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Abstract: Source apportionment and risk assessment are critical for making effective pollution
prevention and control policies. The study was carried out to assess source-specific ecological
and human health risks associated with heavy metals in farmland soils in Yingtan City based
on apportionment results of receptor models. Multivariate analysis and the APCS-MLR model
consistently revealed that As, Ni, and Cr in agricultural soils may be mainly derived from natural
sources, while the contents of Cu, Zn, Cd, and Pb have been significantly elevated by human activities.
According to the outputs of the APCS-MLR model, Cu (34.3%), Zn (67.2%), Pb (75.1%), and Cd (67.9%)
primarily originated from the industrial activities related to mineral mining and non-ferrous metal
smelting processes. The source-specific ecological risk assessment indicated that industrial sources
were the primary contributor to the total ecological risks, posing moderate to high risks in the
southern mountainous regions. Natural origins played a significant role in the health risks due to the
substantial amounts of As naturally occurring in the soils. The findings could guide the development
of effective risk management and pollution control measures for agricultural soils.

Keywords: heavy metals; source apportionment; agricultural soils; APCS-MLR; risk assessment

1. Introduction

Contamination of agricultural soils with toxic metals (e.g., As, Cd, Pb, Cr, Ni, Cu,
and Zn) is one of the most important environmental issues in China, and it has attracted
worldwide attention from the public and governments [1–4]. Due to their high toxicity and
persistence, heavy metals enriched in agricultural soils could result in the degeneration
of soil and crop quality [5,6]. In addition, heavy metals could cause adverse impacts on
human health through various pathways, including ingestion, inhalation, skin contact, and
crop consumption [6,7]. For instance, chronic exposure to Cd in soils and foods was closely
associated with lung cancer, kidney dysfunction, bone fracture, and hematuria [8,9]. Intake
of As may result in diseases of the skin, bladder, lung and nerve system [7,9]. Therefore,
exploring and controlling the degree of pollution and risk associated with toxic metals in
farmland soils are essential to managing and controlling soil pollution.

To date, many researchers have assessed the environmental risks of heavy metals based
on various methods, including pollution index (PI) [10], potential ecological risk index
(RI) [11], and health risk models [12]. However, very few studies have quantitatively appor-
tioned risks associated with heavy metals in agricultural soil to different sources [9,13,14].
Source apportionment is critical for identifying the primary risk contributors and devel-
oping efficient management measures [15–17]. However, source apportionment of heavy
metals in soil remains challenging on a regional scale because heavy metals in farmland
soils exhibit spatial heterogeneity and are generally contributed by both natural and anthro-
pogenic sources [18,19]. To qualitatively identify the natural and anthropogenic origins,
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multivariate analysis methods, such as correlation analysis, cluster analysis (CA), and
principal component analysis (PCA), have been widely employed to group heavy metals
with similar distribution patterns and qualitatively determine their potential origins [20].
However, these methods fail to find out the amounts of metals contributed by a specific
source [21]. Receptor models are effective tools to quantitatively determine the contri-
butions of heavy metals from different sources, including absolute principal component
score/multiple linear regression (APCS-MLR) [22], positive matrix factorization (PMF) [23],
and Unmix [24]. Among them, APCS-MLR has been extensively applied for source ap-
portionment of air pollutants [25] and was implemented in the field of agricultural soil
pollution in recent studies [26] due to its simple manipulation and fast computation [27].
Thus, the source-specific ecological and health risks were expected to be quantified by
combining the APCS-MLR model outputs with risk assessments.

Yingtan City is situated in the northeast of Jiangxi Province in southern China
(27◦35′–28◦41′ N, 116◦41′–117◦30′ E), and the mineral resources in the area are abundant,
including gold, silver, copper, lead, zinc, iron, and gypsum. The mining and non-ferrous
smelting activities have promoted rapid economic development in Yingtan for recent
decades, which is currently well known as the “Copper Capital of China” [8]. However,
intensive industrial activities have emitted a large quantity of heavy metals into the farm-
land soils, eventually posing severe threats to the environment and local residents [28].
Using the surface farmland soil samples collected in Yingtan, the study was carried out to
1) assess the risks associated with heavy metals in surface soil using the potential ecological
risk index (PERI); 2) identify the major sources of heavy metals in surface farmland soils
and reveal the spatial distributions of source contributions; 3) evaluate the contributions of
ecological and human health risks from the different sources. The study aims to provide a
scientific foundation for developing appropriate pollution control and risk management
policies for agricultural soils in the region.

2. Materials and Methods
2.1. Sample Collection, Preparation, and Chemical Analysis

In the study, 241 surface soil samples covering the agricultural fields throughout the
whole region of Yingtan (Figure 1) were collected for analysis. The sampling points are
mainly determined according to the distribution of farmland and villages. The number of
samples was set based on the village size, with one sample for small villages and additional
sampling points for larger villages as appropriate. In addition, the sampling points were
at least 500 m away from the main roads to avoid the direct influence of traffic exhaust.
For each soil sample, approximately 10 sub-samples, which had roughly the same weights
and contained the same amount of soil from all depths (0–20 cm), were randomly collected
across an area of approximately 100 m2 surrounding the pre-determined site. Thus, the
sub-samples were mixed thoroughly in a clean container to obtain a representative soil
sample (~1.0 kg). Finally, the soil samples were stored in clean polyethylene bags after
removing the large debris, such as rocks and plants, and sent back to the laboratory for
further preparation and chemical analysis within a week.

After the air-drying and the removal of debris, the soil samples were finely grounded
by agate mortars and were sifted through a 100-mesh nylon sieve for further chemical analy-
ses. The heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were measured using a NexION
350D Inductively Coupled Plasma–Mass Spectrometer (ICP-MS, PerkinElmer, USA) after
the microwave-assisted digestion procedures [29]. The details have been described in
our previous research [30] and were given in the Supporting Information (Text S1). To
determine the Hg contents in soils, the weighted powdered samples (~0.15 g) were placed
in quartz boats and analyzed by a DMA-80 Direct Mercury Analyzer (Milestone, ITA).
For quality control and assurance, SRM-2976 (the National Institute of Standards and
Technology of the United States) was used as reference materials, and blank controls and
duplicate samples (20%) were randomly inserted into the sequence. The limit of detection
and limit of quantification (LOD/LOQ) of Hg were 0.13 and 0.43 ng/g, respectively, which



Sustainability 2024, 16, 1673 3 of 16

were calculated according to the IUPAC standard [31]. Both the recovery rates (91–106%)
and standard deviation (<10%) confirmed that the results were reliable.
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2.2. Ecological Risk Assessment

The ecological risk index (RI) was used to assess the potential ecological risk that
resulted from the heavy metals in soils [32], which could be calculated as follows:

Ei = Ti
Ci
Bi

(1)

RI =
n

∑
i=1

Ei (2)

where Ei, Ti, and Bi are the single risk factor, the toxic response factor, and soil background
value for heavy metals i, respectively. The values of the toxic response factor for Cd, Ni, Cu,
Zn, As, Cd, Pb, Mn, and Hg are 2, 5, 5, 1, 10, 30, 5, 1, and 40, respectively [33]. The potential
ecological risks of heavy metals in soils are divided into five levels according to the values
of Ei and RI (Tables S1 and S2).



Sustainability 2024, 16, 1673 4 of 16

2.3. Source Identification and Apportionment
2.3.1. Multivariate Analysis Methods

In this study, multiple multivariate analysis techniques were applied to qualitatively
determine the sources of pollutants. A correlation matrix can directly identify the asso-
ciations between different species. Heavy metals with strong correlations may originate
from the same pollution sources. As the most commonly used multivariate statistical
methods, PCA and CA have been widely used in environmental research for studying
the hidden grouping patterns among soil heavy metals [13]. PCA can obtain a cluster of
orthogonal factors with a decreased dimension and show their correlations to the original
variables [34–36]. CA results are usually presented as a dendrogram, where elements
within a group (or cluster) have a higher similarity than others and may originate from the
same sources [37].

2.3.2. APCS-MLR Receptor Model

Based on the factors derived from PCA, the receptor model APCS-MLR was used to
quantitatively determine contributions from the identified sources to the receptors [12,27,38].
First, the raw data were normalized as dimensionless standardized forms (Equation (3)).
Then, an artificial sample with zero concentrations for all species was introduced to convert
the normalized factor scores into un-normalized APCS values (Equations (4)–(6)). The basic
idea is that the APCS value (APCS)ki can be calculated by subtracting the absolute zero
factor score (A 0)k from the obtained normalized factor score (Aki). The multiple linear
regression, using the heavy metals contents as the dependent variable and (APCS)ki as the
independent variable, was performed to estimate the contributions of the factors (Equation
(7)). The formulas can be written as the following:

Zij =
Cij − Cj

σj
(3)

(Z 0)j =
0 − Cj

σj
= −

Cj

σj
(4)

(APCS)ki = Aki − (A 0)k (5)

(A0)k =
J

∑
j=1

Skj · (Z0)j (6)

Cij =
n

∑
k=1

(
bkj × APCSki

)
+ (b0)j (7)

where the subscripts i, j, and k stand for sample i, species j, and obtained factor k, re-
spectively. Skj is the score coefficient of factor k to species j, while Zij , (Z 0)j presents

standardized concentration of species j in the true and artificial sample, respectively . Cj
and σj are the average content and standard deviation of species j for all samples used
in this analysis, respectively. Cij is the concentration of heavy metal j in sample i, bkj is
the estimated slope coefficient of source k on heavy metal j, and (b0)j is a constant term
indicating average contribution of unknown sources. Thus, the contribution from the
source k to the heavy metals j in sample i can be quantified as

(
bkj × APCSki

)
.

APCS-MLR may produce some negative contributions and unknown sources, making
it difficult to interpret [22,39]. Thus, the absolute function was utilized to account for the
contribution rate (PCkj) of estimated (Equation (8)) and unrecognized origins (Equation (9))
as follows [14]:

PCkj =

∣∣∣ bkj × APCSki

∣∣∣∣∣∣(b0)j

∣∣∣+ ∣∣∣bkj × APCSki

∣∣∣ × 100% (8)
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PCkj =

∣∣∣ (b0)j

∣∣∣∣∣∣(b0)j

∣∣∣+ ∣∣∣bkj × APCSki

∣∣∣ × 100% (9)

In the study, SPSS 26.0 was used to achieve basic statistics information and perform cor-
relation analysis, PCA, CA, and multiple linear regressions. Arc GIS 10.6 was implemented
to map the spatial distributions of the factor contributions.

2.4. Source-Specific Risk Assessment
2.4.1. Ecological Risk Apportioned from Different Sources

The source-oriented ecological risk of heavy metals in agricultural soils was quantified
by coupling the source apportionment with ecological risk assessment [9,40]. It could be
estimated as follows (Equations (10) and (11)):

Ek
ij =

Ck
ij

Bi
× Tj (10)

RIik =
n

∑
j=1

Ek
ij (11)

where Ek
ij and Ck

ij are the ecological risk and concentration of the heavy metals j from the
source k in the i sample, respectively. RIik is the potential ecological risk posed by source k
in the i sample.

2.4.2. Health Risk Apportioned from Different Sources

Based on the results of source apportionment, the source-specific health risks for
children and adult through three exposure pathways (oral ingestion, dermal contact, and
inhalation) were evaluated using health risk assessment method suggested by USEPA [9,41].
The average daily doses (ADDk

ij, mg/kg/day) of heavy metal i from the source k in the j
sample via different pathways were calculated as follows [42]:

ADDk
ijing =

Ck
ij × IngR × EF × ED

BW × AT
× CF (12)

ADDk
ijdermal =

Ck
ij × SAF × AF × ABS × EF × ED

BW × AT
× CF (13)

ADDk
ijinh =

Ck
ij × InhR × EF × ED

BW × AT
(14)

where ing, dermal, and inh represent oral ingestion, dermal contact, and inhalation, respec-
tively. The exposure parameters used in the health risk assessment are defined and listed
in Table S3.

For non-carcinogenic and carcinogenic risk, the total hazard quotient (THQk
ij) and

total carcinogenic risk (TCRk
ij) of heavy metal j from the source k in the sample i were

calculated as follows:

THQk
ij =

ADDk
ijing

R f Ding
+

ADDk
ijinh

R f Dinh
+

ADDk
ijider

R f Dder
(15)

TCRk
ij = ADDk

ijing × SFing + ADDk
ijinh × SFinh + ADDk

ijdermal × SFder (16)

where RfD (mg/kg/day) is the reference dose of targeted heavy metal for non-carcinogenic
risk, while SF (kg·day/mg) is the slope factor of carcinogenic heavy metal. Their values for
the heavy metals are shown in Table S4.

No adverse health effects occur if THI ≤ 1, while there may be potential non-carcinogenic
effects when THI > 1. Additionally, TCR ranging from 1 × 10−6 to 1 × 10−4 is considered to
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bean acceptable level, TCR less than 1 × 10−6 suggests negligible carcinogenic risk, while
TCR larger than 1 × 10−4 indicates severe carcinogenic risk [13].

3. Results and Discussion
3.1. Heavy Metals in Agricultural Soil

The total contents of heavy metals in the agricultural soils of Yingtan, together with
their soil background values and the risk screening values in agricultural soils, are sum-
marized in Table 1. The ranges of heavy metals in farmland soils were: 5.80–261 mg/kg,
3.59–84.1 mg/kg, 8.00–304 mg/kg, 15.3–278 mg/kg, 1.38–133 mg/kg, 0.0725–4.04 mg/kg,
9.02–208 mg/kg, 26.3–328 mg/kg, and 0.00468–0.455 mg/kg, respectively, for Cr, Ni, Cu,
Zn, As, Cd, Pb, Mn, and Hg. Compared with their background values of soil in Jiangxi
province [43], the mean and median values of As and Mn were lower, suggesting that
they may mainly originate from the weathering of parent materials. In contrast, the higher
median and mean values of Cu, Zn, Cd, and Pb than their corresponding background
values indicated the great contribution of anthropogenic activities to their contents in soil.
In particular, the median and mean values of Cd were three and six times of the background
value, respectively, suggesting that Cd in Yingtan farmland soils had been significantly
elevated by anthropogenic emissions. Cr, Ni, and Hg had their medians lower and means
higher than the corresponding background values, demonstrating that both the natural
and anthropogenic sources may greatly contribute to their contents in soils. Moreover,
regarding the risk screening values of soil as reference levels, the exceedance rate followed
the order of Cd > Cu > Pb > As > Zn > Ni~Cr > Hg. It was noted that the concentrations of
Cd exceeded its risk screening value in 63.9% of the agricultural soil samples, confirming
that Cd was the major pollutant in the agricultural soils of Yingtan. In summary, the
investigated heavy metals were impacted by human activities in the following decreasing
order: Cd > Cu, Zn and Pb > Cr, Ni, and Hg > Mn and As.

Table 1. Basic statistical information of heavy metal contents in agricultural soils of Yingtan.

Metal

Concentration (mg/kg)
B.V.

a

(mg/kg)
% of

Samples
> B.V.

S.V. b

(mg/kg) % of
Sam-
ples >

S.V.
Mean S.D. Min P5 Q1 Median Q3 P95 Max pH ≤ 5.5 5.5 < pH

≤ 6.5
6.5 < pH
≤ 7.5

Cr 56.4 45.4 5.80 12.0 22.2 37.4 77.8 155 261 45.9 43.6 250 250 300 0.41
Ni 21 10.2 3.59 8.47 13.5 18.6 27.3 40.8 84.1 18.9 48.5 60 70 100 0.41
Cu 30.7 23.0 8.00 13.6 20.6 26.7 34.9 50.8 304 20.3 75.9 50 100 100 6.22
Zn 87.2 34.6 15.3 34.6 63.4 86.4 105 138 278 69.4 71.4 200 200 250 1.24
As 9.41 10.8 1.38 2.46 4.90 7.35 11.0 19.2 133 14.9 10.4 30 30 25 1.66
Cd 0.386 0.361 0.0725 0.164 0.260 0.353 0.430 0.667 4.04 0.108 98.3 0.3 0.4 0.6 63.9
Pb 47.3 20.1 9.20 21.0 34.5 44.4 58.2 77.9 208 29.1 85.1 80 100 140 3.22
Mn 186 137 26.3 50.2 91.1 152 238 412 1120 328 10.4 - - - -
Hg 0.0850 0.0499 0.00468 0.0247 0.0547 0.0758 0.109 0.174 0.455 0.084 39 0.5 0.5 0.6 0

Notes: a: B.V. is the soil background value of Jiangxi Province; Percentage (>B.V.) is the percentage of samples
exceeding the background value; b: S.V. is the risk screening value for the investigated heavy metals in agricultural
soils in China [44]; Percentage (>S.V.) is the percentage of samples exceeding the risk screening value.

Figure 2a displays the contributions of individual heavy metals to the total potential
ecological risks at the county level. It suggests that Cd (57.2%) accounted for the majority of
potential ecological risk in Yingtan farmland soils due to its high contents and the large toxic
response factor values, followed by Hg (24.6%) and the combination of all other investigated
heavy metals (As, Cr, Cu, Mn, Ni, Pb, and Zn) contributed less than 20% of the total potential
ecological risk. According to Table S2, 0.8%, 6.2%, 61.8%, and 28.2% of soil samples could
be recognized as “very high”, “high”, “considerable”, and “moderate” categories owing
to the ecological risk posed by Cd, respectively (Figure 2b), whereas 0.4%, 5.0%, and
33.6% (81 out 241) of the samples belonged to the “high”, “considerable”, and “moderate”
categories due to Hg, respectively (Figure 2b). Figure 2c displays the spatial distribution of
potential ecological risks in Yingtan, as well as the per capita industrial production value
in 2017 for each district and the locations of major industrial sources. The values of the
potential ecological risk index ranged from 57.7 to 1222, with a mean value of 180. The
highest levels were observed in areas close to Lenshui and Guixi, which were featured with
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concentrated mining and smelting activities. Figure S2 depicts the distribution of potential
ecological risks resulting from various heavy metals in the surface soils of the study area.
The distribution of the overall potential ecological risk was similar to that of Cd. The results
consistently suggested that Cd was the priority contaminant and the major risk contributor
to the potential ecological risks in Yingtan farmland soils. It is important to identify the
sources of Cd for pollution prevention and soil quality management.
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surface soils: (a) Single and total potential ecological risks resulted from investigated heavy metals
in different counties; (b) The levels of potential ecological risks caused by Cd and Hg, respectively.
The numeric tags are hidden for fractions less than 1%; and (c) The spatial distributions of the
overall potential ecological risk and major industrial facilities, as well as industrial GDP per capita in
different counties.

3.2. Source Identification and Apportionment
3.2.1. Source Identification and Apportionment

Table 2 shows the Pearson’s correlation coefficients of the investigated heavy metals
in farmland soils. The results indicated that the correlation coefficients between Cr and Ni
(0.558), Cu and Zn (0.502), Zn and Pb (0.696), and Cd and Pb (0.507) were relatively high,
while those between Mn (or Hg) and other heavy metals were low. The results demonstrated
that Cu, Zn, Pb, and Cd could be contributed by the same or correlated sources, and Ni and
Cr had similar provenances. In contrast, Mn and Hg had different origins from other heavy
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metals. In addition, hierarchical cluster analysis was also performed to identify groups
of heavy metals with similar distribution patterns, as shown in Figure 3. It reveals that
Cr and Ni formed a cluster, and the cluster of Zn and Pb linked with Cd and Cu at later
stages, while Mn and Hg were lack of connections with the other soil heavy metals. PCA
was also conducted to identify the source of soil heavy metals, and the outcomes of KMO
(0.622) and Bartlett’s test (p < 0.001) demonstrated that the dataset was appropriate for
PCA [45,46]. As shown in Table S5, five principal components (PCs) with a cumulative
proportion of 79.9% were kept for further analysis. To make the results more explainable,
VARIMAX normalized rotation was performed. Table 3 summarizes the factor loadings of
heavy metals at the rotated principal components. In general, factor loadings greater than
0.71 are considered outstanding, while those less than 0.32 are very poor [47]. As is shown
in Table S5, Cu (0.418), Zn (0.842), Pb (0.846), and Cd (0.747) had high factor loadings in
PC1, indicating that PC1 can explain most of their variances. High factor loading values of
Ni (0.868) and Cr (0.842) were found in PC2. PC3 was dominated by As (0.924), followed
by Cu (0.495). Mn (0.885) and Hg (0.939) had extremely high factor loadings in PC4 and
PC5, respectively. The outputs of PCA were consistent with those of cluster analysis.

Table 2. Pearson’s correlation matrix of investigated heavy metals in agricultural soils of Yingtan.

Metal Cr Ni Cu Zn As Cd Pb Mn Hg

Cr 1
Ni 0.558 ** 1
Cu 0.141 * 0.258 * 1
Zn 0.170 * 0.443 * 0.502 ** 1
As 0.208 * 0.148 * 0.247 * 0.131 * 1
Cd −0.0787 0.0623 0.182 * 0.437 * 0.113 1
Pb 0.00576 0.166 * 0.167 * 0.696 ** 0.0963 0.507 ** 1
Mn 0.184 * 0.00994 0.0603 0.128 * 0.0101 0.120 0.211 * 1
Hg 0.0395 0.152 * 0.108 0.190 * 0.147 * 0.0552 0.209 * −0.0508 1

Notes: ** p < 0.01; * p < 0.05.
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Table 3. Results of PCA: The rotated component matrix of heavy metals in Yingtan agricultural soil.

Metal PC1 PC2 PC3 PC4 PC5

Cr −0.125 0.842 0.16 0.24 −0.016
Ni 0.178 0.868 0.005 −0.136 0.071
Cu 0.418 0.256 0.495 −0.383 −0.221
Zn 0.842 0.349 0.072 −0.111 0.03
As 0.013 0.065 0.924 0.078 0.147
Cd 0.747 −0.172 0.108 0.1 −0.04
Pb 0.846 0.016 −0.053 0.179 0.201
Mn 0.171 0.083 0.037 0.885 −0.126
Hg 0.108 0.05 0.099 −0.107 0.939

3.2.2. Quantitative Source Apportionment Using APCS-MLR

In this study, APCS-MLR was applied to quantitatively apportion the contributions of
heavy metals in soils from various potential sources. Table 4 presents that R2 of investigated
heavy metals varied from 0.612 to 0.916, and the differences between the observed and
predicted mean values of heavy metals were minor. It suggested that the APCS-MLR
models were reliable for source interpretation [13]. Based on the receptor models simulation,
the spatial distribution of APCS is depicted in Figure 4.

Table 4. Results of APCS/MLR: Contributions (%) from each factor to heavy metal contents in
Yingtan farmland soils.

Metal R2
Contribution (%)

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Unknown

Cr 0.808 9.63 66.6 4.24 9.00 0.863 9.63
Ni 0.809 16.6 68.0 0.136 4.91 4.38 5.96
Cu 0.682 34.3 17.7 13.3 11.6 10.9 12.1
Zn 0.850 67.2 22.8 1.66 3.57 1.58 3.27
As 0.886 2.54 10.8 57.4 6.26 18.3 4.63
Cd 0.612 75.1 1.13 1.33 6.66 11.8 4.02
Pb 0.791 67.9 10.9 2.89 3.54 2.13 12.7
Mn 0.836 18.9 7.67 1.18 49.1 8.60 14.5
Hg 0.916 10.8 5.40 3.23 4.49 71.0 5.10

Notes: R2 is the coefficient of determination.

Factor 1 had higher contributions to Cu (34.3%), Zn (67.2%), Pb (75.1%), and Cd
(67.9%). In general, the elevated content of Pb, Zn, Cu, and Cd in soils would be contributed
by industrial activities, such as mining and steel processing, battery production, waste
incineration, and coal combustion [19,30,48,49]. According to Figures 4a and S1, the high
values of Factor 1 were mainly observed in the southern mountainous region and Guixi
County, which featured intensive mining and smelting–processing activities, respectively.
In contrast, the central basin with a high density of road network, together with the western
part of the central basin with heavy agricultural production activities, had relatively lower
levels of contributions from the factor. Therefore, factor 1 could mainly consist of industrial
sources associated with mining and smelting processes.

Factor 2 was heavily loaded with Ni (68.0%) and Cr (66.6%) in agricultural soils. Previ-
ous studies have recognized that the natural processes, including rock erosion, weathering,
and the degradation and mineralization of sediments in wetlands, are the main drivers
for their accumulation [50]. In this study, the high contributions of factor 2 were mainly
distributed in Yujiang County (Figure 4b), where the industrial system was featured with
carving and glass production [51], which hardly released substantial Cr and Ni into soils.
Therefore, Cr and Ni mainly originated from the lithogenic process. The results were
consistent with the findings in other study areas in China and the world [52–55]. Thus,
factor 2 was mainly attributed to a natural source.
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Factor 3 and factor 4 had a main loading of As (57.4%) and Mn (49.1%), respectively.
Generally speaking, Mn in soil mainly comes from geological origin, and human activities
would not cause significant changes in the content of Mn in the surface soils [56,57],
whereas mining activities, coal burning, wood preservative usage, elements smelting, and
agrochemical application are major anthropogenic sources contributing to As contamination
in soils [58,59]. According to Figures 4c,d, and S1, Guixi and the southern region with
intensive mining and smelting activities have relatively low levels observed, indicating that
industrial emission would not account for the main component of the factor. In addition,
Table 1 shows that Mn and As had lower concentrations than the background value in most
samples, indicating that they had little likelihood of being contaminated by anthropogenic
sources. Therefore, factors 3–4 could be attributed to natural sources.

The weight of Hg (71.0%) in factor 5 was extremely high. Studies have shown that
the concentration of Hg may be significantly elevated by industrial emissions such as non-
ferrous metal smelting, coal mining and coal combustion, waste landfill, paper-making,
and chemical production [60–62]. Table 1 indicates that Hg concentrations in more than
60% of the samples were below the corresponding background value in the study area,
suggesting the important role of natural sources. High contributions from factor 5, as
well as the samples with Hg concentrations exceeding 0.1 mg/kg, were frequently found
in the areas concentrated with mining and smelting activities, including the mining area
located in the southern and northern region, as well as the eastern part of the central basin
(Figures 4e, S1 and S3), demonstrating the significant impacts of anthropogenic inputs to
the elevated contents of Hg in soils. Thus, factor 5 would be a mixed source of natural
origin and industrial emissions.

According to the source identification, the heavy metals in soil were contributed by
natural (factor 2–4), industrial (factor 1), and mixed sources (factor 5), which accounted for
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34.0%, 49.5%, and 6.73% of total metal contents, respectively (Figure S4). The contribution
of unknown sources occupied 9.71%, which may include agricultural sources and traffic
sources. The results revealed that the industrial origin exhibited a significant impact on soil
quality due to high contribution to the toxic elements input (e.g., Cu, Zn, Pb, and Cd).

3.3. Source-Specific Risk Apportionment

Figure 5 presents the ecological risk contributed by the different sources based on
the receptor model outputs. The risk contribution of the different sources followed the
sequence: factor 1 (49.1%) > factor 5 (34.3%) > factor 2 (21.7%) > factor 3 (9.29%) > factor
4 (8.25%). Industrial activities (factor 1) posed considerable ecological risks (88.1) due to
the high contribution to Cd, whereas the ecological risk caused by mixed sources (factor 5)
and natural origins (factors 2–4) were classified as “low” categories (Table S1). It suggested
that the industrial activities contributed a remarkable proportion to the entire ecological
risk due to high toxicity response coefficients of heavy metals (e.g., Cd and Pb) released
from the industrial emission [9,14,63]. Figure S5 shows that the spatial distribution of RI
resulting from the industrial source was not uniform. Moderate to high levels of risk were
observed in the southern mountainous region, which featured intensive mining activities.
RI posed by factors 2–5 was classified as low risk for the whole study area. The above
results consistently revealed that the industrial sources could cause significant harm to
the soil environment. Therefore, priority must be given to the management of mining and
smelting activities.
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The source-specific health risks for adults and children through three pathways (in-
gestion, dermal contact, and inhalation), including non-carcinogenic and carcinogenic
risks, are summarized in Tables 5 and S6, respectively. For non-carcinogenic risk, THQ
values for adults and children were 0.101 and 0.409, respectively, suggesting the absence
of non-carcinogenic risks. In contrast, the total TCR value for adults (1.36 × 10−4) and
children (6.86 × 10−4) surpassed the acceptable levels of 1.00 × 10−4, which indicated that
significant carcinogenic effects may occur. Compared to the adults, the children suffered
more severe health risks, which could be partially attributed to their hand-to-mouth be-
havior, higher inhalation rates per body weight, and more gastrointestinal absorption of
some toxic metals [7,9,64]. TCR values were presented in the order of As > Pb > Cd. It
was noted that TCR values of As for adults and children were both beyond 1.00 × 10−4,
suggesting that As in soil could pose significant health risks to local residents. This may be
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explained by the high toxicity response levels and parent material origin of As in soil [7,12].
In addition, Table 5 shows that ingestion was identified as a major exposure pathway for
carcinogenic risks, while TCRdermal and TCRinh values for adults and children were much
lower than 1.00 × 10−4. Therefore, the living habits of children in the study area should be
considered to reduce exposed health risks.

Table 5. Source-specific carcinogenic risks of heavy metals from different sources.

Item Source As Pb Cd TCRing TCRinh TCRdermal TCR

Adult

Factor 1 3.45 × 10−6 1.57 × 10−7 1.01 × 10−10 3.55 × 10−6 1.24 × 10−10 5.46 × 10−8 3.60 × 10−6

Factor 2 1.47 × 10−5 2.38 × 10−9 1.63 × 10−11 1.45 × 10−5 1.11 × 10−10 2.33 × 10−7 1.47 × 10−5

Factor 3 7.79 × 10−5 2.78 × 10−9 4.32 × 10−12 7.67 × 10−5 5.05 × 10−10 1.23 × 10−6 7.79 × 10−5

Factor 4 8.50 × 10−6 1.40 × 10−8 5.29 × 10−12 8.38 × 10−6 5.99 × 10−11 1.35 × 10−7 8.51 × 10−6

Factor 5 2.49 × 10−5 2.47 × 10−8 3.18 × 10−12 2.45 × 10−5 1.63 × 10−10 3.95 × 10−7 2.49 × 10−5

Unknown 6.29 × 10−6 8.44 × 10−9 1.90 × 10−11 6.19 × 10−6 5.94 × 10−11 9.96 × 10−8 6.29 × 10−6

Total 1.36 × 10−4 2.09 × 10−7 1.49 × 10−10 1.34 × 10−4 1.02 × 10−9 2.15 × 10−6 1.36 × 10−4

Children Factor 1 1.74 × 10−5 7.98 × 10−7 1.22 × 10−10 1.80 × 10−5 1.49 × 10−10 1.94 × 10−7 1.82 × 10−5

Factor 2 7.41 × 10−5 1.21 × 10−8 1.96 × 10−11 7.33 × 10−5 1.33 × 10−10 8.29 × 10−7 7.42 × 10−5

Factor 3 3.93 × 10−4 1.41 × 10−8 5.21 × 10−12 3.89 × 10−4 6.08 × 10−10 4.39 × 10−6 3.93 × 10−4

Factor 4 4.29 × 10−5 7.08 × 10−8 6.36 × 10−12 4.25 × 10−5 7.21 × 10−11 4.79 × 10−7 4.29 × 10−5

Factor 5 1.26 × 10−4 1.25 × 10−7 3.83 × 10−12 1.24 × 10−4 1.97 × 10−10 1.40 × 10−6 1.26 × 10−4

Unknown 3.17 × 10−5 4.28 × 10−8 2.28 × 10−11 3.14 × 10−5 7.15 × 10−11 3.54 × 10−7 3.18 × 10−5

Total 6.85 × 10−4 1.06 × 10−6 1.80 × 10−10 6.78 × 10−4 1.23 × 10−9 7.65 × 10−6 6.86 × 10−4

Due to the insignificant non-carcinogenic effects for local residents, only contributions
of various sources to the carcinogenic risks for adults and children are discussed below.
Factor 3 had the highest proportion (adult: 57.3%, children: 57.3%) of TCR values, owing to
the large proportion of As in the factor. Although the industrial sources (factor 1) made the
largest contribution to the total ecological risk, their contribution to the total TCR values was
very low (adult: 2.65%, children: 2.65%). The results were comparable with the previous
studies [7,63]. In the study area, the weathering processes of parent materials release
substantial As into soil, which has much higher toxicity and carcinogenic effects than other
metals [9,12,41]. Despite this, the health risks posed by industrial activities demand long-
term monitoring and need to be minimized by the related pollution remediation measures.

Overall, the integration of source apportionment and risk assessment could offer
an accurate approach to comprehensively capture source contribution to the ecological
and health risks [63,65]. Compared to the traditional risk assessment methods, the source-
oriented risk assessment could deliver insight into the impact of natural and anthropogenic
sources on soil ecosystems and human health, which is more conducive to providing
reliable tools for pollution management and control [64,66]. The in-depth source-oriented
risk assessment remains several issues to be addressed, including the influence of soil
parent materials, land use type, and bio-availability [63,66], as well as model uncertainty
arising from the unidentified component and proper selection of exposure parameters [13].
Hence, further research is required to take the spatial heterogeneity into account and
reduce the uncertainty in source apportionment to conduct the comprehensive evaluation
of pollution risk in soil.

4. Conclusions

In the study, it was found that Cu, Zn, Cd, and Pb were significantly enriched in
agricultural soils in a typical mining and smelting industrial area, and Cd was identified as
the most important pollutant in the region. Multivariate statistical methods and the APCS-
MLR model were used to qualitatively and quantitatively identify the heavy metal sources.
The results showed that Cr (79.8%), Ni (73.0%), As (74.5%), and Mn (58.0%) mainly came
from natural sources; Cu (34.3%), Zn (67.2%), Cd (75.1%), and Pb (67.9%) were significantly
contributed by industrial activities, while Hg (71.0%) was enriched by the mixed sources
of human activities and natural origin. Based on the outputs of the APCS-MLR model,
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source-specific risks were estimated, showing that industrial emissions had contributed
49.1% of the overall potential ecological risk, and As naturally occurring in the soils poses
a significant threat to human health. The results suggested that there is an urgent need
for pollution control and prevention in the region. The findings can offer the scientific
foundation for policy development for soil pollution prevention and control.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su16041673/s1, Text S1: Microwave-assisted digestion procedures
for determination of total content of heavy metals; Table S1: Potential ecological risk levels based
on risk factor of a single trace metal; Table S2: Potential ecological risk levels based on risk index
of multiple trace metals; Table S3: Exposure parameter used for health risk assessment to toxic
elements; Table S4: Reference dose (RfD, mg/(kg · day)) and slope factor (SF, [mg/(kg · day)]−1) of
heavy metals through different pathways [8,67,68]; Table S5: Variance explained by the extracted
components of PCA analysis for trace metals in Yingtan agricultural soil; Table S6: Source-specific non-
carcinogenic risks of heavy metals from different sources; Figure S1: Distribution of the main mining
areas, residential areas, and roads in Yingtan; Figure S2: Spatial distributions of single risk factors of
trace metals in Yingtan agricultural soils; Figure S3: Spatial distribution of sampling sites with severe
pollution of Hg (the concentration exceeding 0.100 mg/kg); Figure S4: The contribution of different
sources to the total metal contents; Figure S5: The spatial distribution of RI from different sources.
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