.

• The CMAES algorithm has been extended to the binary domain by introducing the sig-
nal function to map the variables;

• The elite and restart strategies have been introduced to strengthen the algorithm’s
global search capability and realize its population adaptation;

• The proposed BCMAES algorithm has been tested on power systems with 10 and 54
units and the simulation results confirm its efficacy and robustness in comparison with
several popular UC approaches, achieving more than a 1% operation cost reduction
in most cases;

• With the proposed algorithm, the influence of renewable energy integration and EV
grid connection modes on the whole system UC is analyzed. It is found that V2G and
integration of renewable energy can significantly reduce both the operation costs and
emissions by 5.57% and 13.71%, respectively.

Finally, the renewable energy is treated as a deterministic variable in this paper.
To assess the impact of stochastic renewable power generations on the UC model will be
our future work.
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