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Abstract: In order to capture the driver’s attitude and preference towards risk during the decision-
making process, this paper establishes a parking choice model considering driver heterogeneity
based on the cumulative prospect theory. This research innovatively considers the influence of the
unreliability of cruise time on drivers’ parking choice behavior and adds the psychological cost of
drivers’ anxiety caused by lateness into the model. At the same time, according to the driver’s parking
preference for parking, the latent category model is used to divide the driver into time-sensitive
and money-sensitive categories. This paper analyzes the influence of unreliable cruising time on
drivers’ parking choice behavior and finds that drivers have the characteristics of overestimating
high-probability events and underestimating low-probability events in the decision-making process.
By comparing the parking choice results of rational and irrational drivers, it is found that the model
considering the risk attitude of drivers in the decision-making process is more in line with reality.

Keywords: parking choice behavior; cruising time; cumulative prospect theory

1. Introduction

The rapid increase in motor vehicles has led to a severe shortage of parking facilities
in the city center, resulting in “parking difficulty” being a major issue for urban residents.
During periods of high parking demand, drivers have to drive slowly on the road to look
for vacant parking spaces, which causes not only environmental pollution but also road
congestion. According to IBM’s global parking survey, drivers spend an average of 20 min
looking for a parking space [1], and 30% of traffic on the road comes from parked cruising
vehicles [2]. The contradiction between the growing demand for parking and the limited
increase in parking facilities in the city center is becoming more and more prominent,
which affects the daily travel of residents, and the driver’s cruising behavior can also create
problems such as additional noise pollution and excessive carbon emissions [3].

The continuous growth of the number of motor vehicles poses a great challenge to
the service capacity of transportation infrastructure [4], especially the shortage of parking
facilities in the central business district of the city. The setting of on-street parking spaces
increases the parking supply at a minimal cost, but it also brings many disadvantages. For
example, the on-street parking spaces take up part of the road resources and can easily cause
road congestion during peak travel periods. Therefore, how to improve the utilization rate
of existing parking facilities is regarded as an effective way to solve the problem of parking
difficulties. It is necessary to study the driver’s parking choice behavior and conduct an
in-depth analysis of the factors that affect the driver’s parking choice behavior. Only in this
way can we better formulate relevant policies to solve the problem of “parking difficulty”.

2. Related Work

The study of parking choice behavior begins when the driver arrives at his destination
and looks for an available parking space and ends with the driver selecting a parking space.
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The early study of parking choice behavior used the questionnaire method to statistically
analyze the factors affecting the driver’s parking choice [5]. Subsequently, in view of
these influencing factors, some scholars used the multi-objective decision-making method
to recommend parking guidance and optimal parking space to drivers. For example,
Leephakpreeda [6] used fuzzy knowledge-based decision-making to comprehensively
consider parking costs, parking space utilization and other related factors to rank the
advantages and disadvantages of parking lots. Chaniotakis et al. [7] used questionnaire
surveys to obtain relevant data and adopted related models such as polynomial logit, nested
logit and hybrid logit to focus on the preference of drivers to choose a behavior under the
uncertainty of cruising time. Van der Waerden et al. [8] showed through multiple regression
analyses that there is a significant relationship between an individual’s characteristics and
parking choice behavior. Caicedo [9] used constrained logit models to analyze drivers’
parking choice behavior, and found that drivers generally tend to avoid higher parking
costs by increasing the cruising time, and the study also considered the environmental
impact of reduced stop-cruise behavior. Antolín [10] used a number of logit models to
simulate the driver’s choice of parking options, such as free on-street parking, paid on-
street parking, and paid underground parking. With the concept of shared parking space,
Ye et al. [11] incorporated the shared parking mode into the study of parking behavior. At
the same time, some scholars have applied Internet of Things technology to the field of
parking management to develop an intelligent parking system to help drivers better find
parking spaces [12].

However, the studies based on expected utility theory treat decision-makers as “per-
fectly rational people”, assuming that all drivers have access to objective information about
any parking lot. At the same time, the expected utility theory also argues that all drivers
have the same parking preference and make parking choices based on maximum utility.
Obviously, this assumption is quite different from real life. In real life, people are often
faced with situations where either they do not have enough time or relevant channels
to collect all the information to make decisions, or they waste a lot of time and energy
collecting information, and sometimes they may not be able to make optimal decisions
due to time and cognitive limitations. The French economist Allais experimentally found
that people’s choice results do not always follow utility maximization and proposed the
Allais paradox to question the rationality of the expected utility theory [13]. When the
driver arrives at the destination to choose a parking location, the information obtained
is dynamic, it is difficult to obtain [14], and the driver cannot process the information
in the decision-making process to make a choice. Therefore, the driver’s parking choice
behavior should be regarded as a decision-making behavior under uncertain conditions.
Kahneman and Tversky [15] proposed prospect theory, which combines the uncertainty of
the decision-making environment with the bounded rationality of decision-makers and de-
scribes the process of decision-making behavior more realistically. Prospect theory proposes
a nonlinear weight function and uses “sub-certainty” to resolve the Allais paradox. After
the prospect theory was proposed, it was not only used in the economic field to describe
the decision-making behavior of investors but also in other fields such as construction,
agriculture and transportation. Luo et al. [16] set up a new travel mode choice model based
on prospect function and proved the validity with an example. Wang et al. [17] and other
scholars established a parking selection model based on prospect theory and analyzed the
impact of parking price changes on drivers’ on-street parking behavior. Ji et al. [18] studied
the limited rationality of drivers and applied cumulative prospect theory to optimize the
allocation of shared parking spaces in hospitals. Xue et al. [19] used prospect theory to
analyze the decision-making factors that influence the owners of shared parking spaces
and drivers. Most of the applications of prospect theory in the field of transportation are
aimed at the choice of travelers’ travel modes [20–22]. Some scholars [23] have established
a model of battery electric vehicle drivers’ charging behavior based on the cumulative
prospect theory. In the pieces of literature on the use of prospect theory for the study of
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the driver’s parking choice behavior, scholars paid more attention to the impact of parking
fees on drivers’ choice behavior [17,24].

In summary, the current research ignores the irrational state of the driver’s parking
choice behavior in uncertain traffic environments. At the same time, these studies only
discussed the impact of the cruising time length on the driver’s parking choice behavior,
ignoring the impact of cruising time uncertainty on drivers. This paper considers the
driver’s decision-making behavior in an unreliable traffic environment and establishes a
parking choice behavior model based on cumulative prospect theory. The research focus
of this paper is on the impact of unreliable cruising time on the driver’s parking choice
behavior and the difference in parking choice behavior of drivers in rational and irrational
states.

3. Methodology
3.1. Cumulative Prospect Theory

In 1979, Tversky and Kahneman proposed prospect theory to describe decision-making
behavior in a risk environment. The expected utility theory believes that the decision-
maker will evaluate alternatives by their utility (the sum of the product of probabilities and
outcome values), and the prospect theory keenly discovers the subjective tendency of the
decision-maker when making the choice behavior.

Prospect theory proposes the “reference point” and defines the gain or loss of the
value relative to the reference point as the prospect value. During the experiment, the
researchers found that decision-makers differed in their sensitivity to gains and losses. In
view of this characteristic, prospect theory establishes different value functions for gains
and losses.

Equation (1) converts the utility value xi into a gain or loss compared to the reference
point x0. The value function, Equation (2), exhibits risk aversion to gains and risk seeking to
losses. α, β are the risk preference parameters, and the value range is as follows: 0 < α, β < 1.
Larger values of α and β indicate that people are more sensitive to risk. λ is larger than
1, which suggests that people are more sensitive to losses than gains. Larger values of λ
represent the increasing degree of sensitivity. Figure 1a presents the value function.

∆x = xi − x0 (1)

φ(∆x) =
{

∆xα ∆x ≥ 0
−λ(−∆x)β ∆x <0
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At the same time, the researchers also found that decision-makers overestimate small-
probability events and underestimate large-probability events. That is, the decision be-
havior is influenced by the decision weights, not the actual probabilities. Prospect theory
establishes a probability weighting function to achieve the transition between actual proba-
bilities and decision weights.

The probability weighting function w(p) is defined in Equations (3) and (4). γ and δ
are the probability weighting parameters, and 0 < γ, δ < 1. The smaller γ and δ result in a
more curved weighting function. The weighting function is shown in Figure 1b.

w+(pi) =
pi

γ[
pi

γ + (1 − pi)
γ]1/γ

(3)

w−(pi) =
pi

δ[
pi

δ + (1 − pi)
δ
]1/δ

(4)

In the process of modeling travel behavior, Gao [25] found that the sensitivity of travel
time gains and losses is much greater than that of travel cost gains and losses. The travelers
underestimate the low-probability travel time and overestimate the high-probability travel
time in the commuting mode shift behavior, and the probability weighting function presents
an S-shape shown in Figure 2.
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Gao found that the weighting functions of time and cost were distorted to different
degrees, but he did not establish a modified weighting function. On this basis, Huang [26]
modified the value range of the probability weighting parameters γt and δt and introduced
the discrimination parameter η to obtain the optimized time probability weight-function
Equations (5) and (6).

w+
t (pi) =

ηpi
γt

[pi
γt+(1−pi)

γt ]
1/γt

γt > 1 (5)

w−
t (pi) =

ηpi
δt[

pi
δt+(1−pi)

δt
]1/δt

δt > 1 (6)

Cumulative prospect theory, which is an extension of prospect theory, employs cu-
mulative rather than single decision weights [27]. The main difference between prospect
theory and cumulative prospect theory is in the weighting function, where the former
works with marginal probabilities while the latter uses cumulative probabilities. In the
theory of cumulative prospects, the n1 + n2 + 1 possible outcomes of the alternatives are
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arranged in order from smallest to largest, x−n1 < · · · < x0 < · · · < xn2 , which occur with
probabilities p−n1 , · · · , pn2 . The cumulative decision weights are defined as follows:

π+
i = w+(pi + · · ·+ pn2)− w+(pi+1 + · · ·+ pn2) 0 ≤ i ≤ n2 (7)

π−
i = w−(p−n1 + · · ·+ p−j

)
− w−(p−n1 + · · ·+ p−j−1

)
n1 ≤ −j ≤ 0 (8)

Therefore, prospect theory divides people’s decision-making process into two stages:
the editing stage and the evaluation stage. In the editing phase, people rely on reference
points to judge the likely outcomes of various decisions and to determine whether the
resulting outcome is a gain or a loss. In the evaluation stage, various decision-making
options are evaluated based on the results of the editing stage, and the decision with the
highest prospect value is selected. The prospect value is calculated as follows:

U(x, p) =
n2

∑
i=o

π+
i (pi)φ(△xi)+

−1

∑
j=−n1

π−
j
(

pj
)

φ
(
△xj

)
(9)

3.2. Latent Class Model

Even if different drivers make the same choice in the same scenario, the reasons
for their decision are different. It may be affected by parking fees, walking distance,
personality or habits. The factors influencing the drivers’ choices of parking are very
complex, and a general generalization of the characteristics of these factors can lead to
ignoring the internal correlation between the various influencing factors. The latent class
model was first proposed by Lazaesfeld and Henry, which can be used to explain the
intrinsic correlation between variables [28]. This model makes up for the shortcomings of
the structural equation model in dealing with continuous latent variables and is suitable
for data with mostly categorical variables.

Latent class models use intrinsic latent categorical variables to explain the relationship
between explicit categorical variables. The basic assumption of the model is that the
probability distribution of explicit variables can be explained by a small number of mutually
exclusive latent category variables, and each category has a relative tendency to choose
explicit variables.

In Figure 3, the observable variable Vn can be directly observed, and the latent variable
VL cannot be directly observed or can be observed but needs to be synthesized by other
methods. Typically, one latent variable corresponds to multiple observable variables. Latent
variables can be seen as abstractions and overviews of observable variables, which, in turn,
are regarded as external reflection indicators of the latent variable. The latent variable
is the basis for class membership in one of several latent classes. The latent class model
uses latent variables to explain the relationship between observable variables, and its basic
assumption is that the probability distribution of observable variables can be explained
by a small number of mutually exclusive latent variables, and each class has a specific
tendency to the choice of each observable variable.
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The analysis process of the latent class model includes probabilistic parameterization,
estimate models, determining fit and the result interpretation.

1. Probabilistic parameterization

Probability parameterization is the conversion of the probability of categorical vari-
ables into parameters, which is the first step in establishing a latent category model.

Assuming that there are three explicit variables A, B and C, and each variable has I, J
and K levels, the latent variable X is with T latent categories. The choice behavior of each
decision-maker can be represented by different combinations of levels of explicit variables.
The latent class model assumes that latent variables (X) can explain the relationship of
explicit variables (A, B and C) and maintain the local independence of explicit variables
in each class. After probability parameterization, the latent class model is expressed as
follows:

πABC
ijk =

T

∑
t=1

πX
t πAX

it πBX
jt πCX

kt (10)

Constraints:
∑

t
πX

t = 1 (11)

∑
i

πAX
it = ∑

j
πBX

jt = ∑
k

πCX
kt = 1 (12)

πABC
ijk is the joint probability of the latent class model; πX

t is the probability of the
latent variable X at the t level. Equation (11) means that the probabilities of each potential
category add up to 1. πAX

it is the conditional probability, which represents the probability
that an individual belonging to the t potential category will respond to the i level of the
observed variable A. Equation (12) shows that the sum of the conditional probabilities of
each explicit variable is 1.

2. Estimate models and determine the fit

The latent class model is mainly estimated by the maximum likelihood method. In the
iterative process, the EM (-expectation-maximization) and NR (Newton Rapson) algorithms
are generally used, among which the EM algorithm is the most commonly used.

In the iterative process, it is necessary to find the model with the least parameters and
the best goodness-of-fit. The main methods for the goodness-of-fit test are the chi-squared
statistic test of likelihood ratio, Pearson test and signal evaluation index, among which
the AIC criterion and BIC criterion are the most commonly used signal evaluation indexes.
BIC is more reliable when the number of samples is thousands, and AIC is used when
the number of samples is small. The signal evaluation index is based on the likelihood
ratio chi-square test to compare different models with different parameter restrictions.
The smaller the index value is, the better the parameter fit is. In order to evaluate the
goodness-of-fit of the model more comprehensively, the four indexes are usually combined.

AIC = −2LL + CKβ + (C − 1)K (13)

BIC = −2LL + CKβ + (C − 1)K × ln N (14)

where LL is the log-likelihood value function calculated at the convergence for the parameter
estimates; C is the number of latent classes; Kβ is the number of elements in the utility
function of the class-specified models; and K is the number of estimated [29]. The values of
AIC and BIC closer to 0 indicate a better fit.

3. Result interpretation

After determining the optimal model through a goodness-of-fit evaluation, the ob-
served data were matched to each latent class by probability estimation and comparison
according to Bayesian theory. The posterior probability of the observed data being classified
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into each latent class is calculated by the formula. The maximum posterior probability of a
latent class is used to classify the observed data into that class.

π̂XABC
tijk =

π̂ABCX
ijkt

∑T
t=1 π̂ABCX

ijkt

(15)

where, π̂XABC
tijk represents the posterior probability that the observed data are classified into

a latent class t. π̂ABCX
ijkt represents the probability that the observed data are classified into a

latent class t.

4. Modeling Drivers’ Parking Behavior

This paper uses the cumulative prospect theory to divide the driver’s parking selection
process into the editing stage and evaluation stage. The editing stage determines the utility
value of different parking facilities through the cost function and converts it into the loss or
benefit value relative to the reference point, determines the corresponding probability of
different utility values and converts the weighting function into the decision weight value.
The evaluation phase calculates the foreground values for the different parking facilities,
and the driver makes parking decisions based on these foreground values. The specific
flow of the driver’s parking selection behavior after arriving near the destination is shown
in Figure 4. The relevant parameters are shown in Table 1.
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Table 1. List of symbols used in the manuscript.

Symbol Parameter

ε Scale factor
µ Travel time value
k Parking fee
ca Anxiety costs
c f Appointment service fee
tn Cruise time
to The point at which the driver becomes anxious
te The maximum cruising time
t f Walking time
ts Detour time
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Considering that shared parking spaces are not widely implemented in real life, the
parking facilities in the central business district are mainly on-street parking spaces and
commercial parking lots. Therefore, this paper will be based on the following assumptions
when establishing the driver’s parking choice behavior model.

• There are only paid on-street and off-street parking spaces around the destination;
• Off-street parking spaces can be reserved in advance, and a certain reservation service

fee will be charged;
• After booking the parking space, the driver maintains the original driving speed to

reach the parking space.

4.1. Edit Phase

When the driver arrives near his destination and starts looking for a vacant space, he
will be faced with two options:

• Finding available on-street parking while cruising at low speeds near the destination;
• Choosing to reserve an off-street parking space and go directly to the reserved car

park.

Based on the above two options, we will establish the cost function of different parking
facilities and analyze the parking choice behavior of drivers through further calculations.

1. The driver chooses an on-street parking space

If the driver is lucky enough to find an available parking space within to, the time cost
includes the cruising time tn and the walking time t f 1. When the driver’s cruising time is
exceeded t0, the driver gradually moves away from the destination, and the walking time
t f 2 increases. At the same time, the driver will also feel anxious during the cruise. When
the driver’s cruising time exceeds te, the on-street parking space is basically occupied, and
it is difficult for the driver to find an available parking space. At this point, he has to give
up looking for on-street parking and change the target to off-street parking. In this case, the
time cost should be added not only to the cruising time tn and walking time t f 3 but also
to the detour time ts incurred by driving to an off-street parking. Therefore, the time cost
function for the driver to choose an on-street parking space in different cases is represented
by Equation (16).

ct
1(tn) =


−
(

tn + t f 1

)
0 < tn ≤ to

−
(

tn + t f 2

)
to < tn ≤ te

−
(

tn + t f 3 + ts

)
te < tn

(16)

The monetary cost of the driver’s choice of on-street parking includes the parking
fee and the psychological cost of the driver’s anxiety when the cruise time exceeds to.
Therefore, the monetary cost of on-street parking is as follows:

cm
1 (tn) =


−k1 0 < tn ≤ to

−[ca(tn − to) + k1] to < tn ≤ te
−[ca(tn − to) + k2] te < tn

(17)

2. The driver chooses an off-street parking space

When the driver has reserved an off-street parking space, he will keep driving at a
constant speed to reach the reserved parking space. To make the model even easier, we
expressed the time it takes for a driver to reach a predetermined parking space at a constant
speed by multiplying the cruising time tn by a factor ε. The time cost includes driving time
εtn and walking time t f 4.The time cost of off-street parking is as follows:

ct
2(tn) =

−
(

εtn + t f 4

)
0 < tn ≤ to

−
(

εtn + t f 4

)
t0 < tn

(18)
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If the driver arrives at the reserved parking within the designated time to, the monetary
cost only includes the service fee for the reservation c f 1 and parking fee k2. When the
driver fails to arrive at the reserved parking space within the specified time due to traffic
congestion or other reasons, the driver needs to pay a certain penalty cost for breach of
contract c f 2. The monetary cost of off-street parking is represented by Equation (19).

cm
2 (tn) =

 −
(

c f 1 + k2

)
0 < tn ≤ to

−
(

c f 1 + c f 2ε(tn − t0) + k2

)
t0 < tn

(19)

Finally, according to the value function Equation (2), the gain or loss of time and cost
of the two parking facilities relative to the reference point is calculated.

φt(ct
r
)
=

{ (
ct

r − ct
0
)α ct

r ≥ ct
0

−λ
(
ct

0 − ct
r
)β ct

r <ct
0

(20)

φm(cm
r ) =

{ (
cm

r − cm
0
)α cm

r ≥ cm
0

−λ
(
cm

0 − cm
r
)β cm

r <cm
0

(21)

where, r = 1,2; ct
0, cm

0 are the reference points for time and cost, respectively.

4.2. Assessment Phase

In the process of studying the travel mode choice of travelers, scholars find that the
weight functions of time and cost are distorted in different ways [25], and this phenomenon
is also reflected in the driver’s parking choice behavior. Drivers are averse to uncertain
cruising times when looking for parking spaces, so they tend to place higher subjective
expectations on definite cruising times when making parking choice decisions.

Therefore, the prospect values of the driver’s time and cost are calculated separately.
Equations (5) and (6) are used to calculate the time probability weight value; Equations (3)
and (4) calculate the cost probability weight value.

Ut
r(x, p) =

n2

∑
i=o

π+
i (pi)φ(△xi)+

−1

∑
j=−n1

π−
j
(

pj
)

φ
(
△xj

)
(22)

Um
r (x, p) =

n2

∑
i=o

π+
i (pi)φ(△xi)+

−1

∑
j=−n1

π−
j
(

pj
)

φ
(
△xj

)
(23)

The driver’s parking choice behavior model established in this paper will comprehen-
sively consider the influence of time and money on the driver’s decision-making. Therefore,
the conversion factor µ is introduced to convert the time prospect value into a unit of cost.
At the same time, the model also introduces the coefficient αt, αm to represent the driver’s
different preferences for time and money. Finally, we use Equation (24) to calculate the total
prospect value for the different parking choices, which is Ur.

Ur = µUt
r + Um

r (24)

After calculating the prospect values of all parking facilities, the probability of choosing
parking facility r is calculated as follows:

Pr =
exp(Ur)

∑2
i=1 exp(Ur)

(25)

5. Empirical Application

In this section, we will present the empirical application example to illustrate how
the modeling -framework can be applied to real-world observational data. We will study
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the application of the parking choice model based on cumulative prospect theory in real
life, analyze the parking choice preferences of different types of drivers, and discuss the
influence of unreliability cruising time and irrational decision-making psychology on
drivers’ parking choices.

5.1. Study Area Introduction

This article selects the Guilin Road business district in Changchun as the survey area,
which not only contains leisure and entertainment facilities such as shopping malls and
cinemas but also contains a number of primary and secondary schools and administrative
institutions. In the process of field investigation, we found that the traffic environment in
the area is relatively complex, and there is an imbalance in the occupancy rate of on-street
parking facilities and off-street parking facilities. The basic information on parking facilities
in the Guilin Road business district is shown in Table 2. The layout of the parking facilities
is shown in Figure 5.

Table 2. Information about parking facilities around Guilin Road.

Parking Location Parking Lot Name Number of
Parking Spaces Fees

On-street parking
facilities

Xikang Road 72

¥6/h
(8:00–18:00) 1

Tongguang Road 40
Longli Road 56

Mudan Street 19
Guilin Road 129

Xinjiang Street 12

Off-street parking
facilities

Huacaojian Building parking lot 22 ¥5/h 2

Huoju Building parking lot 28
¥6/hBaihui Street 24-h parking lot 50

7.8 Shopping mall parking lot 70
1 Parking is free from 18:00 to 8:00 (+1); no charge for parking for less than 30 min; maximum daily charge is ¥40.
2 no charge for parking for less than 10 min.
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To conduct a more in-depth study of drivers’ parking choices, this study conducted a
two-month questionnaire survey starting from September 2022. The main content of the
questionnaire included drivers’ socio-economic characteristics and parking preferences.
The survey focused on peak parking demand periods during weekdays and weekends. We
selected drivers who had just finished parking as the subjects of this study. In the course
of face-to-face interviews, we had in-depth communication with the driver about their



Sustainability 2024, 16, 1596 11 of 17

parking choice behavior. A total of 200 survey questionnaires were distributed, and after
filtering out the incomplete responses, 190 valid questionnaires were collected.

5.2. Analyzing Heterogeneous Drivers

There are many factors that affect drivers’ parking choice behavior, and different
drivers also have varying degrees of emphasis on these factors. In order to more accurately
describe the parking choice behavior of drivers, this article introduces a latent category
model to classify the parking choice preferences of drivers and calculates the target weight
values of the influencing factors for different categories of drivers based on the classification
results. This model is also commonly used in the transportation field to classify travelers.
Gu [30] and Qiao [31] used potential category models to classify aviation and high-speed
rail passengers, respectively. Scholars such as Chen [32] used to study the choice of
commuting modes based on the characteristics and preferences of travelers themselves.
Considering the heterogeneity of travelers’ travel mode choices, potential category models
are used to classify travelers. The specific steps are as follows:

1. Setting the initial number of latent classes to 1 and carrying out the goodness-of-fit
test after the model is solved;

2. Increasing the number of potential categories gradually, continuing to solve the model
and test the goodness-of-fit;

3. Comparing the goodness-of-fit test of each model and selecting the model with the
best index as the optimal model;

4. Combining with the observed data, carrying out the estimation of the optimal model
parameters and potential clustering analysis, observing the belonging category of
each dataset, and, at last, outputting the classification results.

The selection of explicit variables has a very important impact on the solution results
and final analysis of potential category models. Choosing the appropriate explicit variables
is helpful for subsequent research and analysis. There has been a lot of research about
the factors that influence drivers’ choices of parking. Factors that are recurrently reported
are parking fees [33], cruising time [7], walking time [9] and a number of socio-economic
characteristics of the driver [8,33]. Therefore, this article selects gender, driving experience,
annual household income, travel purpose, parking fees and cruising time as the explicit
variables based on relevant papers. The meanings of each explicit variable at different
levels are shown in Table 3.

Table 3. Explicit variables and values in the design.

Explicit Variable Levels Level Values

Gender (U1) 2 male/female
Driving Experience (U2) 4 ≤1 year2~3 years/4~5 years/≥6 years

Annual Income (U3) 5 ≤50k/60~100k/110~150k/160~200k/≥210k
Travel Purpose (U4) 4 Work/school/shopping/others
Cruising Time (U5) 5 ≤5 min/6~10 min/11~15 min/16~20 min/≥21 min
Walking Time (U6) 5 ≤5 min/6~10 min/11~15 min/116~20 min/≥21 min
Parking Fees (U7) 5 0~6/7~9/10~13/≥14(¥)

In the iterative process, it is necessary to find the model with the least parameters and
the best goodness-of-fit. The evaluation indexes for the goodness-of-fit test are mainly G2,
χ2 and signal evaluation indexes, among which AIC and BIC are the most commonly used
signal evaluation indexes. The BIC index is more reliable when the number of samples
is thousands, and the AIC index is more reliable when the number of samples is small.
The signal evaluation index is based on G2 to compare models with different parameter
restrictions. The smaller the index value, the better the parameter fit. This paper uses Mplus
8.3, which is a latent variable modeling software written and published by Professors Begnt
and Linda Muthen in 1987. Comparing the calculated goodness-of-fit indicators, we found
that as the number of potential categories increased, the AIC and BIC values of the model
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continued to increase. The difference between χ2 and G2 when the number of categories
was 2 and 3 was not significant, indicating that there was no significant optimization
improvement in the goodness-of-fit of the model. As shown in Table 4, considering all
indicators, the model with a 2-cluster is chosen as the ideal model.

Table 4. Latent variables classify goodness-of-fit parameters.

Models χ2 AIC BIC G2 df

2-cluster 3173.861 2921.727 3069.110 706.006 47

3-cluster 2987.950 2925.732 3148.373 696.832 71

4-cluster 3053.971 2926.073 3223.973 717.527 95

5-cluster 2923.607 2945.810 3318.970 747.986 119

The comparison diagram of parking selection characteristics for different categories of
drivers is shown in Figure 6.
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Figure 6. (a) shows the preferences of the two types of drivers in terms of parking fees; (b) shows the
preferences of the two types of drivers in terms of cruising time.

As can be seen from Figure 6, the drivers of Category-1 and Category-2 have com-
pletely opposite preferences in terms of parking cost and cruising time. Category-1 drivers
do not like to waste time cruising just to find available parking spaces. They are willing to
trade higher parking fees for shorter cruising times. Therefore, we define Category-1 as a
time-sensitive driver. Category-2 drivers are more inclined to cruise at low speeds on the
road in search of low-cost available parking spaces. Therefore, we define ‘Category-2′ as a
cost-sensitive driver.

5.3. Determine the Parameters of Parking Choice Model

The parameters of the value function and the weighting function have a great impact
on the accuracy of the model-solving results. The above text divides drivers into two
categories based on their emphasis on cruising time and parking costs: time-sensitive and
money-sensitive. This paper establishes an optimized time-weighting function (Equations
(5) and (6)), so we need to recalibrate the parameters. Huang [26] recalibrated the model
parameters when studying the choice of travel mode, and the effect was remarkable.
Therefore, this paper cites the parameters of the time-weighting function shown in Table 5.

Table 5. Parameter of time-weighting function.

Category η γt δt

time-sensitive 0.72 1.19 1.21
cost-sensitive 0.76 1.67 1.92
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When many scholars [22,34] use the cumulative prospect theory in the field of trans-
portation, the value function and the money weight function parameters directly quote the
values of Tversky and Kahneman, and the final model is the error value of the final model
solution result, which is small. Therefore, the relevant parameters in this paper will not be
recalibrated, and the specific values are shown in Table 6.

Table 6. Parameter of the value function and cost-weighting function.

Parameter α λ β γ δ

Coefficient 0.88 2.25 0.88 0.61 0.69

A key issue in the application of cumulative prospect theory in parking behavior
selection is the determination of reference points. Considering that selecting the average
value as a reference point may be simple, it can only reflect the actual value of the driver
rather than the self-perceived reference value. Directly asking the driver’s expected cruising
time and acceptable parking rate to obtain the reference point value will better reflect the
subjective perception threshold. Through the analysis of the questionnaire data, the ideal
cruising time and parking cost for time-sensitive drivers was 6.72 min, ¥5.02/h; the ideal
cruising time and parking cost for money-sensitive drivers was 9.35 min, ¥4.36/h.

6. Results
6.1. Impact of Unreliable Cruising Time on the Parking Choice Behavior

During the process of finding available parking spaces at the destination, drivers face
many uncertain factors. When making decisions in this uncertain environment, drivers
exhibit irrationality. Therefore, the use of cumulative prospect theory can better describe a
driver’s decision-making behavior. Drivers tend to have an aversion to unreliable cruising
times, and off-street parking has more reliable cruising times because it can be booked
in advance compared to on-street parking. This section focuses on how the difference in
cruising time reliability affects the driver’s choice between these parking facilities. Since
drivers can make reservations for off-street parking in advance, the cruising time can be
considered fixed. The cruising time of on-street parking is usually unreliable due to many
factors. Based on the on-site investigation and asking the driver for relevant information,
we set up the following three scenarios based on the specific conditions of the Guilin Road
business district in Changchun. As shown in Table 7, we set the cruising time for off-street
parking to 10 min based on the location of off-street parking facilities and the average speed
of drivers in the study area. At the same time, we established three scenarios based on the
unreliable characteristics of cruising time for on-street parking. According to the driver’s
parking choice behavior in different scenarios, the impact of unreliable cruising time on the
driver’s parking choice behavior was analyzed.

Table 7. Hypothetical scenarios with different cruising times.

On-Street Parking Off-Street Parking

Scenario-1 (5 min, 50%; 10 min, 30%; 15 min, 20%)
10 minScenario-2 (5 min, 20%; 10 min, 50%; 15 min, 30%)

Scenario-3 (5 min, 30%; 10 min, 20%; 15 min, 50%)

As shown in Figure 7, we can find that the driver’s parking choices change as the
cruising time changes. Specifically, from scenario 1 to scenario 3, the proportion of drivers
in the two categories choosing off-street parking is constantly increasing, which means that
there is a shift from on-street parking to off-street parking. In scenario 1, we establish that
drivers have a fifty percent chance of finding on-street parking within 5 min. Compared
with off-street parking spaces with a cruising time of 10 min, most drivers chose on-street
parking. In scenario 3, the cruising time for off-street parking is still 10 min, but at this time,
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the driver is likely to spend more than 15 min to find available on-street parking. In this
case, more drivers chose off-street parking. This difference reflects the driver’s tendency to
overestimate high-probability events in parking choice behavior. In scenario 1, the drivers
subjectively overestimated the probability of “5-min cruise time for on-street parking”, so
most drivers chose on-street parking. In scenario 3, the drivers believe that it is likely to
take them 15 min to find an on-street parking space, and at this time, the 10 min off-street
parking cruising time does not seem so unbearable. Therefore, we can see in Figure 7 that
most drivers choose off-street parking.
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6.2. Impacts of Irrational Behavior on Parking Choice Behavior

The cumulative prospect theory explains the decision-making behavior of irrational
decision-makers, and the parameters in the model represent the risk preferences of decision-
makers. A higher value of α, β indicates that the decision-maker is more risk-averse, and a
value of γ indicates the sensitivity of the decision-maker to gains and losses. Therefore, we
can reason that the value of the parameter can reflect the degree of irrationality of the driver.
If the values of the parameter all equal 1, we can ignore the risk pursuit and profit and loss
sensitivity in the driver’s decision-making process [23]. In this case, we can assume that
the driver is rational in the process of making parking choices. Table 8 shows the impacts
of irrational behavior on parking choice behavior.

Table 8. Impacts of irrational behavior on parking choice behavior.

Parking Space
Selection

Time-Sensitive Cost-Sensitive

Realistic
Results

Irrational
Drivers

Rational
Drivers

Realistic
Results

Irrational
Drivers

Rational
Drivers

On-street Parking 40.56% 41.05% 44.19% 67.22% 65.79% 70.56%
Off-street Parking 59.44% 58.95% 55.81% 32.78% 34.21% 29.44%

First, we find that time-sensitive drivers tend to choose off-street parking, while cost-
sensitive drivers prefer on-street parking, regardless of whether the driver is rational or
not. According to the survey, we found that although the parking fees per unit time for
on- and off-street parking are not much different, off-street parking requires an additional
reservation fee, while on-street parking is free of charge for parking outside the specified
time. This results in the total cost of off-street parking being higher than that of on-street
parking. At the same time, during peak parking demand periods, on-street parking
occupancy rates are high, and drivers need to spend a longer time looking for parking
spaces. This could explain the difference in parking choice preferences between time-
sensitive and cost-sensitive drivers. Next, we compare the parking choice behavior of
rational and irrational drivers with realistic situations. We can clearly find that the driver’s
parking choice behavior in an irrational state is closer to the realistic results. This shows that
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the assumption of “irrational people” can accurately describe the driver’s decision-making
state in real life.

7. Discussion and Future Work

This paper considers the state of the “irrational person” of the driver when making
decisions and uses the cumulative prospect theory to establish a parking choice model.
This study analyzes the application of the model in real life, and analyzes the influence
of an uncertain cruising time and the driver’s rationality on parking choice. The key
findings are as follows. There are two types of drivers who need to park in the central
business district, and they are divided into time-sensitive drivers and cost-sensitive drivers.
There are differences in parking preferences for different types of drivers. Time-sensitive
drivers are more likely to choose off-street parking, while money-sensitive drivers are the
opposite. At the same time, in the face of an unreliable cruising time, the drivers show the
characteristic of overestimating high-probability times, which affects their parking choice
behavior. In the comparison of rational behavior and irrational behavior, we find that
the parking choice behavior based on the cumulative prospect theory is closer to the real
situation.

There are still some shortcomings in this study. Firstly, the model adopts the experi-
mental parameters set by Tversky and Huang. However, the parameters of the model will
vary from person to person due to the characteristics of the study area and the driver’s
attitude toward risk. Future research can collect drivers’ parking selection behaviors from
the smart parking system for more accurate parameter calibration. Another drawback
comes from the limited factors that were taken into account when establishing the model.
The parking cost function established in this paper only takes into account the cruising
time, walking time and parking fee. During the investigation, it was learned that the
parking choice behavior of some drivers was also affected by factors such as familiarity,
safety and parking time in the parking lot. As we all know, the more comprehensive the
factors considered in the establishment of the parking choice model, the more accurate the
prediction results. In-depth research can consider adding multiple factors to the model to
accurately describe the driver’s parking choice behavior in complex traffic environments.

With the continuous development of science and technology, especially the application
of Internet of Things technology in the field of transportation, intelligent parking systems
based on the Internet of Things have also begun to appear in practical applications. Sensors
are installed on parking spaces to collect information such as the availability of parking
spaces. At the same time, the intelligent parking system transmits the collected information
to the user and helps the user choose the best parking space [35]. The smart parking system
provides drivers with optimal parking spaces based on the relevant information collected.
The driver’s parking choice behavior model, based on the cumulative prospect theory
established in this paper, is more consistent with the driver’s decision-making process
in real life. Therefore, the research in this paper can help the intelligent parking system
more accurately recommend the optimal parking space for drivers and improve parking
efficiency. At the same time, due to the difference in drivers’ personal characteristics and
travel attributes, parking demand has an imbalance in time and space [36]. The paper
analyzes the impact of unreliable cruising time on a driver’s parking choice behavior, which
helps government management departments formulate parking supply policies and adjust
the supply quantity and service time of on-street parking based on drivers’ parking choice
behaviors. By formulating a reasonable parking supply strategy, it is possible to meet
parking demand while reducing the impact of road traffic.
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